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AUTOMORPHIC FORMS AND
INFINITE MATRICES

TOMIO KUBOTA

In the present paper, we show that an infinite dimensional vector whose com-
ponents are Fourier coefficients of an automorphic form is characterized as an in-
finite dimensional vector which is annihilated by an infinite matrix constructed by
the values of a Bessel function. Results and methods are all simple and concrete.

Although the idea in the present paper is applicable to more general cases,
our investigation will be restricted to the case of automorphic forms of weight 0,
i.e., automorphic functions, with respect to SL(2, Z) on the upper half plane, in
order to explain the main idea distinctly.

The main theorem is stated in connection with cusp forms in Section 3. In
Section 4, we note first that the main theorem is a characterization of eigenvalues
of the Laplacian, and show that the eigenvalues of the Laplacian and the zeros of
the Riemann zeta function are characterized simultaneously by extending the range
of functions slightly out of cusp forms. This fact can be regarded as an example of
direct and naive contacts between infinite matrices and zeros of zeta functions.

The most essential part of the present paper consists of approximation formu-
las proved in Section 2. Because of such formulas, the condition for the compo-
nents of an infinite vector to be Fourier coefficients of an automorphic form is, as
seen for instance in the main theorem, reduced to the sole assertion that the vector
is annihilated by an infinite matrix.

§ 1. Preliminaries

In this section, we recall some basic notions, prepare symbols, and prove
Theorem 1.1. The main theorem of the present paper (Theorem 3.1) is the con-
verse of Theorem 1.1.

In the sequel, an automorphic form means a function on the upper half plane
S={z€C;Imz>0} which is invariant under the linear transformation
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Z2—0z= ‘Zig determined by an element o = (g g) of SL(2, Z), is an eigen-

function of the Laplacian

D=y (2 +2) +
= —+ ), z=x+1y),
¥ \5p0 3y ( Y)
of S, and is slowly increasing as ¥ — oo. The eigenvalue will be expressed by an s
€ C with
(1) Df=s(s—1f.

This says that f belongs to the eigenvalue s(s — 1), but, for the sake of simplic-
ity, we say in this case that f belongs to s. Besides, we put

s= ¢+ it, (c,t€ R).

Since an automorphic form f has the period 1 with respect to x, it is ex-

panded into a Fourier series in e(mx), (m € Z), with
e(r) = exp(@rmix).
In general, the Fourier series takes the form
, 1
(2) f@) = cy* + ey’ + Z cnyrKo1@r | m|y)emz),
m+0

where K is a modified Bessel function, and any function with this Fourier expan-
sion is O (y™*1=?) 5o that it is slowly increasing as y — oo.

An automorphic form f(2) is called a cusp form, if ¢g = ¢o =0. If f(2) is an
even function with respect to &, i.e., if f(2) = f(— Z), then f is called even. The
Fourier expansion of an even cusp form f is of the form

3) f2) = > cmyfle_%(Zn'my) cos 2mmzx.
m=1

For later use, we pick up here some asymptotic formulas concerning the
Bessel function K.

@ Key@uy) = gy hexp (= 2ny) A+ 0G™), =),
1, 1 1, ¢4l
(5) K 1Qmy) = a(s — )y 2+ a(— s+ 5)y™"2
+ 0w, (027, s%5 40,
(6) Ko@ry) = —logy + 0(1), (y—0),

where the implied constants in (4) and (5) depend on s, and
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7 0, ifs€Zands>0,
(7) _
a(s) = 1
7l (—s), otherwise.

We also refer to a well-known proposition.
ProposITION 1.1.  Let
f@ = T nytKsy 2| m| y)e(mn)
be a cusp form. Then, cw = O(| m |%)
Proof. Since f(z) is bounded on the whole upper half plane S, there exists a
constant M such that | f(2) | < M. Put now y = ao| m |, (Ks-1 @rae) = 0).
Then,

f flx+ la° Tm]e( ma)dr = WFem| m|E s-1(27ma)

implies

| en| < aaM | Kooy (2ma) || m 2. u

Remark 1.1. If f is a general automorphic form as in (2), and if 6 =Res

2 % then | f(z)‘l < My~° and so

U fa+ ’“")e( mz)dz| < a5 M|m|°.

This implies ¢, = O(| m |%+") for o = % More generally, we have
Cm = O(l m ‘7+max(a,1—a))

for an arbitrary o.

For two complex valued functions f; and f; of a positive, real variable ¥, an
inner product fi, f2> is defined by

S d
10 = [[F@ fw 0@

with
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(8) w(y) = exp(— 27n(y +y™).

