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Abstract
We prove that any increasing sequence of real numbers with average gap 1 and Poisson pair correlations
has some gap that is at least 3/2+ 10−9. This improves upon a result of Aistleitner, Blomer, and Radziwiłł.
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1. Introduction
Let λ = (λn)∞n=1 be an increasing sequence of real numbers. Often, for number-theoretic sequences
λ, the average gap λn+1 − λn is well-understood, while little is known about the distribution
function of the gaps. Sometimes, however, statistical information about the collection of gaps
λn+k − λn is of importance.

For example, letting (γn)∞n=1 denote the imaginary parts of the zeroes of the Riemann zeta
function in the critical strip in increasing order, we know

#{γn ≤ T} ∼ T log T
2π

as T → ∞, and Montgomery’s pair-correlation conjecture predicts that

2π
T log T

#
{
(n,m) : γn, γm ≤ T,

2πa
log T

≤ γm − γn ≤ 2πb
log T

}
→

∫ b

a

(
1− sinc2(π t)

)
dt

as T → ∞, for any fixed 0< a< b, where sinc(x) := sin x
x .

Henceforth, let λ = (λn)∞n=1 denote an increasing sequence with average gap 1:
1
N

∑
n≤N

(λn+1 − λn)→ 1.

With this normalization, we may define the pair correlation function Rλ by

Rλ(I,N) := 1
N
#

{
(i, j) : 1≤ i �= j≤N : λj − λi ∈ I

}
,
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2 D. Altman and Z. Chase

where I ⊆R is a bounded interval and N a positive integer.
For example, up to some normalization technicalities, Montgomery’s pair-correlation conjec-

ture asserts that R(γn)n converges (in distribution) to a distribution with cumulative distribution
function 1− sinc2(π t).

Motivated by the fact that the pair correlation function of a random sequence generated by
a Poisson point process converges in distribution to the uniform distribution, an increasing
sequence of real numbers (λn)∞n=1 with average gap 1 is said to have Poisson pair correlations
(PPC) if R(λn)n converges to the uniform distribution:

lim
N→∞

1
N

∣∣{(i, j) : 1≤ i �= j≤N : λj − λi ∈ I
}∣∣ = |I| (1)

for all intervals I ⊆R, where | · | denotes the Lebesgue measure.
Despite Montgomery’s pair-correlation conjecture concerning increasing sequences of real

numbers, most research on properties of general sequences with Poisson pair correlation con-
cerns sequences in the torus (see, for example, [1–12]), with little investigated about sequences of
real numbers.

Some specific number-theoretic sequences of real numbers have been shown to have PPC.
Sarnak [10] showed that almost every positive definite binary quadratic form (in a suitable sense)
gives rise to a sequence with PPC, by ordering the values it takes on (pairs of) positive integers and
appropriately normalizing. Concretely, a consequence of the work of Eskin, Margulis, and Mozes
[4] is that the ordered sequence of values of x2 + √

2y2 for x, y ∈N has PPC.
Aistleitner, Blomer, and Radziwiłł [1] studied the related triple correlation function of certain

number-theoretic sequences, while also initiating a study of general sequences of real numbers
with Poisson pair (and triple) correlations. They asked the following.

Question. Let λ1 < λ2 < . . . be an increasing sequence of real numbers with average gap 1 and
with Poisson pair correlations. How small can lim supn→∞ λn+1 − λn be?

Among increasing sequences of real numbers with average gap 1 and PPC, Aistleitner, Blomer,
and Radziwiłł exhibited one with maximum gap 2, and proved that any such sequence must have
a gap of size at least 3/2− ε, for any ε > 0. They asked in their paper [1] as well as at Oberwolfach
2019 (communicated to the authors by Ben Green) to improve either bound. Our main theorem
is an improved lower bound.

Theorem 1.1. Let λ1 < λ2 < . . . be an increasing sequence of real numbers with average gap 1 and
Poisson pair correlations. Then lim supn→∞ λn+1 − λn > 3

2 + 10−9.

We leave open the question of how small the largest gap can be; in light of Theorem 1.1, it lies
between 3

2 + 10−9 and 2, inclusive.

2. Motivation and proof sketch of Theorem 1.1
In this section we motivate the proof of Theorem 1.1, overlooking some technical complications
and emphasizing the main ideas.

Let us begin by sketching the proof given in [1] that any strictly increasing sequence of real
numbers with mean gap 1 and PPC has a gap at least 3

2 − ε, for any ε > 0. An interested reader
may wish to consult the proof sketch of this result in [1, Section 1.5], or the proof itself in [1,
Section 7].

One begins by observing that for any sequence (λn)n that has PPC, the distribution function of
the gaps λn+1 − λn, which we will denote by F, can grow at most linearly (indeed, if it grows more
than linearly in any small interval, say, this will contradict the PPC condition for this interval).
Now, if λn+1 − λn ≤ 3/2− ε for each n (that is, F(3/2− ε)= 1), then the linear growth condition
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implies that the distribution function, when plotted, lies on or above the straight line between
(1/2− ε, 0) and (3/2− ε, 1). This implies that that the mean gap size is strictly smaller than 1, a
contradiction.

