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AUTOMORPHIC FORMS AND
INFINITE MATRICES

TOMIO KUBOTA

In the present paper, we show that an infinite dimensional vector whose com-

ponents are Fourier coefficients of an automorphic form is characterized as an in-

finite dimensional vector which is annihilated by an infinite matrix constructed by

the values of a Bessel function. Results and methods are all simple and concrete.

Although the idea in the present paper is applicable to more general cases,

our investigation will be restricted to the case of automorphic forms of weight 0,

i.e., automorphic functions, with respect to SL(2, Z) on the upper half plane, in

order to explain the main idea distinctly.

The main theorem is stated in connection with cusp forms in Section 3. In

Section 4, we note first that the main theorem is a characterization of eigenvalues

of the Laplacian, and show that the eigenvalues of the Laplacian and the zeros of

the Riemann zeta function are characterized simultaneously by extending the range

of functions slightly out of cusp forms. This fact can be regarded as an example of

direct and naive contacts between infinite matrices and zeros of zeta functions.

The most essential part of the present paper consists of approximation formu-

las proved in Section 2. Because of such formulas, the condition for the compo-

nents of an infinite vector to be Fourier coefficients of an automorphic form is, as

seen for instance in the main theorem, reduced to the sole assertion that the vector

is annihilated by an infinite matrix.

§ 1. Preliminaries

In this section, we recall some basic notions, prepare symbols, and prove

Theorem 1.1. The main theorem of the present paper (Theorem 3.1) is the con-

verse of Theorem 1.1.

In the sequel, an automorphic form means a function on the upper half plane

5 = {z ^ C Im z > 0} which is invariant under the linear transformation
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determined by an element σ = ( λ of SL(2, Z), is an eigen-
" UA - cz + d

function of the Laplacian

D == u2

of S, and is slowly increasing as y—* oo. The eigenvalue will be expressed by an s

e C with

(1) Df= s(s-l)f.

This says t h a t / belongs to the eigenvalue s(s — 1), but, for the sake of simplic-

ity, we say in this case that / belongs to s. Besides, we put

s = σ + it, (σ, t e R).

Since an automorphic form / has the period 1 with respect to x, it is ex-

panded into a Fourier series in e{mx), (m e Z), with

e(.r) = exp(2ττtr).

In general, the Fourier series takes the form

(2) f(z) = coy
s + coy1'* + Σ cmyiκs^(2π \ m \ y)e(rnx),

where K is a modified Bessel function, and any function with this Fourier expan-

sion is O(ymaxiσΛ~σ)) so that it is slowly increasing as y—> oo.

An automorphic form f(z) is called a cusp form, if Co — Co—0. If f(z) is an

even function with respect to x, i.e., if f(z) = / ( ~ z), then / is called even. The

Fourier expansion of an even cusp form / is of the form

(3) f(z) = Σ cmy\κs-\{2πmy) cos 2πmx.

For later use, we pick up here some asymptotic formulas concerning the

Bessel function K.

(4) Ks^{2πy) = i y i e x p ( - 2πy) (1 + O(y~1)), (y-» 00),

(5) *,-i(2τry) = α(5 - \)ys~\ + α(-s + j)y~s+τ

(6) Ko(2πy) = - logy + 0(1), (y-+0),

where the implied constants in (4) and (5) depend on 5, and
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0, i f s e Z a n d s > 0 ,
a(s) = λ

17jr 7ΓS-Γ ("" s), otherwise.

We also refer to a well-known proposition.

PROPOSITION 1.1. Let

f(z) = Σ cmyiκs-U2π\m\y)e(mx)
WΦO

δe a cusp form. Then, cm = O(\m \ t ) .

Proof. Since f{z) is bounded on the whole upper half plane 5, there exists a

constant M such that \f(z)\<M. Put now ^ = α o | m I"1, (Ks-± (2πa0) * 0) .

Then,

£f{x

implies

m |

\cm I <

Remark 1.1. If / is a general automorphic form as in (2), and if σ = Re s

-|-f then I / U ) I < My~σ, and so

<aόσM\m\\

This implies ί:m = O(\m |"2+<J) for σ ^ -^. More generally, we have

for an arbitrary σ.

For two complex valued functions /i and /2 of a positive, real variable z/, an

inner product </i, /2> is defined by

with
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(8) o)(y) = exp(— 2π(y + y~1)).