This inner product defines a Hilbert space which will be denoted by 2. Furth-
ermore, we put

) gn(y) = y%Ks_%(any) - y"%Ks_%(any“‘),

(10) h(l, m) = {gi, gn,
(Iqm=1,23,...).
ProposiTioN 1.2. For any 7 with 0 < vy <1, there exists a constant C > 0,
depending on v and s, such that
|h(, m) | < (gl | gnl> < Cexp(— 4my U+ m)2)
holds forall I, m =1, 2,....
Proof. We may assume O %—%— since K, = K_,. It follows from (4), (5), and
(6) that there exists a constant C;, depending on 7 and s, such that
| y’zl“Ks—%(Zny) | < C1yz%xp(— 277y)
holds for all y. Therefore we have
ly%Ks-g(Zfrmy) | < Cim™ (my)zexp(— 2mymy),
| y‘%Ks_%(any'l) [ < Cim % (my=)3%xp(— 2mymy~).
Hence
| gn() | < Com™ (g2~ exp(— 2z7my) + ¥+~ exp(— 2xymy™)),
This implies
L& () gn(y) @ () | < CF (m)~ly*~* exp(— 2wy (I + m)y)
+ exp(— 27y (ly + my™V)) + exp(— 27y (ly~* + my))
+y " exp(— 27 (1 + my )] o(y)
= Cf (m)~ly** exp(— 2n((yl + ym + Dy +y™))
+ exp(= 2z ((71 + Dy + (ym + Dy™))
+ exp(— 2x((m + Dy + (r1 + Dy™))
+y ™ exp(=2n(y + (71 + ym + Dy~H)1.
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Let us recall here the integral formula

an [T (= 2wy my e =2 GOEE, anamb,

(', m" > 0), to obtain

gl lgnl> = [Tlatnenn | o %

<4 CEUM) LG+ ym + 1)77* Kyouy(dn (pl + ym + 1)7)
+ K@n (7l + Di(rm + 1)1,

Then, applying again the asymptotic formula (4) to the Bessel functions in the
above formula, we have the evaluation

dail, lgnl>
< G lexp(— 4n(pl + ym + 1)3) + exp(— 4z (7l + )7 (ym + 1))]
with a constant C,. Now,

I+ (m+1)>r+m) > i1+ m)
yields

gl lgnld < Cexp(— 47rr(l+m)%). ]

If [ and m are regarded as indices of rows and columns, respectively, then
{gi, gm»> forms an infinite matrix H = H (s), i.e.,

(12) H=H(s) = ({g, gn) = (h{l, m))Tm=1.

This matrix H is hermitian.

THEOREM 1.1. Let
f(2) = 2 cmyfle_%(any) cos 2mmx
m=1
be an even cusp form, and let Cx be an infinite column vector whose m-th component is
Cm. Th«e'n,

HC*=0

holds in the sense that 2. h(l, m)cm converges to O for every l.
m=1
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Proof. Fix [ arbitrarily. Then, because of Propositions 1.1 and 1.2,

2=t € I g |, | Em l > [ Cm | converges. This means the convergence of

El j:o | &(¥) " cmgm(y) | w(y)%i,

and therefore

% h(l, m)cy, = f:g,_(y—) (:‘;31 Cm&n(Y)) w(y)%’i.

Since 3 cmgn(y) = fiy) — fGy™) =0, we have

8

h(l, m)cy, = 0. |
1

m

§ 2. Determination of the vanishing orders of the entries of H

To apply to the next section, we now propose to determine the vanishing
order of elements h(l, m) of H correctly for a fixed [ as m — oo, not as in Prop-
osition 1.2, where they were evaluated from above. The implied constants in
O-symbols in the statements of propositions in the sequel depend on s and on an
additional parameter .

For I, m > 0 and s € C, put

13) m,m = [ Key@aly) K y@amy) o@) y 2,
(14) ho(l, m) = fo ) Ks 1@2nly™) Ks-12mmy) w(y) le.

where w is as in (8). Then,
(15) h(l, m) = 2h,(I, m) — 2hy(1, m)

follows from the definition (10) of A(l, m).

ProposiTION 2.1. Let a(s) be as in (7), and assume 3 € C, s, s’ € C, and

S % 3. Then,
[ Ky @rty) Koy @nmy) o) vdy

1 1o g4ly _B+2
s 2( s+2) >

3 1
=2 2(a(s _E) I Zm
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o4l 1.1, B42
+a(— s+ w7 ) exp(— demb) @+ 0nh)
holds for a fixed | as m — oo.