Next, running the same argument now for the situation when the maximum gap is equal to 3/2
yields that in this situation we must have

F(x)= 0 for x≤ 1
2

(2)

F(x)= x− 1
2
for x ∈

[
1
2
,
3
2

]
. (3)

Our goal is to show that this is impossible (and to then obtain a small quantitative improvement
over 3/2). Suppose that (2) and (3) hold. Then (3) yields that PPC

( 1
2 ,

3
2
) (

i.e., (1) for I = [ 1
2 ,

3
2
])

is
already satisfied by the single gaps λn+1 − λn, so there cannot be a nontrivial contribution com-
ing from larger gaps λn+m − λn,m≥ 2. On the other hand, (2) implies that PPC

(
0, 12

)
must come

entirely from a 0 density part of the sequence, and more specifically only from blocks [n1, n2] con-
tained in that 0 density part. Furthermore, for the union of such blocks to nontrivially contribute
to the PPC count, the length of the blocks must grow with N.

The natural question then is whether such blocks can satisfy the PPC condition on all subin-
tervals of

[
0, 12

]
. We show that the answer is no. The key is to establish a “bias near 0” of the PPC

count on long blocks whose total gap is at most 1/2. A bit more precisely, if λ1 < . . . < λk have
λk − λ1 ≤ 1/2, then 1

|J|
∑

1≤i<j≤k 1λj−λi∈J is larger for intervals J ⊆ [0, 1/2] concentrated near 0,
with the bias becoming more pronounced as k→ ∞. This would contradict the PPC condition on
subintervals of

[
0, 12

]
. A difficulty we encounter in the proof, however, is that the blocks forming

the relevant 0 density part of the sequence need not have total gap at most 1/2. We overcome this
by suitably partitioning the 0 density part of the sequence. This is implemented in Section 4 where
we use a suitable greedy algorithm to decompose.

3. Proof of Theorem 1.1
Let ε = 10−9. For this section, we fix an increasing sequence of real numbers λ1 < λ2 < . . . with
average gap 1 and PPC, that has λn+1 − λn ≤ 3/2+ ε for sufficiently large n. By truncating the
sequence, we may assume that

gn := λn+1 − λn

satisfies gn ≤ 3/2+ ε for each n≥ 1. As in Section 2, we write PPC(a, b) to denote equation (1) for
I = [a, b]. We note that a sequence satisfying the PPC condition for all such I necessarily satisfies
the same condition for all open or indeed half-open intervals.Wemay therefore also use PPC(a, b)
to refer to equation (1) for the half-open interval [a, b), for example.

Recall that the lower bound of 3
2 was established in [1], whose proof we sketched in Section 2.

We start the proof of Theorem 1.1 by making these arguments quantitative.
We begin with a quantitative extension of equation (2), which said that if the maximum gap

is 3/2 then, in the limit N → ∞, the proportion of gaps of size at most 1/2 is 0. We obtain the
following when the maximum gap is of size at most 3/2+ ε.

Proposition 3.1. For all N sufficiently large, we have

1
N
#

{
n≤N : gn ≤ 1

2

}
≤ 2

√
ε.
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Proof. We begin by relating the mean gap size to the gap distribution function under the given
restriction on the maximum gap size. To this end, note that

1
N

∑
n≤N

gn =
∫ 3

2+ε

0

1
N
#

{
n≤N : gn > x

}
dx

=
∫ 1

2+√
ε

0

1
N
#

{
n≤N : gn > x

}
dx+

∫ 3
2+ε

1
2+√

ε

1
N
#

{
n≤N : gn > x

}
dx

= 1
2

+ √
ε −

∫ 1
2+√

ε

0

1
N
#

{
n≤N : gn ≤ x

}
dx

+
∫ 3

2+ε

1
2+√

ε

1
N
#

{
n≤N : gn ∈

(
x,

3
2

+ ε

)}
dx. (4)

Now, we claim that

lim sup
N→∞

∫ 3
2+ε

1
2+√

ε

1
N
#

{
n≤N : gn ∈

(
x,

3
2

+ ε

)}
dx≤

∫ 3
2+ε

1
2+√

ε

(
3
2

+ ε − x
)
dx. (5)

Indeed, the pointwise upper bound

1
N
#

{
n≤N : gn ∈

(
x,

3
2

+ ε

)}
≤min

⎛
⎝1,

1
N

∑
n≤N

∑
m≤N−n+1

1gn+···+gn+m−1∈(x, 32+ε)

⎞
⎠

together with the dominated convergence theorem and PPC
(
x, 32 + ε

)
for x ∈ ( 1

2 + √
ε, 32 + ε

)
,

namely,

lim
N→∞

1
N

∑
n≤N

∑
m≤N−n+1

1gn+···+gn+m−1∈
(
x, 32+ε

) = 3
2

+ ε − x,

gives (5). That the average gap of (λn)n is 1 corresponds to

lim
N→∞

1
N

∑
n≤N

gn = 1. (6)

Rearranging (4), taking N → ∞, and using (5) and (6) gives

lim sup
N→∞

∫ 1
2+√

ε

0

1
N
#{n≤N : gn ≤ x}dx≤ −1+ 1

2
+ √

ε +
∫ 3

2+ε

1
2+√

ε

(
3
2

+ ε − x
)
dx

= 3
2
ε + 1

2
ε2 − ε3/2.

