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A NOTE ON THE TORSION OF BERNSTEIN CURVES 

BY 

M A R T I N E . P R I C E 

ABSTRACT. It is shown that Bernstein Polynomials do not dimin­
ish the total "twist" of space curves in contrast to their length and 
curvature diminishing properties. This phenomenon is shown to be 
related to the fact that Bernstein Polynomials of a plane curve may 
have more inflections than the curve possesses. 

The Bernstein polynomial operator is known to possess many smoothing 
properties. In particular it is total variation, arc-length and total-curvature 
diminishing, [2], [3], [4]. For this reason, Bernstein approximations of vector 
functions have been used in applications in spite of their slow convergence. 

In [3], we showed: 

THEOREM 1. Let F(t) be a C2 mapping of [0,1] to R3 and bnF(t) be its n-th 
Bernstein approximation whose coordinates are defined by 

For any C2 mapping G, let TG(t) be its unit tangent vector so that the total 
curvature is given by 

Jo \ dt \ 

Then for all n, KbnF<KF. 

In view of this it is natural to ask if the Bernstein operator also diminishes 
the total "twist" of a C3 space curve. Let YF denote the total absolute torsion 
of a parametric C3 space curve F(t) on [0,1], i.e., 

where BF(t) is the binormal to F at t. Then is Yb n F<YF for all rc? The 
difficulty is that the proof of Theorem 1 depends on the fact that the total 
curvature of a space curve is the average of the plane total curvature of its 
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projections [1]. Since the torsion of any plane curve is zero, the corresponding 
statement for torsion is false. 

We give a counterexample to the torsion conjecture which is based on 
properties of the Bernstein operator for plane vector curves. Define F(t) = 
(§f2 —|r, §t3 —-^t2-f |f) for t on [0,1]. The corresponding Bernstein cubic is 
b3F(t) = (t2-t, ( t 3 /3 ) - | t 2 ) . The situation is shown in the Figure where the solid 
line is F and the dotted line is b3F. 

The curve F has been chosen so that it has a loop and no inflection points 
but such that B3F has no loop and has two inflections (at t =5 and §). Note that 
counting the inflections amounts to counting the zeros of the curvature. Thus 
(b3fx)'{b3f2)"-{b3f2)'(b3fx)" has two zeros while fifi-ftf" has none. We now 
create a space curve F by using the two components of F and setting 
f3(t) = %t3 — %t2+t so that the corresponding b3f3(t) = t3. Geometrically, this 
"pulls up" one endpoint of both curves in Figure 1. 

Integration yields YF=1.96 while Yb3F=3.08. By comparison KF = 4.82 
and Kb3F= 1.97. 

The connection between the inflections of the plane curve and the torsion of 
the space curve is explained by considering a theorem of Fary [1]: 

THEOREM 2. If G is a rectifiable space curve lying on the unit sphere S and Dx 

denotes a great circle of S where ±x are the unit vectors orthogonal to the plane 
of Dx, then the length of G is LG = |JS nG(x) dx where nG(x) is the cardinality of 
GHDX. 

We prove a corollary: 

COROLLARY 1. If F is a C3 space curve, then 

YF = i f Z[(AxoF);(A IoF)5-(AxoF)i(AxoF) ' ; ]dx (1) 

where Ax is the natural rotation sending x to the north pole, and Z[-] counts the 
zeros of the indicated function. 
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Proof. Since BF(t) is a unit vector, its arclength is given by iSs^SpM dx. 
Since Ax is a rotation, BF e DX if and only if AXBF lies on the equator of S. But 
AXBF = BAF. Thus nBp(x) is the number of zeros of the third component of 
BAF which is the integrand in (1). 

Thus absolute integral torsion is an average over all rotations of the number 
of zeros of the curvature of the projection of the rotated space curve upon the 
equatorial plane. But the example shows that plane Bernstein curves can have 
zeros of the curvature when none exists in the original curve. Since for any 
projection F or rotation Ax, we have PbnF= bnPF and AxbnF= bnAxF (because 
bn commutes with any linear operator on R3), it follows that for some values of 
x, the integrand in (1) for bnF will exceed that of F. 

REMARK. The same phenomenon occurs for other approximation proce­
dures, e.g., integral means. 
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