This inner product defines a Hubert space which will be denoted by Ω. Furth-

ermore, we put

(9) gm(y) = yτKs-U2πrny) — y~2Ks-\{2πmy~ι),

(10) h(l,m) = <ghgm>,

(/, m = 1, 2, 3 , . . . ) .

PROPOSITION 1.2. For any γ with 0 < γ < 1, £/ιen? ezisfs α constant C > 0,

depending on γ and s, such that

holds for all I, m = 1, 2,

Proo/. We may assume σ ^ ~κ since ϋΓ̂  = X-v. It follows from (4), (5), and

(6) that there exists a constant d , depending on γ and 5, such that

\ (- 2πγy)

holds for all y. Therefore we have

I yiκs-λ(2πmy) \ < Ci m~\ (rny)2~σexp(— 2πγrny),

I y-\Ks-\{2πmy~ι) \ < Ci mr\ (my~ι)^σexp(- 2πγrny-1).

Hence

I gm(y) I < Ci nrσ(yi-σexp(- 2πγmy) + yhσexv(- 2πγrny-1)),

This implies

I g,(y)gm(y) ω(y)\<Cl (Imy^y^expi- 2πγ(l + m)y)

+ exp(- 2πγ(ly + my'1)) + eχp(- 2πγ(ly-1 + my))

iy1-2" exp(- 2π((γl + γm

exp(- 2π«γl + l)y + (γm +

exp(- 2π((γm + \)y + (γl +

zr1+2σexp(~ 2π(y + (γl +γm
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Let us recall here the integral formula

(11) Γ e x p ( - 2π(Γy + rn'y-ι))y^ =2 {ψ)ίKv (4π(Z 'm')i),

(/', nϊ > 0), to obtain

<\gl\,\gm\>

< 4 Cl (lm)-σ[(γl +γm + iyhσ K2σ-ι(4π (γl +γm

Then, applying again the asymptotic formula (4) to the Bessel functions in the

above formula, we have the evaluation

<l gl I, I gm l>

< C2 [exp(- Aπ{γl + γm + l)i) + exp(- 4π(γl + l)s (γm + l)i)]

with a constant Cz. Now,

(r/ + 1) (rm + 1) > γ(l + m) > γ\l + m)

yields

If / and m are regarded as indices of rows and columns, respectively, then

( gi, gm) forms an infinite matrix H = H(s), i.e.,

(12) H=H(s) = «gh gm» = (h(l

This matrix H is hermitian.

THEOREM 1.1. Let

00 j

f(z)= Σ cmy~2Ks-L{2πmy) cos
2

fo an ^f^n cusp form, and let c* 6̂  an infinite column vector whose m-th component is

cm. Then,

He* = 0
oo

holds in the sense that Σ h (/, m) cm converges to 0 /or every I.
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Proof. Fix / arbitrarily. Then, because of Propositions 1.1 and 1.2,

Σm=i ( I gι I, I gm I ) I £w I converges. This means the convergence of

Σ Γ\gl(y) cmgm(y)\ω(y)^-,

and therefore

Σ h(l,m)cm= Γg,{y) (Σ <w

00

Since Σ cmgm(y) = f(iy) - f(iy~ι) = 0, we have

oo

Σ /*(/, m)cm = 0. •

§ 2. Determination of the vanishing orders of the entries of H

To apply to the next section, we now propose to determine the vanishing

order of elements h(l, m) of H correctly for a fixed / as m—• oo, not as in Prop-

osition 1.2, where they were evaluated from above. The implied constants in

0-symbols in the statements of propositions in the sequel depend on s and on an

additional parameter β.

For /, m > 0 and s e C, put

J *°° du

Ks--U2πly)Ks-i(2πmy) ω(y) y-JL

f0 2 2 y

(14) A2(/, m) = j Ks-\(2πly-ι)Ks-\(2πmy) ω(y)

where ω is as in (8). Then,

(15) * ( / , m) = 2Ai(/, m) - 2h2(l, m)

follows from the definition (10) of h(l, m).

PROPOSITION 2.1. Leta(s) be as in (7), and assume β <= C, s, s' e C, and

| Then,

Ks-i(2πly)KS'-ί(2πmy) ω(y) ysdy
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+ α ( - 5 + ~) Γs+2 m^s~^ "***) exp(-

/w/ds for a fixed I as m —+ oo.

Proo/. Throughout the proof, we assume / έ m.