Proof. Throughout the proof, we assume | = m.
Put first

A= _f; ) K 1@2nly) Ky-L2mmy) w(y)y*dy
and apply (4), (5) and (6) to 1 1
a=["+[ [+ f;.
Then, in case s’ * , we have
A= [7 @1yttt acs+ L b a + o).
(s’ = %) )"z + a(— s + %) (my)~**2) (1 + 0((my)®)) w(y)ydy
+ [ ﬁ als =) U+ a(— s+ 3 Up=h A+ 0
5 my)F exp(— 2mmy) (L + O((my) ™) (y)ydy
+ 5 @ Fexn (= 2alp) A+ 0™
5 my) % exp(— 2zmy) (1 + O (my) ™) w(y)y’dy.

In case §’ =%, (6) is used to deform the first integral so that the result is
somewhat different. But, in either case,
w(y) <exp(—27my™)

yields the fact that the first integral is O(l lo=31 exp( — 2zym)), (6 = Re s),
where 7 is an arbitrary real number with 0 < 7 < 1. On the other hand, the third
integral is O (exp(— 27y an*)), since

i 1
L exp(— 2mmy)dy = Texp(— 271'!;1).

i m

Thus, A is expressed in the form
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_ —}— 1 s—1 1 —s+L, 2
a=[las—D wt+a-s+D wh a+rPuy-

L my)} exp(— 2my) (L + Q(my) ™) w(y)ydy
+ O(exp(— 221 ),

leaving solely the second integral. Here, P and @ are functions expressing two
parts which formerly written' as O((ly)?® and O ({(my)~!), respectively. Since
these functions P and @ are hitherto defined and used only on the closed intervals

2
[#, 1] and [i, 1], respectively, it has nothing to do with the above expression

of A to extend P and @ beyond the intervals. Therefore, we assume now that P
and @ are defined for all y > 0 and satisfy

(16) [P(p)| < Csy, |Qy)]<Cuy,

where C; and C; are constants depending on s and s/, respectively. In the same

way as the estimation of the error term in the above expression of A, we see that
1

the change of the value is only Of(exp(— 277y %)) if fll in the expression is

m

replaced by _/; m. Hence.
= [ 1 s~1 1 _od ’
1 A= [T W=+ at=s+ P W h A+ P
5 (my) "} exp(— 2mmy) (1 + Qmy) ™) w(y)ydy

+ O (exp(— 227 7).

Divide the integral in this formula into four parts which are contributions of
terms in the expansion

a+PQ+@ =1+P+ Q-+ PQ,
and denote them A;, Ap, Ag, and Apg, respectively. Then, by putting 8’ =
+ (s + %) - % +8 in the formula

(18) f: exp(— 2mmy) w(y)y* dy = f:o exp(— 2n((m + Dy +y™Y) y*'dy

=2m~+ 1)"3¢ * Y Ky (47 (m + 1))

derived from the integral formula (11), A; takes the expression
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19 A=mE s — IE o+ DK om + 1)
Fa(—s+ %)z-ﬁ% (m + 1)~3s+ K A (m+ 1)),

As for Ap, Aq, and Apq, computations of the same kind using (16) lead to the eva-

luations
(20) | Ap| < Cs IPA¥(B + 2),
[Ag| < Com™A¥(B — 1),
| Aro | < C3Cy I'm™*AF(B+ 1)
with

ax(B) = mt(ats = ) [ 17750 + D2 Kpus(r om + D)
+la(=s+3) | 17o0m + DHT 0K o (dnim + D).

If (4) is applied to (19), then there appears the formula in the proposition, and the
order of m in the formula is higher than the order of m in the error term of (17).
Furthermore, (20) shows that the orders of m in Ap, Ag, and in Apg are lower than
the order of m in A; at least by me. This completes the proof. ]

If s= % then (6) must be used instead of (5). Accordingly it turns out to be
difficult to obtain a result corresponding to this proposition. For our purpose,
however, the following asymptotic inequality is enough:

ProrosiTION 2.2. Let B € R and | > 0. Then, the inequality

fo Ky @rly) Ko @rmy) () yPdy > Com=5 exp(— dmmd)

holds for all sufficiently large m > 0, where Co is an absolute constant.
Proof. Denote by A, the integral in question, assume # 2 [ and divide Ao as

A0=L#+f_;+f;.