Thus, using the trivial

1
N
#

{
n≤N : gn ≤ x

} ≥ 1
N
#

{
n≤N : gn ≤ 1

2

}

for x ∈ [ 1
2 ,

1
2 + √

ε
]
and the even more trivial lower bound of 0 when x ∈ [

0, 12
]
, yields

lim sup
N→∞

√
ε · 1

N
#

{
n≤N : gn ≤ 1

2

}
≤ 3

2
ε + 1

2
ε2 − ε3/2.

Dividing by
√

ε, Proposition 3.1 follows. �
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We now use the quantitative version of (3) to argue that the PPC(12 ,
3
2 + ε) contribution comes

nearly entirely from single gaps gn.

Proposition 3.2. For all N sufficiently large, we have
1
N

∑
n≤N

∑
2≤m≤N−n+1

1gn+···+gn+m−1∈( 12 , 32+ε) ≤ 2
√

ε.

Proof. As in the proof of Proposition 3.1,

1
N

∑
n≤N

gn = 1
2

− √
ε −

∫ 1
2−√

ε

0

1
N
#

{
n≤N : gn ≤ x

}
dx

+
∫ 3

2+ε

1
2−√

ε

1
N
#

{
n≤N : gn ∈

(
x,

3
2

+ ε

)}
dx,

which, by merely dropping a (negative) term, gives

1
N

∑
n≤N

gn ≤ 1
2

− √
ε +

∫ 3
2+ε

1
2−√

ε

1
N
#

{
n≤N : gn ∈

(
x,

3
2

+ ε

)}
dx. (7)

We write
1
N
#

{
n≤N : gn ∈

(
x,

3
2

+ ε

)}
= 1

N
∑
n≤N

∑
m≤N−n+1

1gn+···+gn+m−1∈
(
x, 32+ε

)

− 1
N

∑
n≤N

∑
2≤m≤N−n+1

1gn+···+gn+m−1∈
(
x, 32+ε

)

and use the same dominated convergence theorem argument as in the proof of Proposition 3.1 to
obtain, from (7), that

lim sup
N→∞

∫ 3
2+ε

1
2−√

ε

1
N

∑
n≤N

∑
2≤m≤N−n+1

1gn+···+gn+m−1∈
(
x, 32+ε

)dx

≤ −1+ 1
2

− √
ε +

∫ 3
2+ε

1
2−√

ε

(
3
2

+ ε − x
)
dx

= 3
2
ε + 1

2
ε2 + ε3/2,

and thus

lim sup
N→∞

√
ε · 1

N
∑
n≤N

∑
2≤m≤N−n+1

1gn+···+gn+m−1∈
(
1
2 ,

3
2+ε

) ≤ 3
2
ε + 1

2
ε2 + ε3/2.

Dividing by
√

ε, the proposition follows. �
We now exploit the aforementioned “bias” towards 0 exhibited by large intervals with sum of

gaps at most 1/2. We will need a technical lemma, proven in the appendix but assumed for now.

Lemma 3.3. For positive integers a, b, c, L satisfying 1≤ a≤ b≤ c≤ L, we have

(a− 1)a+ (b− a)(b− a+ 1)+ (c− b)(c− b+ 1)+ (L− c)(L− c+ 1)

+ (a− 1)(b− a)+ (b− a)(c− b)+ (c− b)(L− c)≥ 5
12

L2 + 1
6
L− 7

12
.
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Lemma 3.3 allows us to show that, instead of getting the desired 1
4 + 1

8 = 3
8 for PPC

(
0, 14

) +
PPC

(
0, 18

)
, we get at least 5

12 = 3
8 + 1

24 , asymptotically for large intervals.

Proposition 3.4. Let L≥ 1 be a positive integer and g1, . . . , gL be positive reals with
∑L

i=1 gi ≤ 1
2 .

Then,
∑
n≤L

∑
m≤L−n+1

1gn+···+gn+m−1≤ 2
8
+

∑
n≤L

∑
m≤L−n+1

1gn+···+gn+m−1≤ 1
8
≥ 5

6

(
L+ 1
2

)
− 5

6
L.

Proof. By scaling, it suffices to prove the proposition when
∑L

i=1 gi = 1
2 . Suppose

∑L
i=1 gi = 1

2 .
Let

a=min
{
j≤ L : g1 + · · · + gj ≥ 1

8

}
,

b=min
{
j≤ L : g1 + · · · + gj ≥ 2

8

}
,

c=min
{
j≤ L : g1 + · · · + gj ≥ 3

8

}
,

and note
∑
n≤L

∑
m≤L−n+1

1gn+···+gn+m−1≤ 1
8
≥ (a− 1)a

2
+ (b− a)(b− a+ 1)

2
+ (c− b)(c− b+ 1)

2

+ (L− c+ 1)(L− c+ 2)
2

.

by doing casework in which intervals n and n+m− 1 lie (the different intervals are
[1, a), [a, b), [b, c), [c, L]). Similarly,

∑
n≤L

∑
m≤L−n+1

1gn+···+gn+m−1≤ 2
8
≥ (a− 1)a

2
+ (b− a)(b− a+ 1)

2
+ (c− b)(c− b+ 1)

2

+ (L− c+ 1)(L− c+ 2)
2

+ (a− 1)(b− a)

+ (b− a)(c− b)+ (c− b)(L− c+ 1),

Therefore,
∑
n≤L

∑
m≤L−n+1

1gn+···+gn+m−1≤ 2
8
+

∑
n≤L

∑
m≤L−n+1

1gn+···+gn+m−1≤ 1
8
≥ (a− 1)a+ (b− a)(b− a+ 1)

+ (c− b)(c− b+ 1)+ (L− c+ 1)(L− c+ 2)+ (a− 1)(b− a)
+ (b− a)(c− b)+ (c− b)(L− c+ 1).