Put first

A = §Ks-\{2πly)Ks'-\(2πmy) ω(y)yβdy

and apply (4), (5) and (6) to

Then, in case s' ^ y, we have

A = f~ (a(s - \) {lyγ-k2 + <χ{-s + \

•a(s' - \) {myY'-2 4- α ( - s' + \) (my)-s'+b (1 + O((my)2)) ω(y)y8dy

+ fja(s - \) (lyy-i + a(-s + \) (/z/)"s+i) (1 + O«ly)2)) •
m

i ( - 2πmy) (1 + O((my)~1))ω(y)yβdy

+ f~\ (ly)-hχv(- 2πly) (1 +

γ(m»)"iexp(- 2πmy) (1 + O((myyι))ω(y)yβdy.

In case s" = -^, (6) is used to deform the first integral so that the result is

somewhat different. But, in either case,

ω(y) < exp(-2πy~1)

yields the fact that the first integral is O(/ | σ"i' exp( — 2πγm)), (σ=Res),

where γ is an arbitrary real number with 0 < γ < 1. On the other hand, the third

integral is O(exp(~ 2πy-f)), since

Thus, A is expressed in the form

L)
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A = fja(s - h (lyy-i + α ( - s + 4) (/y)-'H) (1 + P((/y)2))
Jw 2 2

•- (̂my)"? exρ(— 2πmy) (1 + Q((my)~ι))ω(y)yβdy

+ O(exp(-2πrf)),

leaving solely the second integral. Here, P and Q are functions expressing two

parts which formerly written' as O((ly)2) and Odrny)'1), respectively. Since

these functions P and Q are hitherto defined and used only on the closed intervals

[—-, 1] and [—, 1], respectively, it has nothing to do with the above expression
m m

of A to extend P and Q beyond the intervals. Therefore, we assume now that P

and Q are defined for all y > 0 and satisfy

(16) \P(y) \<C3y, \ Q(y)\ < C4y,

where C3 and C* are constants depending on 5 and s', respectively. In the same

way as the estimation of the error term in the above expression of A, we see that

the change of the value is only O(exp(— 2πγ - r ) ) if \ ι

χ in the expression is

J*oo m

. Hence.
0

(17) A = Γ (α(s - h (ly)s-2 + α ( - s + h (%)"s+i) (1 + P((ly)z))
J 0 Δ Δ

{- 2πmy) (1 + Q((my)-ι))ω(y)yBdy

)+ O(exp(-2τrr y)).

Divide the integral in this formula into four parts which are contributions of

terms in the expansion

a + P) a + Q) = l + P + Q + PQ,

and denote them Aι, AP, AQ, and APQ, respectively. Then, by putting β' =

± (s + τ>) — "9" + β in the formula

(18) P e x p ( - 2πmy)ω(y)y$'dy = P°exp(- 2π((m + l)y + y-1)) yβ'dy
Jo Jo

= 2(m + !)->' + u Jfc

derived from the integral formula (11), A\ takes the expression
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(19) Aι = m'\ (a(s - \)ls~τ (m ¥ i

+ α ( - s + \)l~s^ (m + l)-

As for Ap, Aj, and APQ, computations of the same kind using (16) lead to the eva-

luations

(20) \AP\ <C3l
2AT(β + 2),

| i4 g |<C 4 ι»- 1 i4f

\APQ\< C3C4/
2m-

with

Af(β) = m-\ (I a(s - \) I lσ-\{

+ I α ( - 5 + \) I /"σ4(m + l)

If (4) is applied to (19), then there appears the formula in the proposition, and the

order of m in the formula is higher than the order of m in the error term of (17).

Furthermore, (20) shows that the orders of m in AP, AQ, and in APQ are lower than

the order of m in A\ at least by nή. This completes the proof. I

If s = "2, then (6) must be used instead of (5). Accordingly it turns out to be

difficult to obtain a result corresponding to this proposition. For our purpose,

however, the following asymptotic inequality is enough:

PROPOSITION 2.2. Let β e R and I > 0. Then, the inequality

I K0(2πly)K0(2πmy)ω(y)yβdy > Com~^exp(— 4τrmi)
J 0

holds for all sufficiently large m > 0, where Co is an absolute constant.

Proof. Denote by Ao the integral in question, assume m^ I and divide Ao as

ή
Then, since the integrals are positive, we have Ao > J x . Next, the monotonous de-

creasingness of Ko entails m

ll > fl K0(2πmy)ω(y)yβdy
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and, by means of (4), the last integral is expressed as

K0(2π) flj(my)-Uxp(- 2nmy) (1 + Q((my)-1))ω(y)yβdyy

1 wι

where Q is as in (16) with s' = w. The change of the value is O(exp(~ 2τΐγ-y))

in this case, when /. is replaced by I . Therefore we have
J-i- J 0

Ao > K0(2π) f~^(my)-Uxp(- 2πmy) (1 + Q((my)-1))ω(y)yBdy

+ O(exp(-2πγf)).