1
Then, since the integrals are positive, we have Ay > fll. Next, the monotonous de-
creasingness of Ko entails ”

f1> fx :
1 2 ), KoQ@rmy)w(y)y dy

m m
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and, by means of (4), the last integral is expressed as
+1 1
Ko(2n) [[ 5 my)~ exp(= 2mmy) (1 + Q(om) ™) (y)y’dy,

where @ is as in (16) with ' = l. The change of the value is O(exp(— anm))
2 1

1

. . [i
in this case, when f

1

is replaced by j; m. Therefore we have

4o > Ko2m) [ 3 omy)h exp(— 2mmy) (1 + QUomp) ) w(y)yPdy

+ O(exp(— zm%).

Divide the above integral into two parts which are contributions of terms in the
sum 1 + @, and denote them by Ay; and Agz, respectively. Then, (18) with B’ =

- —;— yields
-1 L+l 1
Ay =m 2(m+1) 2" 2 Kg 1(dw(m + 1)2)
.. o3 _B+2 1 _1

and this is 272m~ "2 exp(— 47mmz) (1 + O(m~2)). On the other hand, a computa
tion with 8’ =8 — % shows that the order of m in Ao is lower than the order
of m in Ay, by —%— Thus, the proposition is valid for any C, with 0 < Cp <
273 Ky(2m). [

ProposiTioN 2.3. Let B € C and s, s' € C. Then,
fo “K -12rly~) Ky-12mmy) o (y)y*dy

51 lg,1 _lg5 11 1
=272+ 1) 4m 2 texp(— 4x(I+ 1)Zm?2) (1 + O(m ?))

holds for a fixed I > 0 as m — oo.

Proof. We always assume m = /.
Denote by A’ the integral in the proposition, i.e.,

& = [7 K 3@ty Koy @amy) o (p)gidy.

Divide A’ as
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'r%[ ] m
a=fre [+
and assume first s” = %, s =¥ % Then, it follows from (4), (5), and (6) that
&= [ Ly} exp(= 22157 (1 + Oy
0 2 p Y Y
@l =) ) E+ a(= 5+ ) ) 1+ 0(mp)D)w()ydy
+ [1 FUr™Fexp(— 22y (L + O(Uy™™)-
% (my) % exp(— 2zmy) (1 + O ((my)™))w(y)y’dy
+ [Tt =) Wyt a= s+ ) W @+ 0)Y)-
i 2 2

% (my)~z + exp(— 2zmy) (1 + O ((my) ™)) w(y)y’dy.

If either s or s’ is equal to %, then (6) is used to deform the first and the third in-
tegrals so that the results are somewhat different. But, in either case, the first in-
tegral is O(exp( — 2mym)) because of w(y) < exp(— 27wy™'), where 7 is an
arbitrary real number with 0 < y < 1. On the other hand, the third integral
is O (exp(— 27mym)) because of

j;m exp(— 2mmy)dy = exp(— 2mim).

2mm

Therefore, leaving solely the second integral, A is expressed as
N I -1 2 —1y—-1
A= |, Sy zexp(—2mly™) 1+ QUUY™H™)-
1
5 (my) 7 exp(— 2mmy) (1 + Q((my) ™)) w(y)y’dy + O (exp(— 2zym)).

Here, @ is as in (16), and Q is obtained from Q by replacing the variable " with
s, ie,

Q = Q is’-»s-
In the same way as the estimation of the error term in the above fromula, it is
1
shown that the change of value is also O (exp(— 27mym)) if the integral _[1 in the
m

above formula is replaced by j:o
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Hence,
e "L -1 -1 2 ~1y-1
21 &= "5yt e (= 2y @ + AU
5 )5 exp(= 2mmy) (1 + Qomy) " Nw()y’dy + O (exp(— 2z7m)).

Divide this integral into four parts which are contributions of terms in the expan-
sion

1+ A+Q=1+0+Q+QQ,
and denote them by Aj, Ag Aq, and Age, respectively. Then, (11) implies in
general

j:o exp(— 27 (my + ly™)) w(y)y* dy

= f " exp(— 2m((m + Dy + (1 + Dy )y dy

m+1

= 20 T Ky m(@n (L + DE(m + 1)3)

and, putting 8’ = B, A, is expressed as
A = %(lm)‘%(l + 136D (g + 1)"7+V K, (4 (I + 1)2(m + 1)32).
As for Ag, Ag and Age, (16) yields
(22) | Ag| < C.ITAY B+ 1),
| Ag| < Cim™'A1(B— 1),
| Age | < C? (Im)~'A1(B),

where A’(8) means A; as a function of .