Lower bounding L− c+ 1 and L− c+ 2 by L− c and L− c+ 1, respectively, Lemma 3.3 finishes
the proof of Proposition 3.4, since 5

12L
2 + 1

6L− 7
12 ≥ 5

6
( L+1

2
) − 5

6L for L≥ 1. �
We now proceed to isolate the relevant “0 density” parts of the sequence on which the gaps are

at most 1/2, in order to exploit the bias that Proposition 3.4 illustrates.
Here and henceforth, we let [N] := {1, 2, . . . ,N}.
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Definition 3.5. For a nonempty interval J ⊆ [N], let L(J), R(J) denote the left and right endpoints
of J, respectively, and let sum(J)= ∑

n∈J gn.
Definition 3.6. For a interval J ⊆ [N], we denote

PPCJ(0, a) :=
∑

n≤n′∈J
1gn+···+gn′<a.

For intervals J1, J2 ⊆ [N], with R(J1)< L(J2), we denote

PPCJ1,J2 (0, a) :=
∑

(n,n′)∈J1×J2

1gn+···+gn′<a.

Take a large N. Let IN denote the collection of all maximal intervals on which the gaps gn are
at most 1

2 . More formally, we define IN to be the collection of all intervals I ⊆ [N] such that (1)
gn ≤ 1

2 for each n ∈ I, (2) L(I)= 1 or gL(I)−1 > 1
2 , and (3) R(I)=N or gR(I)+1 > 1

2 .
We begin by noting the following.

Lemma 3.7. For all large N, we have ∑
I∈IN

|I| ≤ 2
√

εN.

Furthermore, as N → ∞, we have∑
I∈IN

(|I| + 1
2

)
≥N

(
1
2

+ o(1)
)
.

Proof. By definition we have
∑
I∈IN

|I| = 1
N
#

{
n≤N : gn ≤ 1

2

}
.

Proposition 3.1 then gives the first inequality. For the second inequality, note, by the maximality
of the intervals comprising IN , that(

1
2

+ o(1)
)
N = PPC[N]

(
0,

1
2

)
=

∑
I∈IN

PPCI
(
0,

1
2

)
≤

∑
I∈IN

(|I| + 1
2

)
.

�
We provide a quick remark on motivation.

Remark 3.8. Observe that, if it were the case that sum(I)≤ 1
2 for each I ∈ IN , then we could

conclude the proof of Theorem 1.1 as follows. By Proposition 3.4, one has(
3
8

+ o(1)
)
N = PPC[N]

(
0,

1
8

)
+ PPC[N]

(
0,

1
4

)

≥ 5
6

∑
I

(|I| + 1
2

)
− 5

6
∑
I

|I|

≥
(

5
12

− 5
3
√

ε + o(1)
)
N

as N → ∞, which would give our desired contradiction by taking N sufficiently large.

However, it need not be the case that sum(I)≤ 1
2 for each I ∈ IN . In light of Remark 3.8, there-

fore, the strategy is to partition each I ∈ IN into subintervals {JIk}k with sum
(
JIk

) ≤ 1/2 for each k
and such that, for all a ∈ (0, 1/2] and all k, the contribution to PPC(0, a) from windows that over-
lap with JIk comes nearly entirely from windows that lie entirely inside JIk. The existence of such a
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8 D. Altman and Z. Chase

partition is not at all immediate. We provide in Proposition 3.9 below a precise statement of what
is needed.

Proposition 3.9. Let IN be as above. There exists a partition of each I ∈ IN into subintervals
{JIk}rIk=1 such that the following two hold.

1. sum
(
JIk

) ≤ 1
2 for each I ∈ IN and k ∈ {1, . . . , rI}, and

2.
∑

I∈IN
∑rI

k=1
(|JIk|+1

2
) ≥

(
1
2 − 4

√
2ε1/4

)
N.

To quickly conclude the proof of Theorem 1.1, we postpone the proof of Proposition 3.9 (and
the description of the partition) to the following section, and assume it for now.

Proof of Theorem 1.1.Wewill proceed along the lines of Remark 3.8, but now use Proposition 3.9
to partition into subintervals on which we can apply Proposition 3.4. This yields the following
computations, where Proposition 3.4 is used in the penultimate line, and we use Lemma 3.7 in the
final line: (

3
8

+ o(1)
)
N = PPC[N]

(
0,

1
8

)
+ PPC[N]

(
0,

1
4

)

≥
∑
I∈IN

∑
k

PPCJIk
(
0,

1
8

)
+ PPCJIk

(
0,

1
4

)

≥ 5
6

∑
I∈IN

∑
k

(|JIk| + 1
2

)
− 5

6
∑
I∈IN

∑
k

|JIk|

≥ 5
6

(
1
2

− 4
√
2ε1/4

)
N − 5

3
√

εN.