Divide the above integral into two parts which are contributions of terms in the

sum 1 + Q, and denote them by i40,i and A0t2, respectively. Then, (18) with β' =

β — ~2 yields

and this is 2~%rn~ V exp(— 4πnά) (1 + 0{m~\)). On the other hand, a computa

3

tion with βr — β — ~κ shows that the order of m in AQ,Q is lower than the order

of m in A0,i by y . Thus, the proposition is valid for any Co with 0 < Co <

2"2

PROPOSITION 2.3. Let β e C and s, sf e C. T/im,

J - l

0

 S 2

= 2 2"/ 2"(/ + 1)2" τ m 2" τ e x p ( —

/w/d5 /or α fixed I > 0 as m-+ oo.

Proof We always assume m ^ /.

Denote by A' the integral in the proposition, i.e.,

A = £ Ks^(2πly'1)Ks^(2πmy)ω(y)yβdy.

Divide A as
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=/:+/> /

and assume first s' # ^ , 5 =¥ TJ~. Then, it follows from (4), (5), and (6) that

j ~ ~ 2 π l y ' l )

\ f--2 + a{~ s' + \){my)-*'+ϊ) (1 + O((my)2))ω(y)y"dy

+ f[ j(ly~ι)-2 exp(- 2πly~ι) (1 + 0((ly1)'1))-

"2 (*»0)4exp(- 2πm^) (1 + 0{{my)~ι))ω{y)yβdy

(a(s - \) (ly-ψ'ϊ + a(-s + \) (ly-ι)~s+k (1 + OUly'1)2))

~ (m»)-i + eχp(- 2πmy) (1 + O((myy
1))ω(y)yβdy.

If either 5 or s' is equal to y , then (6) is used to deform the first and the third in-

tegrals so that the results are somewhat different. But, in either case, the first in-

tegral is O(exp( — 2πγm)) because of ω(y) < exp( — 2πy~1), where γ is an

arbitrary real number with 0 < γ < 1. On the other hand, the third integral

is O(exp(— 2πγm)) because of

1

Therefore, leaving solely the second integral, A is expressed as

A = f^(ly-l)-UxV(- 2πly~ι) (1
m

•\ («»)-ϊexp(- 2πmy) (1 + Q((my)-ί))ω(y)yβdy + O(exp(- 2πγm)).

Here, Q is as in (16), and Q is obtained from Q by replacing the variable 5' with

s, i.e.,

In the same way as the estimation of the error term in the above fromula, it is

shown that the change of value is also O(exp(— 2πγm)) if the integral J 1 in the

f00 Έ

above formula is replaced by /
J o

https://doi.org/10.1017/S0027763000004104 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004104


72 TOMIO KUBOTA

Hence,

(21) A = f~ jdy-'yhxpi- 2πly~1) (1 +

\ iexp(- 2nmy) (1 + Q((my)-1))ω(y)yβdy + O(exp(-

Divide this integral into four parts which are contributions of terms in the expan-

sion

(1 + Q) (1 + Q) = 1 + Q + Q + QQ,

and denote them by A[, AQ, AQ, and AQQ, respectively. Then, (11) implies in

general

I exp(- 2π(my + ly~ι))ω(y)yβ'dy
J o

= Γ exp(- 2π((m + \)y + (I + \)y-ι))yB'dy
Jo

and, putting β' = βf A[ is expressed as

A[ = \{lm)-ii(l + l )2 ( / m ) (m +

As for AQ, AQ and i4gg, (16) yields

(22) \Aξ\ <C*

where A{β) means A[ as a function of β.

If (4) is applied to the above formula exressing A\, there appears the formula

in the proposition, and the order of m in the formula is higher than the order of m

in the error term of (21) which expresses A. Furthermore, as (22) shows, the

orders of m in AQ, AQ, and AQQ are lower than the order of m in A[ at least by nή.

This completes the proof. I

PROPOSITION 2.4. Let s ^ C, and let hi, h2 be as in (15). Then, provided that

https://doi.org/10.1017/S0027763000004104 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004104


AUTOMORPHIC FORMS AND INFINITE MATRICES 7 3

/, m) ~ 2-t(α(s - | )

~)/" s + 2 m ^ ( s -2 ) *) e x p ( -

as iw —• oo, and, far an arbitrary s,

h2(l, m) ~ 2~!H(/ + l)-τm-τ exp(- 4τr(/ + 1)W)

as m-^ oo.