If (4) is applied to the above formula exressing Ai, there appears the formula
in the proposition, and the order of m in the formula is higher than the order of m
in the error term of (21) which expresses A’. Furthermore, as (22) shows, the
orders of m in A%, Ap, and Agg are lower than the order of m in A} at least by mZ.
This completes the proof. ]

ProposITION 2.4, Let s € C, and let hy, he be as in (15). Then, provided that

1
S#—Z',
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Il m) ~ 2Ha(s — DI P
+ (= 5+ DI exp(— dnmb)
as m— oo, and, for an arbitrary s,
ha(l, m) ~ 2-5-5(1 + 1)~im-3 exp(— 4z (I + 1)Im?)
as mi— oo.

Proof. The result concerning Ak, follows from (13) and Proposition 2.1 with
B = 0. The result concerning h; follows from (14) and Proposition 2.3 with

B=—1 u
THEOREM 2.1. If 0 = Res > % then the asymptotic formula
B, m) ~ 27 (= 5+ 2 im0 exp(— dmned)
holds for h(l, m) i (10) as m— co. If 0 < % then the corresponding asymptotic
formula is given by replacing s with 1 — s in the above formula. Moreover, if
s = % + it, ¢ € R, t X 0), then we have
h(l, m) ~ 277 (a (it) I3t
+ a(— i) Im" Yexp(— 4zm?)

as m— oo,

Proof. The order of m is higher in A, than in h,. Therefore, it is enough to
1oL
prove the theorem for h; instead of h. If 0 > '%- then the order of mz(s 2 is higher

1

**2’ 5o that the first formula in the theorem follows from

1.
than the order of m?

(15) and Proposition 2.4. If 0 = % then the two orders are equal so that the
second formula holds. ]

THEOREM 2.2. Let h(l, m) be as in (10), and let s = %
Then,

h(l, m) > 2Com=" exp(— 4mm?)

holds for almost all m, where Cy is the constant in Proposition 2.2.

https://doi.org/10.1017/50027763000004104 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004104

74 TOMIO KUBOTA

Proof. Proposition 2.2 with 8 = 0 implies in this case
h(l, m) > Com™ exp(— dzm3),

while Proposition 2.4 is valid for A, Since h; contains m in its highest order, the
theorem is proved. |

8§ 3. Main theorem

Before presenting the main theorem, we state two propositions. The first one
is fairly deep in which all results in Section 2 are concentrated, while the second
one is an elementary and basic property of eigenfunctions of the Laplacian D.

ProrositioN 3.1. Let h (I, m) be as in (10) and (15), and let {Cn) =1 be a series
of complex numbers such that the sevies 2oy (1, M) cm converges for all I. Then,

cm = o(m exp(47zm%)).

Proof. Since K, = K_,, we may assume 0 = % It follows from the converg-
ence of the series that cw =0(k(l, m)™), (m — o). Therefore, the proposition is
an immediate consequence of the first asymptotic formula of Theorem 2.1 if o >
%. If 0 > % then the proposition follows immediately from Theorem 2.2.

Thus, in the rest of the proof, we may restrict ourselves in the case of
s= % + it (t € R, t % 0). Theorem 2.1 implies
(23)  cw (@M + a(— i) T mr*ymtexp(— dmmz) = o(1).

So, putting a(it) = pexp(ith), (6 € R), we have

a Gt 'mt" + a(— i) I7*m3" = 20 cos ¢(log % + 60— log I).
Now we choose & > 0 and a natural number /; such that ‘cos txl = g implies
| cos t(x — log o) | > &, (x € R), and look at cos t(log% + 6) which is a part
of the right hand side of the above equality. If cos t(log!g‘ + 6) > &, then, with

[ =1, the absolute value of the left hand side of the above equality is bigger

than 2pg, If cos t(log—’z'1 + 0) = g, then, with [ = [, the absolute value of the
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left hand side of the above equality is bigger than 2p¢,. In either case, the theorem
follows from (23). |

Remark 3.1. 1f either o#—;— or s = —;— then only one and arbitrary [ is
enough in order to prove Proposition 3.1. If o =% and s ¥ % then any one

[ and one more suitable /o are enough.

The next proposition is one of elementary properties of eigenfunctions of the
Laplacian.

PROPOSITION 3.2. Let ¢ be a function on the upper half plane which is an eigen-
2 2
Sfunction of the Laplacian D = yz(% + %2—). Assume that ¢(2) = ¢(— 2Z) and
¢Gy) =0 forally > 0. Then, ¢ = 0 on S.