Rearranging, dividing by N, and sending N → ∞, we obtain

10
√
2

3
ε1/4 + 5

3
√

ε − 1
24

≥ 0,

which is indeed false for ε = 10−9 (but not for ε = 10−8). This gives the desired contradiction
to our assumption that a sequence (λn)n with PPC, average gap 1, and maximum gap 3/2+ ε

exists. �

4. Partitioning, and a proof of Proposition 3.9
The following examples are helpful to keep in mind to explain the need for care when choosing
the partition of a given I ∈ IN , and to help motivate the partition we will use.

I1 =
{
2
5
, 0, 0, 0, . . . , 0, 0, 0,

1
3
, 0, 0, 0, . . . , 0, 0, 0,

2
5

}

I2 =
{
1
4
, 0, 0, 0, . . . , 0, 0, 0,

1
2
,
1
2
,
1
2
,
1
2
,
1
2
, 0, 0, 0, . . . , 0, 0, 0,

1
4

}

I3 =
{
0, 0, . . . , 0, 0,

1
3
, 0, 0, . . . , 0, 0,

1
3
, 0, 0, . . . , 0, 0

}
.

The first example I1 shows that a “greedy division”, in which one goes from left to right,
dividing immediately before the sum first exceeds 1/2, will not work. Indeed, that division is{

2
5
, 0, 0, 0, . . . , 0, 0, 0

}
,
{
1
3
, 0, 0, 0, . . . , 0, 0, 0

}
,
{
2
5

}
,
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which is problematic as there will be much contribution to the PPC(0, 12 ) count coming from
different subintervals; specifically, any index besides the first in the first subinterval and any index
in the second subinterval would prove a nontrivial contribution.

Similarly, another “greedy division” in which the largest numbers successively “claim” the
largest subinterval they can, will not work. For the case of I1, the division is

{
2
5
, 0, 0, 0, . . . , 0, 0, 0

}
,
{
1
3

}
,
{
0, 0, 0, . . . , 0, 0, 0,

2
5

}
,

which has a large contribution to PPC
(
0, 12

)
coming from any index in the first subinterval besides

the first and any index in the last subinterval besides the last. Note thus that even “non-adjacent”
subintervals can cause issues.

A division that does work for I1 is

{
2
5

}
,
{
0, 0, 0, . . . , 0, 0, 0,

1
3
, 0, 0, 0, . . . , 0, 0, 0

}
,
{
2
5

}
,

as there is only a minor contribution (namely, linear in the size of the interval rather than
quadratic) coming from different subintervals.

For I2, essentially any reasonable division is permissible, but we draw attention to it as it shows
that sometimes the reason for negligible contribution from different subintervals are subintervals
in between. For example, if we decompose as

{
1
4
, 0, 0, 0, . . . , 0, 0, 0

}
,
{
1
2

}
,
{
1
2

}
,
{
1
2

}
,
{
1
2

}
,
{
1
2

}
,
{
0, 0, 0, . . . , 0, 0, 0,

1
4

}
,

then the reason that there is no contribution to PPC
(
0, 12

)
from the subintervals { 14 , 0, 0, . . . , 0, 0}

and {0, 0, . . . , 0, 0, 14 } are the five subintervals { 12 } in between.
For I3, any division will admit a large PPC contribution from different subintervals. This would

of course be harmful, but we make use of the fact that it won’t exist often in our situation, since
it provides a nontrivial contribution to PPC(12 , 1) (which we already know comes nearly entirely
from single gaps).

With the above examples inmind, we now choose the partition we use to prove Proposition 3.9.
Fix I ∈ IN . In the following definition, ties may be broken arbitrarily. Let J1 be the largest subin-

terval of I with sum(J1)≤ 1
2 . With J1, . . . , Jr already defined, if ∪r

k=1Jk �= I, let Jr+1 be the largest
subinterval of I \ ∪r

k=1Jk with sum(Jr+1)≤ 1
2 . Let J1, . . . , Js be all the subintervals resulting from

this process. Of course s≤ |I| < +∞.
Clearly I = �s

k=1Jk and sum(Jk)≤ 1/2 for each k, establishing the first requirement of
Proposition 3.9. We now begin to proceed to establish the second.

Hopefully not confusing the reader, we renumber now so that J1 is the leftmost interval,
with J2 to the immediate right of J1, J3 to the immediate right of J2, etc.. For 1≤ k≤ s− 1, let
g1(k) ∈ {k, k+ 1} and b1(k) ∈ {k, k+ 1} \ {g1(k)} be such that Jg1(k) was chosen before Jb1(k). Note,
in particular, that |Jg1(k)| ≥ |Jb1(k)|.