Proof. The result concerning &i follows from (13) and Proposition 2.1 with

β = 0. The result concerning A2 follows from (14) and Proposition 2.3 with

β=-i. m

THEOREM 2.1. // σ = Re s > TΓ, Λen tfw asymptotic formula

h(l, m) - 2"iα(- s + ̂ Γ ^ W ^ " 1 exp(- 4τrmi)

M^5 for h(l, rn) in (10) as m—• oo. If σ <~κ, then the corresponding asymptotic

formula is given by replacing s with 1 — s in the above formula. Moreover, if

s — -o" + it, (t ̂  R, ί^ 0),

as w —> oo.

The order of m is higher in hi than in λ2. Therefore, it is enough to

prove the theorem for hi instead of h. If σ > TJΓ, then the order of mJ s *" is higher

i(_s-+i)
than the order of m2 2 so that the first formula in the theorem follows from

(15) and Proposition 2.4. If 0" = ^Γ, then the two orders are equal so that the

second formula holds. •

THEOREM 2.2. Let h(l, m) be as in (10), and let s = -w.

Then,

h(lf m) > 2 C 0 w " 1 e x p ( ~ iπnά)

holds for almost all m, where Co is the constant in Proposition 2.2.
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Proof. Proposition 2.2 with β = 0 implies in this case

hι(l, m) > Com'1 exp(—

while Proposition 2.4 is valid for h2. Since hi contains m in its highest order, the

theorem is proved. H

§ 3. Main theorem

Before presenting the main theorem, we state two propositions. The first one

is fairly deep in which all results in Section 2 are concentrated, while the second

one is an elementary and basic property of eigenfunctions of the Laplacian D.

PROPOSITION 3.1. Let h(l, m) be as in (10) and (15), and let {cm}%=ι be a series

of complex numbers such that the series Σm=i h(l, wι)cm converges for all I. Then,

cm = 0(mexp(47rm^)).

Proof Since Kv = K-v, we may assume σ ^ ~κ. It follows from the converg-

ence of the series that cm — o(h(l, m)~ι), (m—> oo). Therefore, the proposition is

an immediate consequence of the first asymptotic formula of Theorem 2.1 if σ >

y . If σ > 2", then the proposition follows immediately from Theorem 2.2.

Thus, in the rest of the proof, we may restrict ourselves in the case of

5 = ~ + it, (t e R, t * 0). Theorem 2.1 implies

(23) C

So, putting a (it) — p exp(itθ), (θ ^ R), we have

adOV'nrb* + α ( - ifiΓ'nά" = 2p cos f(logy + θ - log /).

Now we choose εo > 0 and a natural number h such that | cos tx\ ^ So implies

I cos t(x — log /o) I > ε0, (x G. R), and look at cos t(\og~κ- + θ) which is a part

of the right hand side of the above equality. If cos t(\og~w + θ) > εo, then, with

/ = 1, the absolute value of the left hand side of the above equality is bigger

than 2pε0. If cos f(log-o~ + θ) ^ ε0, then, with / = /0, the absolute value of the
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left hand side of the above equality is bigger than 2pε0. In either case, the theorem

follows from (23). •

Remark 3.1. If either σ *? ~κ or s = TT, then only one and arbitrary / is

enough in order to prove Proposition 3.1. If o — ~κ and s ^ y , then any one

/ and one more suitable U are enough.

The next proposition is one of elementary properties of eigenfunctions of the

Laplacian.

PROPOSITION 3.2. Let φ be a function on the upper half plane which is an eigen-

d2 d2

function of the Laplacian D = 2/ 2(^rτ "̂  ^) Assume that φ(z) = φ{ — z) and
dx2 dy2

φ(iy) = 0 for all y > 0. Then, φ = 0 on S.

Proof Put D φ = λφ. Then, since

7^2k i

——5r is a linear combination of derivatives of various orders, and is 0 by the
dx2k *=o

assumption. On the other hand, ψ(z) = φ(— z), i.e., φ(x + iy) = φ(— x + iy)

d2k~\
implies = 0. Hence, 0 = 0.

dx2'-1

Now we can prove the following main theorem:

THEOREM 3.1. Let H be the infinite matrix given by (12), and {cm}%=ι be a

series of complex numbers. Denote by c* the infinite column vector whose rn-th compo-

nent is cm, and assume

He* = 0

in the sense that Σm=ι h(l, fri)cm converges to 0 for every I. Then, cm are coefficients

of an even cusp form as in (3).