Proof. Put D ¢ = A¢. Then, since

¢ — g2 —Lyr k2 1),

ok ayz
2k
%—g— . is a linear combination of derivatives of various orders, and is O by the
2=
assumption. On the other hand, ¢(2) = ¢(— 2), ie, ¢+ iy) = ¢(—x + 1y)
N _ _
implies 925 oo 0. Hence, ¢ = 0. |

Now we can prove the following main theorem:

TueoreM 3.1. Let H be the infinite matrix given by (12), and {cu)pm=1 be a
series of complex numbers. Denote by Cs the infinite column vector whose m-th compo-
nent is Cm, and assume

HC*=0

in the sense that 2im=1 h(l, m)cm converges to O for every I. Then, ¢m are coefficients
of an even cusp form as in (3).

Proof. Since Proposition 3.1 says ¢m = o(m exp(47rm%)), (4) implies that

f@@ = i cmyflK -1 (2mmy) cos 2zmz, (z =z + iy),
m=1
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converges uniformly and absolutely in the subdomain of the upper half plane S
determined by Im § = y > g, where ¢y > 0 is arbitrary. On the other hand, the
formula

— 2K, (y) = K1(y) + Ku(y)

concerning the derivative of Bessel functions shows that the above series is still
uniformly and absolutely convergent in the same domain even if each term is
replaced by its derivatives of arbitrary orders with respect to x as well as y.
Therefore, the Laplacian D can be applied termwise on the series so that

Df= s(s — 1)f.

Next we consider the restriction of the function f to the imaginary axis. Let
gn(y) be as in (9). Then,

fGy) —fGy™ = %cmgm(y)

holds pointwise. At the same time, the assumption of the theorem implies that the
series 2im-1cm&m(y) converges weakly to O in the Hilbert space £ introduced im-
mediately prior to Proposition 2.1. Hence, it converges pointwise to 0. This means

fGy) —fGy™ =0.

Apply here Proposition 3.2 to ¢(z) =f(@) —f(— z™Y). Then, we have
f(z) = f(— z™Y), from which follows that f (2) is invariant under the operation of
SL(2, Z). |

This theorem shows that the Fourier coefficients of cusp forms are completely
controlled by the infinite matrix H which is constructed in a simple way by spe-
cial functions.

§ 4. Extended investigations including zeros of the Riemann zeta funetion

By our investigations up to the preceding section it was shown that the mat-
rix H in (12) determines the Fourier coefficients of an even cusp form satisfying
(1) as components of an infinite column vector ¢ annihilated by it. Namely, ¢« is
an eigenvector of H belonging to the eigenvalue 0. Since s is arbitrary, the exist-
ence of a cusp form belonging to s, or in other words, the fact that s(s — 1) is an
eigenvalue of the Laplacian in the space of even automorphic functions with
respect to SL(2 Z) which are square integrable on the fundamental domain, is
equivalent to the fact that 0 is an eigenvalue of H = H (s).
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Such a characterization of the eigenvalues of the Laplacian has a generaliza-
tion in which the eigenvalues of the Laplacian and zeros of the Riemann zeta func-
tion are controlled simultaneously by an infinite matrix which is larger than the
above H by one row and by one column, while a crucial point is again whether or
not the matrix has 0 as an eigenvalue. The aim of the present section is to explain
this situation.

First we recall the notion of residual forms which are intimately connected
with Eisenstein series. But, everything will be stated only under our restricted
circumstances. For details, textbooks of Eisenstein series should be referred to.

A residual form means a function as in (2) with ¢’ = 0 and ¢ ¥ 0, i.e, an
automorphic form with a Fourier expansion of the form

(24) f@ =™ + DowyrKsj@ulm|yeom),

(¢ * 0). As mentioned at the beginning of Section 1, the discontinuous group is
always SL(2 Z).

For a point z on the upper half plane S and a complex number s with
Re s > 1, the Eisenstein series E (z, s) is defined by

Ezs)= 3 —Y¥ — (c.deD.

co=1]cz+d|*’
c>0

This is an automorphic form, and its Fourier expansion is

(25) E(z,s) =y°+ ¢(s)y*°
+ 3 275 I ()78 (s, m){ (25)"'yzKe-t @ | m| y)e(ma),
where {(s) is 'tnl: Riemann zeta function,
rs-—23
(26) 8) =} i~
and

0s,m= = Gyt=sa-sm, mx0.

dd’=|m|
The function E (z, s) has, as a function of s, a meromorphic continuation on the
whole s-plane, and its poles coincide with those of ¢(s) together with the orders.
Furthermore, E (z, s) satisfies (1), and is an even automorphic form because
of d(s, m) = d(s, — m).