We quickly pin down exactly which different subintervals need to be considered with regards
to their contribution to PPC(0, a), for a≤ 1/2.

https://doi.org/10.1017/S0963548324000361 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548324000361


10 D. Altman and Z. Chase

Definition 4.1. Call k ∈ [2, s− 1] sandwiched if it was chosen after each of its neighbouring subin-
tervals, i.e., if b1(k− 1)= k and b1(k)= k. For a sandwiched k, let g2(k) ∈ {k− 1, k+ 1} and
b2(k) ∈ {k− 1, k+ 1} \ {g2(k)} be such that Jg2(k) was chosen before Jb2(k). In particular, |Jg2(k)| ≥|Jb2(k)|.
Lemma 4.2. If n≤ n′ ∈ I have gn + · · · + gn′ ≤ 1

2 , then either

1. (n, n′) ∈ Jk × Jk for some k,
2. (n, n′) ∈ Jk × Jk+1 for some k, or
3. (n, n′) ∈ Jk−1 × Jk+1 for some sandwiched k.

Proof. First note that if n ∈ Jk and n′ ∈ ∪�≥3Jk+�, then gn + · · · + gn′ > 1
2 , since sum(Jk+1 ∪

Jk+2)> 1
2 (for otherwise whichever of Jk+1, Jk+2 was chosen first would have “engulfed” the other).

Now suppose n ∈ Jk−1 and n′ ∈ Jk+1 for some k. If b1(k− 1)= k− 1, then sum(R(Jk−1)∪ Jk)> 1
2 ,

so gn + · · · + gn′ > 1
2 . Similarly, if b1(k)= k+ 1, then sum(Jk ∪ L(Jk+1))> 1

2 also yields gn + · · · +
gn′ > 1

2 . Hence, k is sandwiched. �
We now proceed to argue that the PPC

(
0, 12

)
contribution coming from cases (2) or (3) in

Lemma 4.2 is small. We begin with case (2).
We shall argue that the PPC

(
0, 12

)
contribution coming from adjacent subintervals Jk, Jk+1 is

small by arguing that |Jb1(k)| is (usually) small.We do this by arguing that we would otherwise have
too large of a contribution to PPC

( 1
2 ,

3
2
)
coming from gaps λn+m − λn withm≥ 2 (contradicting

Proposition 3.2).

Proposition 4.3. For any k ∈ [s− 1], one has
∑

(n,n′)∈Jk×Jk+1

1gn+···+gn′> 1
2
≥ 1

2
|Jb1(k)|2.

Proof. Without loss of generality, by symmetry we may assume b1(k)= k+ 1.
For y ∈ Jk+1 and x ∈ Jk, if y− x+ 1> |Jk|, then gx + · · · + gy > 1

2 , since otherwise [x, y] would
have been chosen as Jk (in the greedy process defining the partition) instead of Jk. Therefore,

∑
(n,n′)∈Jk×Jk+1

1gn+···+gn′> 1
2
≥

R(Jk+1)∑
y=L(Jk+1)

y−R(Jk)+L(Jk)−1∑
x=L(Jk)

1

=
(
L(Jk+1)+ R(Jk+1)

2

)
|Jk+1| − R(Jk)|Jk+1|

= 1
2
|Jk+1|2 + 1

2
|Jk+1|,

with the last equality using R(Jk)= L(Jk+1)− 1. �
Next we proceed to bound the contribution from intervals Jk−1, Jk+1 for k sandwiched. For

such k, we argue that |Jb2(k)| is (usually) small.

Proposition 4.4. For a sandwiched k, one has
∑

(n,n′)∈Jk−1×Jk+1

1gn+···+gn′> 1
2
≥ 1

2
|Jb2(k)|2.

Proof. Without loss of generality, by symmetry we may assume b2(k)= k+ 1.
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For y ∈ Jk+1 and x ∈ Jk−1, if y− x+ 1> |Jk−1|, then gx + · · · + gy > 1
2 , since otherwise [x, y]

would have been chosen instead of Jk−1 (recall Jk was also chosen after Jk−1, since k is sandwiched).
Therefore,

∑
(n,n′)∈Jk−1×Jk+1

1gn+···+gn′> 1
2
≥

R(Jk+1)∑
y=L(Jk+1)

min (R(Jk−1),y−|Jk−1|)∑
x=L(Jk−1)

1.

If R(Jk+1)− |Jk−1| ≤ R(Jk−1), then we obtain

∑
(n,n′)∈Jk−1×Jk+1

1gn+···+gn′> 1
2
≥

R(Jk+1)∑
y=L(Jk+1)

y−|Jk−1|∑
x=L(Jk−1)

1

= |Jk+1|
(
R(Jk+1)+ L(Jk+1)

2
− |Jk−1| − L(Jk−1)+ 1

)

= |Jk+1|
(
R(Jk+1)+ L(Jk+1)

2
− R(Jk−1)

)

= |Jk+1|
(
R(Jk+1)+ L(Jk+1)

2
− L(Jk+1)+ |Jk| + 1

)

= |Jk+1|
( |Jk+1| − 1

2
+ |Jk| + 1

)
,

and conclude by observing that |Jk| ≥ 0 and |Jk+1|−1
2 + 1≥ 1

2 |Jk+1|.
If, instead, R(Jk+1)− |Jk−1| ≥ R(Jk−1), we obtain

∑
(n,n′)∈Jk−1×Jk+1

1gn+···+gn′> 1
2
≥

|Jk−1|+R(Jk−1)∑
y=L(Jk+1)

y−|Jk−1|∑
x=L(Jk−1)