Proof. Since Proposition 3.1 says cm — o(m exp(47rml)), (4) implies that

f(z) = Σ cmyiκs-± (2πmy) cos 2πrnx, (z = x + iy),
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converges uniformly and absolutely in the subdomain of the upper half plane 5

determined by Im s = y > y0, where y0 > 0 is arbitrary. On the other hand, the

formula

-2KUy) = Kv-άy) + Kv+ι(y)

concerning the derivative of Bessel functions shows that the above series is still

uniformly and absolutely convergent in the same domain even if each term is

replaced by its derivatives of arbitrary orders with respect to x as well as y.

Therefore, the Laplacian D can be applied termwise on the series so that

Df=s(s-l)f.

Next we consider the restriction of the function / to the imaginary axis. Let

gm{y) be as in (9). Then,

fdy) -f(iy~ι) = Σcmgm(y)
m=l

holds pointwise. At the same time, the assumption of the theorem implies that the

series Σm=iCmgm(y) converges weakly to 0 in the Hubert space Ω introduced im-

mediately prior to Proposition 2.1. Hence, it converges pointwise to 0. This means

f{iy)-fiiy-1) =0.

Apply here Proposition 3.2 to φ(z) = /CO — / ( — z~ι). Then, we have

/CO = / ( ~ ~ z~~ι), from which follows that/CO is invariant under the operation of

SL(2, Z). •

This theorem shows that the Fourier coefficients of cusp forms are completely

controlled by the infinite matrix H which is constructed in a simple way by spe-

cial functions.

§ 4. Extended investigations including zeros of the Riemann zeta function

By our investigations up to the preceding section it was shown that the mat-

rix i f in (12) determines the Fourier coefficients of an even cusp form satisfying

(1) as components of an infinite column vector c* annihilated by it. Namely, c* is

an eigenvector of H belonging to the eigenvalue 0. Since s is arbitrary, the exist-

ence of a cusp form belonging to s, or in other words, the fact that s(s — 1) is an

eigenvalue of the Laplacian in the space of even automorphic functions with

respect to SL(2 Z) which are square integrable on the fundamental domain, is

equivalent to the fact that 0 is an eigenvalue of H = H (s).
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Such a characterization of the eigenvalues of the Laplacian has a generaliza-

tion in which the eigenvalues of the Laplacian and zeros of the Riemann zeta func-

tion are controlled simultaneously by an infinite matrix which is larger than the

above H by one row and by one column, while a crucial point is again whether or

not the matrix has 0 as an eigenvalue. The aim of the present section is to explain

this situation.

First we recall the notion of residual forms which are intimately connected

with Eisenstein series. But, everything will be stated only under our restricted

circumstances. For details, textbooks of Eisenstein series should be referred to.

A residual form means a function as in (2) with Co = 0 and Co # 0, i.e., an

automorphic form with a Fourier expansion of the form

(24) f(z) = coy1'* + Σ cmyiKs-U2π I m | y)e(rnx),
mΦO Δ

(Co # 0). As mentioned at the beginning of Section 1, the discontinuous group is

always SL(2 Z).

For a point z on the upper half plane 5 and a complex number s with

Re s > 1, the Eisenstein series E(z, s) is defined by

E(z,s) = Σ £
1

(crf)-i CZ

ooThis is an automorphic form, and its Fourier expansion is

(25) E(z,s) = ys + φ(s)yι's

+ Σ 2πsΓ(s)~ιδ(s, rn)ζ(2s)-ιyiκsM2π\m\y)e(rnx),
mΦO

where ζ (s) is the Riemann zeta function,

φ(s) - 7Γ2 Γ ( s ) ζ ( 2 s ) '

and

δ(s,rn)= Σ ( ^ H = 5(1 - s, ro), (m*0).

The function E(z, s) has, as a function of 5, a meromorphic continuation on the

whole s-plane, and its poles coincide with those of 0(s) together with the orders.

Furthermore, E(z, s) satisfies (1), and is an even automorphic form because

of δ(s, m) — δ(s, — m).

PROPOSITION 4.1. A pole So ofφ(s) is either So = 1 or s0 with ζ(2s0) — 0 and 0

< Re 2s0 < 1. // So is a pole of φ(s) of order N, then lim (s — so)
N E(z, s) is a
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residual form.