ProposITION 4.1. A pole So of ¢(s) is either so = 1 or so with {(250) = 0 and 0
< Re2s0< 1. If 50 is a pole of $(s) of order N, then lim (s — so)Y E(z, s) is a

5—S,
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residual form.

Proof. The first assertion is a consequence of (26).
Let next E(z, s) = 2.5-_n/fe(2) (s — s)* be the Laurent expansion of
E (z, s) at so. Then, since E (2, s) satisfies (1), we have

> Df) (@) (s — s)* =s(s — 1) > fi(s) (s — so)*

k=—N k=—N

= (so(so = 1) + (2so — 1) (s — s0) + (s — 50)®) k_ZN fi (@) (s — so)*.
Hence, Df_y = so(so — 1) f_-, and the constant term of the Fourier expansion of
fonis
lim (s = s)™(¥* + ¢ ()y'™") = coy'”

$—Sg
with
Co = lim (s — sp)VP(s).
$—8g
Therefore, f_y is a residual form, and certainly
lim (s — sV E(z, s) = f-n(2).

s=8,

Here we recall so-called Maass-Selberg’s inner product formula. Suppose that
f2) = X an(y)e(mx) is an automorphic form satisfying Df = A.f, and define
f¥(2) by

f(@) —aly), y>Y,
f(2), y=Y.

On the other hand, put @ = {zeS; |z| > 1, | Re z| <%—), which is a common
fundamental domain of SL(2, Z). Then, provided that g(z) = X b,,(y)e(mx) is an
automorphic form satisfying Dg = A2, (A * A3),

e = I

(27) f fY(Z)gY(z) drdy —_— ao’(Y)bo(Y) : aO(Y)bo (Y)

Aa — As

holds, where a¢ and by are derivatives of @, and b, respectively. This is
Maass-Selberg’s inner product formula which is fundamental in the theory

of Eisenstein series. Its proof, being based upon Green's formula concerning the
2 2

ox? 62’

operator is not very difficult, but will not be given here.
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PROPOSITION 4.2.  Ewvery residual form belongs to a pole Sy of the function ¢(s) as
considered in Proposition 4.1, and is given by the limit in Proposition 4.1 up to a
constant factor.

Proof. First we show that s, must be a pole of @(s) whenever a residual
form of the form coy'™*° + -+ exists. If we put ao(y) = ¢’y + cy'™* and bo(y)
= d’y* + dy*~ in (27) with constants ¢, ¢/, d, d’, then the right hand side of
(27) becomes

C'd/Ys+s’—1 —_ ch—s—s’+1 n C/dYs—s’ — cd'Y——s+s’
s+s—1 s—¢s )

Assume now f to be the Eisenstein series E(z, s) = y° + ¢(s)y'™* + -+ - in (25)
and g to be a residual form of the form y*~* + ---. Then, since ¢’ = 1, ¢ = ¢(s),
d =0, and d = 1, (27) implies

dxdy _ — ¢(S) Y—s—sa+1 + Ys—so
y? s+ s—1 s— S’

f@fY(Z)g’(Z)

provided that s & s” =s,. Suppose here that sp is not a pole of ¢(s). Then, unless
So = % the left hand side of the above formula is finite but the right hand side is
infinite as $ — So, which is a contradiction. If so = % then a direct computation
shows ¢(%) = — 1. Therefore, a similar contradiction takes place, too.

To prove next the last half of the proposition, it is enough to show that there
exists at most one residual form for an S, up to a constant factor. Assume that
there are two residual forms of the form y'™%° 4 - - -. Then, their difference is a
cusp form. But, as stated in Proposition 4.1, a pole of ¢(s) is either s = 1 or S
with {(2sp) = 0 and 0 < Re 2s, < 1. To such an sy, no cusp forms can belong. In
fact, the former case is known in the investigations on the least absolute value of

the eigenvalues of the Laplacian. In the latter case, Re so % % and $p is not real,

and so So(Sop — 1) cannot be an eigenvalue of an elliptic operator. |

Since the Eisenstein series E(z, s) is an even automorphic form, Proposition
4.2 immediately implies the following:

PROPOSITION 4.3.  Ewvery residual form is an even automorphic form.
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After these preparations, we construct a matrix H, which is larger than H in
(12) by one row and by one column. To do this, we put

—1+s

gy =y —y
and

(28) Hy = Ho(s) = (h(l, m))Tm=o

using the definition (10) of £(l, m) unchanged for [, m = 0, too. The matrix Hp is
hermitian as well as H. .
Let m > 0 and s € C, and put, analogously to (13) and (14),

29) m©,m = [ yl'ng_%(any)w(y)y%iyE

= fo K 1@amy)w(y)yz— dy
(30) ha(0, m) = [~y K yamy)w(y)yh
0 Y
= f:K _L@amy)w(y)y~2+ dy.
Then, analogously to (15), we have

h(0, m) = 2h,(0, m) — 2h,(0, m).