1+
R(Jk+1)∑

y=|Jk−1|+R(Jk−1)+1

R(Jk−1)∑
x=L(Jk−1)

1. (8)

The first double sum on the RHS of (8) is equal to

(|Jk−1| + R(Jk−1)− L(Jk+1)+ 1)
( |Jk−1| + R(Jk−1)+ L(Jk+1)

2
− R(Jk−1)

)
,

while the second double sum is equal to
(
R(Jk+1)− |Jk−1| − R(Jk−1)

) |Jk−1|.
Adding these two sums and simplifying we obtain,

(|Jk−1| − |Jk|)
( |Jk−1| + |Jk| + 1

2

)
+ |Jk−1|(|Jk| + |Jk+1| − |Jk−1|)

= −1
2
(|Jk−1| − |Jk|)2 + 1

2
(|Jk−1| − |Jk|)+ |Jk−1||Jk+1|.

Now recall that we have |Jk| ≤ |Jk+1| ≤ |Jk−1| and furthermore, by our assumption in the second
case, we have |Jk−1| ≤ |Jk| + |Jk+1|. Thus we may obtain

−1
2
(|Jk−1| − |Jk|)2 + 1

2
(|Jk−1| − |Jk|)+ |Jk−1||Jk+1| ≥ −1

2
|Jk+1|2 + 0+ |Jk+1|2 = 1

2
|Jk+1|2.

This completes the proof. �
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We now cease referring to a specific I ∈ IN . To denote dependence on I ∈ IN , we denote I =
�r
k=1J

I
k its decomposition.

Proposition 4.5. For any a ∈ (
0, 12

)
, it holds that

∑
I∈IN

∑
k

PPCJIk,J
I
k+1 (0, a)≤ 2

√
2ε1/4

⎛
⎝ ∑

I∈IN

∑
k

|JIk|2
⎞
⎠

1/2 √
N

and

∑
I∈IN

∑
k sandwiched

PPCJIk−1,J
I
k+1 (0, a)≤ 2

√
2ε1/4

⎛
⎝ ∑

I∈IN

∑
k

|JIk|2
⎞
⎠

1/2 √
N.

Proof. By trivially bounding PPCJIk,J
I
k+1 (0, a)≤ |JIg1(k)| |JIb1(k)| and Cauchy-Schwarz,

∑
I∈IN

∑
k

PPCJIk,J
I
k+1 (0, a)≤

∑
I∈IN

∑
k

|JIg1(k)| |JIb1(k)|

≤
⎛
⎝∑

I,k
|JIg1(k)|2

⎞
⎠

1/2 ⎛
⎝∑

I,k
|JIb1(k)|2

⎞
⎠

1/2

≤
⎛
⎝2

∑
I∈IN

∑
k

|JIk|2
⎞
⎠

1/2 ⎛
⎝ ∑

I∈IN

∑
k

2PPCJIk,J
I
k+1

(
1
2
,
3
2

)⎞
⎠

1/2

,

where the last inequality used Proposition 4.3 together with the fact that sum
(
JIk ∪ JIk+1

)
≤ 1≤ 3

2 .
Now just observe

∑
I∈IN

∑
k

2PPCJIk,J
I
k+1

(
1
2
,
3
2

)
≤ 2

∑
n≤N

∑
2≤m≤N−n+1

1gn+···+gn+m−1∈( 12 , 32 ),

which, by Proposition 3.2, is at most 4
√

εN. The first inequality of the lemma follows.
For the second inequality of the lemma, we argue as above, except this time using

Proposition 4.4:
∑
I∈IN

∑
k sandwiched

PPCJIk−1,J
I
k+1 (0, a)

≤
∑
I∈IN

∑
k sandwiched

|JIg2(k)| |JIb2(k)|

≤
⎛
⎝ ∑

I∈IN

∑
k sandwiched

|JIg2(k)|2
⎞
⎠

1/2 ⎛
⎝ ∑

I∈IN

∑
k sandwiched

|JIb2(k)|2
⎞
⎠

1/2

≤
⎛
⎝2

∑
I∈IN

∑
k

|JIk|2
⎞
⎠

1/2 ⎛
⎝ ∑

I∈IN

∑
k

2PPCJIk−1,J
I
k+1

(
1
2
,
3
2

)⎞
⎠

1/2

,
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where the last inequality used sum(Jk−1 ∪ Jk ∪ Jk+1)≤ 3
2 . Now just observe

∑
I∈IN

∑
k

2PPCJIk,J
I
k+1

(
1
2
,
3
2

)
≤ 2

∑
n≤N

∑
2≤m≤N−n+1

1gn+···+gn+m−1∈( 12 , 32 ),

which, by Proposition 3.2, is at most 4
√

εN. The second inequality of the lemma follows. �
We are ready to complete the proof of Proposition 3.9.

Proposition 4.6. For all N large,
∑
I∈IN

∑
k

(|JIk| + 1
2

)
≥

(
1
2

− 4
√
2ε1/4

)
N.