Proof. The first assertion is a consequence of (26),

Let next E(z, s) = Σ*=-#Λ(£)(s — so)
k be the Laurent expansion of

E(z, s) at So. Then, since E(z, s) satisfies (1), we have

Σ (Dfk)(z)(s- So)" = 5 ( 5 - 1 ) Σ Λ ( 5 ) ( 5 - 5 0 ) *
k=-N k=-N

= (so(So - 1) + (2s0 - 1) (s - so) + (s - so)2) Σ /* (z)(s - so)*.

Hence, Df-N = so(so — 1)/-ΛT, and the constant term of the Fourier expansion of

f-N is

lim (s - s o ) * V + Φ(s)y1~s) = Coy1'80

s-+s0

with

Co = lim (s — so)
Nφ(s).

s-+s0

Therefore, f-N is a residual form, and certainly

lim (s-So)NE(z,s) =f-N(z).

Here we recall so-called Maass-Selberg's inner product formula. Suppose that

f(z) = Σ am{y)e{mx) is an automorphic form satisfying Df= λaf, and define

/ r ω by

On the other hand, put ® = {zε S; \ z\ > 1, | Re z\ < ~κ), which is a common

fundamental domain of SL(2, Z). Then, provided that g(z) — Σ bm(y)e(mx) is an

automorphic form satisfying Z)g = λbgy (λa ^ ^&),

(27) Γ

holds, where ^or and bo are derivatives of a0 and fto, respectively. This is

Maass-Selberg's inner product formula which is fundamental in the theory

of Eisenstein series. Its proof, being based upon Green's formula concerning the

a 2 d2

operator — - + ~τ~τ, is not very difficult, but will not be given here.
dx2 dy2

https://doi.org/10.1017/S0027763000004104 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004104


AUTOMORPHIC FORMS AND INFINITE MATRICES 7 9

PROPOSITION 4.2. Every residual form belongs to a pole So of the function φ(s) as

considered in Proposition 4.1, and is given by the limit in Proposition 4.1 up to a

constant factor.

Proof First we show that So must be a pole of Φ(s) whenever a residual

form of the form Coy1'™ + ' * exists. If we put ao(y) = cfys + cyι~s and bo(y)

= d'ys' + dyι~s' in (27) with constants c, c\ d, d\ then the right hand side of

(27) becomes

c'dΎs+s'-1 - cdY-s~s'+1 . c'dY*-* - cd'Y~s+s'
s + s ' - l s-s'

Assume now/ to be the Eisenstein series E(z, s) — ys -f φ(s)yι~s + in (25)

and g to be a residual form of the form yι~so + . Then, since cf — 1, c = 0(s),

rf' = 0, and rf = 1, (27) implies

r-s-so+l γs-so

provided that s # s' —So. Suppose here that So is not a pole of φ(s). Then, unless

So — "o", the left hand side of the above formula is finite but the right hand side is

infinite as s-+ s0, which is a contradiction. If s0 = -9", then a direct computation

shows 0(y) — ~ 1. Therefore, a similar contradiction takes place, too.

To prove next the last half of the proposition, it is enough to show that there

exists at most one residual form for an s0 up to a constant factor. Assume that

there are two residual forms of the form yι~so + . Then, their difference is a

cusp form. But, as stated in Proposition 4.1, a pole of φ{s) is either s0 = 1 or s0

with ζ(2s0) = 0 and 0 < Re 2s0 < 1. To such an s0, no cusp forms can belong. In

fact, the former case is known in the investigations on the least absolute value of

the eigenvalues of the Laplacian. In the latter case, Re s0 % ~κ and s0 is not real,

and so so(so — 1) cannot be an eigenvalue of an elliptic operator. I

Since the Eisenstein series E(z, s) is an even automorphic form, Proposition

4.2 immediately implies the following:

PROPOSITION 4.3. Every residual form is an even automorphic form.
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After these preparations, we construct a matrix Ho which is larger than H in

(12) by one row and by one column. To do this, we put

go(y) =yι-s-y-ι+s

and

(28) Ho = Ho(s) = (h{ly m))7,m=o

using the definition (10) of h(l, m) unchanged for /, m = 0, too. The matrix Ho is

hermitian as well as H.

