iv
Now let £ = a, and we have :

fla) =(a — a)@Q(a) + R = R.

The question is often asked : Is it not possible to avoid the
difficulty, by adopting the alternative proof, depending on the fact
that x — a is a factor of 2" —a"? It is not. There is and can be
no method of proving a remainder theorem which does not require
.a clear knowledge of the meaning of the term.

Further, the proof given above has an advantage over the
alternative proof, in addition to that of brevity. To complete our
-definition of the process of division, we require to prove its validity.
That is, we must prove, inter alia, the existence of a remainder with
the properties stated; and the enunciation of the Theorem pre-
supposes that this has already been done. But the definition does
not guarantee the existence of a unique remainder, and we have,
apart from proof, no reason to expect that the remainder is unique.
The alternative proof shows that division can be carried out in such
& way that f(a) is the remainder, but it leaves us in doubt as to
whether there might not be another mode of division leading to a
-different result. The method above leaves no such doubt. Suppose
the division carried out in any way, then the remainder is f(a).

JamMEs HysLop.

Linear Transformations and Geometry.

The following note suggests certain connections between the
theory of linear transformations and quadratic forms on the one
hand, and the geometry of second degree surfaces on the other. It
is hoped that the note may prove useful to those who may have to
teach either theory to students who already possess an elementary
knowledge of the other. The general ideas may be such as may
well have occurred to anyone familiar with both theories, but the
examples given may be new to readers.

In the geometry Cartesian co-ordinates are used throughout,
and the axes of reference are rectangular, unless the contrary is
stated ; it may however be noted that many of the results, including
those of § 1, are valid also when the axes are oblique. For simplicity
the discussion is restricted to three dimensions, but the results hold
in a space of any number of dimensions.
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§1. The Transformation.—A linear transformation means a set
of equations of the type :

Yr =@ T, + G2y + a2, [r=1, 2, 3] o (1)

If the determinant of the coefficients is not zero, equations (1) can be
solved for z,, x,, z;, giving a solution of the form :

Tr=br Yy + brays + by, [r=1,2, 3] - (2)
We shall assume in what follows that our transformation is of type
(1), with real coefficients, and having a reciprocal given by (2).

By the transformation, to each point P, (z,, z,, ;) is made to-
correspond one and only one point @, (y,, y,, ¥s), and conversely.
Further, if two points P,, P, are transformed into @,, ,, then the
point P, which lies on the straight line P, P, and divides P,P, in the
ratio m:n, is transformed into @,, which divides @,Q, in the ratio
m:n. This is readily verified by substituting the appropriate co-
ordinates in (1). Thus the transformation transforms points of a
straight line into collinear points, segments of a line into segments
of the corresponding line, and it conserves the ratio of two segments.
of the same line.

Now the diagonals of a parallelogram bisect one another, and
conversely if two line segments bisect one another, the joins of their
extremities form a parallelogram ; further, a pair of lines which
bisect one another is transformed into another such pair ; thus a
parallelogram is transformed into a parallelogram, and equal parallel
lines into equal parallel lines. It follows that parallelism and ratios.
of parallel segments are conserved by the transformation.

Again, if the point P moves on a surface of n* degree, its co-
ordinates continually satisfy an algebraic equation of the n* degree.
Substituting values from (2), we obtain a similar relation® satisfied by
the co-ordinates of the corresponding positions of @, which therefore
also lie on a surface of n™ degree. In particular a plane is trans-
formed into a plane, and a quadric into a quadric.

The effect of a transformation may be considered geometrically
in two ways :—

(i) As a change in the configuration of a geometrical diagram

without change in the axes of reference. The change due
to a linear transformation is of the kind known as a
general homogeneous strain.

1 The relation cannot be of degree lower than the ntk, as an application of the
reciprocal transformation shows.
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(ii) As a change in the frame of reference ; in the case of the
transformations with which we have to deal, the change
is to a set of new axes through the same origin, the figure
meanwhile remaining unaltered.

To take a simple example ; if the axes are rectangular, the effect
-of an orthogonal transformation may be considered

(i) As a rotation of the figure about the origin, or
(ii) As a change of axes to another rectangular set.

In this example the two points of view obviously represent
two different aspects of the same fact, namely a change in the
relative positions of the figure and the axes. In general the
connection is less clear and we find more helpful now one now the
-other of the two ideas.