The following proposition gives an asymptotic formula of A(0, m) as m — oo in a
corresponding form to Propositions 2.1 to 2.3:

ProrosiTiON 4.4, Let 8" € C and B € C. Then,
f:o Ky_12nmy) w(y)y°dy = 2-3m-B5: exp(— 4m3) (1 + O (1))
holds as m — co.
Proof. Denote by B the integral in the proposition, i.e.,

B= j; ) Ky_12rmy)w(y)y®dy.

1

1 o 1

Divide this integral as j;m +f . Then, w(y) <exp( — 2wy~ yields j;m
m

= O(exp(— 2mym)) for an arbitrary 7 with 0 < y < 1. Therefore, applying (4)

oo

to 1 WE S€€
m
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B=2m} [Texp(— 2m(m + Dy + y™)eFHA + Qmy))dy

+ O(exp(— 2mym),
where @ is as in (16). Denote by B; and Bg the contributions to the integral of
terms in the sum 1 + @, respectively. Then,

(18) with B’ =83 — —% furnishes

B =2 D b Kyyldnm + D).

On the other hand, (18) with 8’ =8 -—% similarly shows that the order of m

in B is lower than the order of m in B, by mr. Thus, the proposition follows
|

from (4).

ProrosiTion 4.5, The following two asymptotic formulas hold as m — oo:
_3 S$_5
hi(0, m) ~ 272m? "4 exp(— dmm3),

_1
4exp(— 47rm%).

0o,

h2 (0, m) ~ 2—%m_

Proof. The first formula follows from (29) and from Proposition 4.4 with

+ — §. The second formula follows from (30) and from Proposition 4.4 with

1
B=73
B=—-3+5 |
THEOREM 4.1. Let s € C and 0 = Re s. Then, as m — oo,

_1l s_5
h(0, m) ~ 2 2m? : exp(— d7m?)

holds if 0 > 1, and
_s_1 1
Z 4exp(— 4mmz),

-1
h(0, m) ~ —2 m
holds if 0 > 1. If 0 = 1, then h(0, m) has the asymptotic value which is the sum of
the vight hand sides of the two formulas.
Proof. The theorem follows from Proposition 4.5, whenever % - % and
1 are compared. |

2 4

2
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Preceding investigations assure us that asymptotic estimations of z(l, m)
from below and above corresponding to Proposition 1.2, Theorem 2.1, and in
Theorem 2.2 exist for H, too. Consequently, the proofs of Theorem 1.1 and
Theorem 3.1 are applicable to H, and to residual forms, too. We are, however,
exclusively dealing with even automorphic forms so that every automorphic form
in our consideration is of the form

(31) (@) =cyt™s + 5}1 cmy%K -1@2mmy) cos 2nwmz

instead of (24). The results are summed up in the following:

THEOREM 4.2. Let Hy be as in (28), let {cn)im=0 be a series of complex numbers,
and let ¢ be the infinite column vector whose m-th component is Cm. Then, Hocx = 0
in the sense that 2o h( 1, M)Cy converges to O for all 1 is equivalent to the fact that
¢m are Fourier coefficients of an even automorphic form as in (31). The automorphic
form is a cusp form if ¢o = 0, and is a residual form if ¢, = 0.

This theorem, together with Propositions 4.1 to 4.3, implies

THEOREM 4.3. Let Hy = Ho(s) be as in (28). Then, there exists an infinite vec-
tor such that Hocx = 0 if and only if one of the following three conditions is satisfied:
a) s = 1, b) there exists a cusp form with respect to SL(2, Z) belonging to the eigen-
value s(s — 1), ¢) 2s is a zero of the Riemann zeta function in the critical strip.

Remark 4.1. The last half of Proposition 4.2 is a different expression of the
fact that a residual form and a cusp form cannot belong to one and the same eigen-
value. Therefore, no two of the three cases a), b), and ¢) in Theorem 4.3 can occur
at the same time.
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