Let m > 0 and s ^ C, and put, analogously to (13) and (14),

(29) hdO, m) = Γy1-s~Ks-U2πrny)ω(y)yi^j-
J o 2 y

= Γ Ks-ί(2πmy)ω( y)yhs' dy
Jθ z

(30) A2(0, m) = Γ y-1+s'Ks-i(2πrny)ω(y)yi&•
Jo ι y

= f~ Ks-i(2πrny)ω(y)y-hs~dy.

Then, analogously to (15), we have

*(0, « ) = 2 * i ( 0 , m) - 2 A 2 ( 0 f in).

The following proposition gives an asymptotic formula of h(0, m) as m-»oo in a

corresponding form to Propositions 2.1 to 2.3:

PROPOSITION 4.4. Let s' <^ C and β ^ C. Then,

ΓKs>-U2πrny)ω(y)yβdy = 2-fm-Jτ1exp(- 4ττmi)(l + O(ifΓ*))
•/ 0 z

as m-^> oo.

Proof. Denote by B the integral in the proposition, i.e.,

B= f KS'M2πmy)ω(y)yβdy.
Jo *

Divide this integral as / m + I. . Then, ω(y) < exp( — 2τr^- 1) yields I
Jo J +- Jo

tn

= O(exp(— 2πγm)) for an arbitrary γ with 0 < γ < 1. Therefore, applying (4)

Γ°°
Γ

to J χ , we see
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B = \m-\ Γ exp(- 2ττ((m + \)y + y-ι))ys~hl + Q({my)-l))dy
Δ Jo

+ O(exp(— 2πγm)y

where Q is as in (16). Denote by Bι and BQ the contributions to the integral of

terms in the sum 1 + Q, respectively. Then,

(18) with β' = β - ~ furnishes

Bι = 2 (^-qτy)> + 2} Kβ+i(4π(m + l)h.

3
On the other hand, (18) with βf — β — ~κ similarly shows that the order of m

in BQ is lower than the order of m in Bx by mz. Thus, the proposition follows

from (4). •

PROPOSITION 4.5. The following two asymptotic formulas hold as rn-+ oo:

λi(0, m) - ^ i

Λ2(0, rri) ~ 2 ^rn 2"~?

Prco/ The first formula follows from (29) and from Proposition 4.4 with

β = -p" — 5. The second formula follows from (30) and from Proposition 4.4 with

β = ~ f + 5. •

THEOREM 4.1. Lέtf 5 e C αnίi σ = Re s. Then, as m—» oo,

A(0, w) ^ 2~%z2-4 e x p ( - i

if 0 > 1, and

A(0, rn) ~ - 2~2m~^"~7exp(

if σ > I. If σ = I, then h(0, m) has the asymptotic value which is the sum of

the right hand sides of the two formulas.

Proof The theorem follows from Proposition 4.5, whenever -ό" "~ ~χ and

σ 1
~ "2" ~ T a r e

https://doi.org/10.1017/S0027763000004104 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004104


82 TOMIO KUBOTA

Preceding investigations assure us that asymptotic estimations of h(l, m)

from below and above corresponding to Proposition 1.2, Theorem 2.1, and in

Theorem 2.2 exist for Ho, too. Consequently, the proofs of Theorem 1.1 and

Theorem 3.1 are applicable to Ho and to residual forms, too. We are, however,

exclusively dealing with even automorphic forms so that every automorphic form

in our consideration is of the form

(31) f(z) = Coy1'8 + Σ cmyτKsM2πrny) cos2πmx

instead of (24). The results are summed up in the following:

THEOREM 4.2. Let Ho be as in (28), let icm}Z=o be a series of complex numbers,

and let c* be the infinite column vector whose m-th component is cm. Then, Hoc* = 0

in the sense that Σw=o h(l, fri)cm converges to 0 for all I is equivalent to the fact that

cm are Fourier coefficients of an even automorphic form as in (31). The automorphic

form is a cusp form if c0 = 0, and is a residual form if CQ ̂ F 0.

This theorem, together with Propositions 4.1 to 4.3, implies

THEOREM 4.3. Let Ho = Ho(s) be as in (28). Then, there exists an infinite vec-

tor such that Hoc* = 0 if and only if one of the following three conditions is satisfied:

a) s = 1, b) there exists a cusp form with respect to SL(2, Z) belonging to the eigen-

value s(s — 1), c) 2s is a zero of the Riemann zeta function in the critical strip.

Remark 4.1. The last half of Proposition 4.2 is a different expression of the

fact that a residual form and a cusp form cannot belong to one and the same eigen-

value. Therefore, no two of the three cases a), b), and c) in Theorem 4.3 can occur

at the same time.
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