§2. Application to Geometry of the Ellipsoid.—A great deal of
the geometry of the ellipsoid—including tangency conditions, polar
properties, and elementary properties of enveloping cylinders and
cones—can be deduced from the more obvious geometry of the sphere.
The relation between the two surfaces is very like that between the
ellipse and its auxiliary circle ; but while in two dimensions the
transformation is generally considered as an orthogonal projection,
in three dimensions it is more easily visualised as a homogeneous
strain or ‘ multiplication ’—a uniform stretching of the space con-
taining the figure in directions parallel to the co-ordinate axes—or as
a change of scale, different for each of the directions of reference.

Example 1. Properties of conjugate diameters.—By the trans-
formation y. =ax, [r=1,2,38] «...(3)

. 2
the sphere Zz%=1 is transformed into the ellipsoid ZZ—z =1. Now

any three mutually perpendicular lines through the centre of the
sphere have the property, that the plane through any two of
them bisects all chords parallel to the third, and, in particular,
passes through the points of contact of tangents parallel to the third.
We deduce at once similar properties for the corresponding sets of
diameters of the ellipsoid—the conjugate properties.

Conversely! any set of conjugate diameters of the ellipsoid

1.0f. Frost : Solid Geometry (1886), p. 143.
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corresponds to a set of diameters of the sphere which possess the
conjugate properties, and are readily seen to be mutually perpen-
dicular.

Example 2. The equation of the ellipsoid when a set of conjugate
diameters is taken as (oblique) axes.—Let us carry the discussion a
stage further. Referred to any set of mutually perpendicular lines
through the centre as axes, the equation of the sphere is Zu?=1.
To the axes of u,;, u,, u;, correspond, as we have just seen, a set of
conjugate diameters of the ellipsoid ; and to the segments, whose
measures, u,, %, %; are the w-co-ordinates of a point P on the
sphere, correspond segments whose measures, z;, 2, 2, are the co-
ordinates, referred to the conjugate diameters, of the point @ on the
ellipsoid which corresponds to P. Since ratios of parallel segments
are conserved, these quantities satisfy a relation of the form :

z=ku. [r=1,2, 3]

Thus the equation of the ellipsoid referred to a set of conjugate
2

diameters as (oblique) axes is Z%zz 1 e (4)

These examples require some space to write out in full, but once
the csntral ideas have been grasped, such matters become so simple

and natural as to make unnecessary algebra or ““ working” of any
kind.

If we admit imaginary lines and transformations, we can deal
similarly with the geometry of the hyperboloids, but here, except for
those specially trained in the geometry of the unreal, the visualisa-
tion breaks down.

§ 3. The Theory of Quadratic Forms.—A quadratic form is an
r=3 s§=3 '
expression like X X k,xx, and may be denoted by K (x,x).
r=1 s=1

Using (2) we can express K(x, x) in terms of y;, ¥,, y;, and the new
expression is a quadratic form in these variables, K'(y, y). Suppose
now that the geometry of the central conmicoids has been fully
developed either by the above methods or in any other way. The
equation K (z,x) =1 represents such a surface referred to three
mutually perpendicular lines through the centre, and K'(y,y) =1
represents the same conicoid after transformation.

Example 1. Orthogonal transformation of a quadratic form into
the sum of squares.—It is known that, when the axes of reference are
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changed, so that the principal axes of the conicoid are taken as new
axes of co-ordinates, the equation of the surface is of the form

a1y +ayi + azy; =1 ....(5)

Since the principal axes are mutually perpendicular, the transforma-
tion is of the type known as orthogonal. This fact corresponds to
the theorem: A quadratic form in three variables may be transformed
by an orthogonal transformation into the sum of three squares, each with
a constant multiplier.

In this example the working involved in a solution ab tnitio of
the geometric problem is practically the same as in the algebraic
one ; but each of the problems suggests a meaning for the various
steps of the proof which throws fresh light on the other problem.
Together they lead to the study of invariant lines and invariants of
certain types of transformation. The conicoid concerned may, of
course, be either an ellipsoid or a hyperboloid.

Example 2. Non-orthogonal transformations to a sum of squares.
—Let any set of conjugate diameters of the conicoid K (x, z) =1 be
chosen as new (oblique) co-ordinate axes. Then the transformation
which changes the axes reduces K (z, x) to a sum of squares as in (4).
This not only shows the possibility of transforming the quadratic
form in an infinity of ways into a sum of squares, but provides a
simple effective means of finding all possible ways of doing so.