Proof. Using Lemma 4.2 we have that
(
1
2

+ o(1)
)
N =

∑
I∈IN

PPCI
(
0,

1
2

)
=

∑
I

rI∑
k=1

PPCJIk
(
0,

1
2

)
+

rI−1∑
k=1

PPCJIk,J
I
k+1

(
0,

1
2

)

+
∑

k sandwiched
PPCJk−1,Jk+1

(
0,

1
2

)
.

Invoking Proposition 4.5 in the first line we have:

(
1
2

+ o(1)
)
N −

∑
I∈IN

∑
k

(|JIk| + 1
2

)
≤ 4

√
2ε1/4

⎛
⎝ ∑

I∈IN

∑
k

|JIk|2
⎞
⎠

1/2 √
N

≤ 8ε1/4
⎛
⎝ ∑

I∈IN

∑
k

(|JIk| + 1
2

)⎞
⎠

1/2 √
N.

Writing
∑
I∈IN

∑
k

(|JIk| + 1
2

)
=

(
1
2

− δ

)
N,

we see

δ + o(1)≤ 8ε1/4
(
1
2

− δ

)1/2
,

which yields (after a little computation) δ ≤ 4
√
2ε1/4 for N large enough. �

5. Appendix: proof of Lemma 3.3
We restate Lemma 3.3 for the reader’s convenience.

Lemma 3.3 (Lemma 3.3). For positive integers a, b, c, L satisfying 1≤ a≤ b≤ c≤ L, we have

(a− 1)a+ (b− a)(b− a+ 1)+ (c− b)(c− b+ 1)+ (L− c)(L− c+ 1)

+ (a− 1)(b− a)+ (b− a)(c− b)+ (c− b)(L− c)≥ 5
12

L2 + 1
6
L− 7

12
.

Proof. Fix L≥ 1. It clearly suffices to prove the inequality for all real numbers a, b, c satisfying
1≤ a≤ b≤ c≤ L. By compactness, we may work with a triple (a, b, c) that achieves the minimum
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value of the left hand side (which we denote LHS) minus the right hand side (which we denote
RHS). We divide into three cases.

Case 1: c= L.

As one may compute, ∂
∂c [LHS− RHS]= −a+ 2c− L= L− a.

Subcase 1: a= L. Then b= L, which gives LHS− RHS= 28L2−51L+28
48 , which is non-negative,

since it is equal to 5 at L= 1 and has derivative 56L− 51, which is positive for L≥ 1.

Subcase 2: a �= L. Then ∂
∂c [LHS− RHS]> 0, so since (a, b, c) is a minimizer, we must have b=

c, for otherwise we can decrease c a bit to decrease LHS− RHS. Thus, LHS− RHS= a2 − (L+
1)a+ 28L2−3L+28

48 , which has minimum occurring at a= L+1
2 , which gives LHS− RHS= 1

3L
2 −

9
16L+ 1

3 , which is always non-negative, since it is at L= 1 and the derivative is 2
3L− 9

16 , which is
non-negative for L≥ 1.

Case 2: c �= L and b= c.

Since c �= L and (a, b, c) is a minimizer, we must have ∂
∂c [LHS− RHS]≥ 0, for otherwise we

could increase b, c a bit to decrease LHS− RHS. Recall ∂
∂c [LHS− RHS]= −a+ 2c− L; so, 2c−

L≥ a.

Subcase 1: a= b. In this case, LHS− RHS= 2c2 − (2L+ 2)c+ 7L2+10L+7
12 , which has minimum

at c= L+1
2 , which yields LHS− RHS= (L−1)2

12 , which is non-negative.

Subcase 2: a �= b. In this case, we must have ∂
∂b [LHS− RHS]≤ 0, since otherwise we could

decrease b a bit to decrease LHS− RHS. Note ∂
∂b [LHS− RHS]= −1+ 2b− L, so since 2b− L≥

a, we must have a= 1 and 2b− L= 1. So, we have a= 1, b= L+1
2 , c= L+1

2 , which indeed has
LHS− RHS≥ 0.

Case 3: c �= L and b �= c.

In this case, ∂
∂c [LHS− RHS] must be 0, for otherwise we could perturb c a bit to decrease

LHS− RHS. So, −a+ 2c− L= 0.

Subcase 1: a= 1. Having a= 1 and−a+ 2c− L= 0, i.e., c= L+1
2 , yields LHS− RHS= 1

4 [4b
2 −

4(L+ 1)b+ 3L2 + 2L− 1], which is minimized as b= L+1
2 , which was dealt with in Subcase 2 of

Case 2.

Subcase 2: a= b. Then, 48(LHS− RHS)= 84b2 − (72L+ 96)b+ 16L2 + 45L+ 28, which has
minimum at b= 72L+96

84 , which gives 48(LHS− RHS)= 16L2 + 45L+ 28, which is clearly non-
negative.

Subcase 3: a �∈ {1, b}. Then ∂
∂a [LHS− RHS]= 0, for otherwise we could perturb a a bit to

decrease LHS− RHS. So, −1+ 2a− c= 0. Together with −a+ 2c− L= 0 yields a= L+2
3 , c=

2L+1
3 , which yields LHS− RHS= b2 − (L+ 1)b+ 12L2+29L+12

48 , which is minimized at b= L+1
2 ,

which yields 5L
48 , which is clearly non-negative. �
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