Example 3. Simultaneous transformation of two quadratic formg
to sums of squares.— Consider now two quadratic forms K, (z, x),
K, (x, z) of which K, is always positive, non-zero, for real non-zero
values of x;, x,, ;. This means that any radius vector drawn from
the origin meets the surface in real points, so that this surface is an
ellipsoid E. Apply the transformation by means of which E is
transformed? into a sphere S. The conicoid @, corresponding to K,,
is by this transformation transformed into some other conicoid @,.
Now 8, @, bave one set of conjugate diameters coincident in
direction, namely the principal axes of @,. Hence the corresponding
lines before transformation form a set of common conjugate
diameters of E, (). Referred to this set of diameters as new
(oblique) axes, the equations of E, @ have both on the left side
a sum of squares. Thus we have proved that: If K, (z, x) s

! We first make the principal axes of B the new axes of reference, then apply a
transformation like (3) of § 2.
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always positive for mon-zero values of the variables, K, (x, ), K, (x, x)
can be transformed by the same transformation into sums of squares.
The geometric ideas furnish a clue to the simplest method of finding
the transformation in an arithmetic case.

§4. A Theorem on the Transformation. — Finally we give a
geometric discussion of the theorem: Any non-singular linear trans-
formation can be exhibited as the result of three transformations, of which
the first and third are orthogonal and the second a multiplication.
Consider any transformation (1), having a reciprocal (2). It is
characterised by the fact that (2) transforms the points (1, 0, 0),
(0, 1, 0),(0, 0, 1) into B,(byr, by, byr) [r=1,2, 3], and (1) reverses
this process. Take now the ellipsoid, centre O, through B,, B,, B,
which has the lines OB,, OB,, OB; as a set of conjugate diameters.
The existence of such an ellipsoid readily follows from equation (4)
above. Apply to it the transformation of orthogonal type which
makes the principal axes of the ellipsoid into the axes of co-ordinates.
To the figure thus transformed apply the multiplication which
transforms the ellipsoid into a sphere. We require that the lines
corresponding to OB,, OB,, OB, be transformed into a right-handed
triad of lines.! If necessary one of the coefficients of the multiplica-
tion should be taken negative in order to ensure this. Finally rotate
the axes, by an orthogonal transformation, so that the new axes of
co-ordinates are those lines, known to be mutually perpendicular,
which correspond to OB,, OB,, OB; in the original figure. The effect
has been to apply successively three transformations to bring about
the same result as if (1) alone had been applied, and the theorem
follows.

In this problem the geometry supplies not only a simple proof
of existence, but an effective method of tackling an arithmetic case,.

§ 5. Bibliographical Note.—The theorems of §§ 3, 4 are proved
in text books on determinants such as Bdcher’s Introduction to Higher
Algebra or Kowalewski’s Determinanten-theorie. The geometry is to
be found in the standard books on analytical geometry of three
dimensions such as those by Salmon and Bell. Applications to

! The line segments O4,, OA,, 04, form a right-handed triad, if the direction of
rotation round the triangle A4;4,4; is clockwise, when viewed from 0. By a con-
vention, the positive directions of three Cartesian axes of reference form a right-handed
triad, unless in exceptional cases.
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geometry of the algebraic theory are discussed by Bdcher and Salmon,
in many text-books on Projective Geometry like Veblen and Young,
and in a Cambridge Tract by Bromwich.

The chief difference between the examples of the present note
and the theory of the books mentioned, lies in the use of Cartesian
co-ordinates in place of the more usual homogeneous co-ordinates.
While the latter system is preferable in projective and advanced
general work, Cartesian co-ordinates should surely not be entirely
neglected, and indeed they have certain advantages for the present
purpose. Their use is more elementary, and likely to be more
familiar to the students for whose instruction the above examples
are suggested. Also ideas of length and perpendicularity, and  the
geometrical interpretation of the orthogonal transformation are
simpler in rectangular Cartesian co-ordinates than in any other.
It will be found that all the examples discussed above are based
on these ideas.

JAMEs HysLOP.

Conditions obtained by Multiplication of Determinants.

The condition that ax? + 2hxy + by? + 292 + 2fy + ¢ = 0 should
represent two straight lines can be obtained very easily by con-
sidering the product

L, v, 0 U, 1,00 l
g m, m,’ 0 '\ ’ ml' m, 0 L
L, o, 0 | ow, om, 0|
which is equal to
2 , m/ +1lm, all +n'l
Im' +Um, 2mm’ , mn +m'n |,
nl'’ 4+ n'l, mn' + m'n, 2nn’

and is identically zero.
For if ax? + 2hxy + by® + 2gx -+ 2fy + ¢ = 0 is equivalent to
(le + my + n) 'z + m'y + n')=0,
w mm’ mn mn’ + m'n ’nl’ + n'l _ Im' 4+ 1U'm
b c af T 29 T T 2

https://doi.org/10.1017/51757748900002012 Published online by Cambridge University Press


https://doi.org/10.1017/S1757748900002012

