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We study the gravity-induced collisions of charged spheres of dielectric materials
dispersed in a gaseous medium. When the gap thickness between the surfaces of
two spheres is shorter than the mean free path of the surrounding fluid medium,
continuum assumptions for the hydrodynamics interactions are no longer valid, and the
non-continuum lubrication interactions result in surface-to-surface contact in finite time.
Two like-charged dielectric spheres attract each other at close separations for a wide range
of size and charge ratio values. We use trajectory analysis to calculate the collision rate
and, thus, explore the role of electrostatic interactions in the collision dynamics of a pair
of like-charged dielectric spheres. We present the modifications of pair trajectories due
to electrostatic forces and show how collision efficiencies vary with the non-dimensional
parameter capturing the relative strength of the electrostatic force to gravity as well as the
charge ratio and size ratio.

Key words: Stokesian dynamics, breakup/coalescence, electrohydrodynamic effects

1. Introduction

Weather modification activities such as rain enhancement and fog elimination are essential
for combating water crises in desert areas and increasing visibility on roads and airport
runways. To facilitate these activities, one needs to accelerate the cloud microphysical
processes, particularly the collision–coalescence process. Cloud seeding (i.e. seeding
of hygroscopic agents in clouds) is one artificial method of enhancing the efficiency
of droplet–droplet collisions by increasing the number density of large droplets in the
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size spectrum. The evolution of the drop size distribution (DSD) in warm clouds depends
primarily on the rate of collisions between two drops. This collision–coalescence process
sets the time to rain formation by shaping the DSD. Thus, a detailed study of the collision
process can aid in analysing the growth mechanism of cloud droplets and improving the
parameterizations of cloud microphysical processes. Better parameterizations, in turn, can
significantly reduce the uncertainties involved in weather forecasting and climate models.
In aerosol impactors, the knowledge of the collision process between charged particles can
reduce errors in measuring the aerosol size distribution. The droplet volume fraction in a
cloud is approximately O(10−6) (see Grabowski & Wang 2013). So, we consider that the
system is dilute; thus, the pairwise interactions will serve our purpose. We assume the two
spheres to be rigid, ignoring the role of interfacial mobility. This assumption is also valid
for smaller water droplets (radii < 25 μm) in air where the drop-to-medium viscosity ratio
is high (≈102). Here, we study the role of electrostatic forces in the collision rate of a pair
of like-charged tiny droplets sedimenting due to gravity in quiescent air.

The rate equation for the particle number density when two species are present is

− dn1

dt
= −dn2

dt
= K12, (1.1)

where K12 is the collision rate of particles with radii a1 and a2 and respective number
densities n1 and n2. The collision rate is difficult to predict theoretically, especially
when the effects of interparticle interactions are not inconsequential. Smoluchowski
(1917) derived the expression for the ideal collision rate K0

12 for two non-interacting
spheres settling under gravity in a still fluid and found that K0

12 = n1n2[2π(ρp − ρf )(a2
1 −

a2
2)g(a1 + a2)

2]/(9μf ), where ρp and ρf are the particle and fluid densities, g is the
acceleration due to gravity and μf is the dynamic viscosity of the fluid. The interparticle
interactions significantly alter the relative velocity between a particle pair at close
separations, thus modifying the collision rate. The collision efficiency E12 = K12/K0

12,
which is the ratio of the collision rate with interactions to that obtained ignoring
interactions (the ideal collision rate), captures the effects of interparticle interactions on
the collision rate. Davis (1984) and Melik & Fogler (1984) used trajectory analyses for
predicting the collision efficiency of two unequal-sized rigid spheres sedimenting due to
gravity and interacting via continuum hydrodynamics and van der Waals forces. Zhang
& Davis (1991) and Rother, Stark & Davis (2022) performed similar calculations for
differentially sedimenting viscous drops, where they quantified the effects of interfacial
mobility on the collision rate.

We assume both the fluid and particle inertia are negligible, and thus inertia does not
influence the collision dynamics. The Reynolds number Rep = [2ρf (ρp − ρf )ga3

1]/(9μ2
f ),

capturing the fluid inertia, is defined here based on the terminal settling speed and radius
of the larger particle. The inertial effects of two differentially settling spheres can be
quantified by the Stokes number St = [16ρp(ρp − ρf )g(a2

1 − a2
2)(a1a2)

3/2]/[81μ2
f (a1 +

a2)
2] (see Davis 1984). This Stokes number depends on particle sizes and the size

ratio κ = a2/a1 < 1. The Péclet number (Pe) measuring the relative importance of
gravitational sedimentation to Brownian diffusion is given by Pe = 2π(ρp − ρf )a4

1κ(1 −
κ2)g/(3kBT), where kB = 1.318 × 10−23 J K−1 is the Boltzmann constant, and T is the
absolute temperature (see Zinchenko & Davis 1994). Let us calculate the values of Rep,
St and Pe for a water droplet in air with a1 = 10 μm, ρp ≈ 103 kg m−3, ρf ≈ 1 kg m−3,
μf ≈ 1.8 × 10−5 Pa s and T = 275 K. We find Rep ≈ 0.007 (negligible fluid inertia); St ≈
0.54 for κ = 0.3 and St ≈ 0.03 for κ = 0.99; Pe ≈ 1504 for κ = 0.3 and Pe ≈ 1085 for
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Collision of like-charged drops sedimenting through quiescent air

κ = 0.99. The above representative values of St suggest that the particle inertia is
negligible for nearly equal-sized droplets of radii less than 15 μm. In warm clouds,
condensation is the dominant growth mechanism for droplets of radii up to 15 μm, thus
leading to a nearly monodisperse size distribution. Therefore, the negligible particle
inertia assumption is valid at the lower end of the ‘size gap’ of 15–40 μm droplets.
The role of particle inertia in the collision rates of a particle pair interacting via
continuum hydrodynamics has been studied by Davis (1984) (for rigid spheres) and Rother
et al. (2022) (for spherical drops). Our non-inertial calculation will work as a reference
calculation against which to compare future studies on collisions of charged spheres
with inertial effects. For Brownian-dominated collisions Pe � 1 and gravity-dominated
collisions Pe � 1. As the Pe values are sufficiently large for droplets of radii more than
10 μm, we carry out the current analysis for the pure gravitational settling case (i.e.
Brownian diffusion is negligible). Wen & Batchelor (1985) solved an advection–diffusion
equation using an asymptotic method to predict the collision efficiency in the Pe � 1 limit.
Zinchenko & Davis (1994) performed the collision calculations at arbitrary Pe for droplets
with continuum hydrodynamic interactions and van der Waals forces.

Interparticle interactions, especially hydrodynamic interactions, modulate the collision
rates between particle pairs. At close separations, the continuum assumption of
hydrodynamic interactions would not be valid, and the near-field non-continuum
lubrication interactions become the dominant collision mechanism in media with
long mean free paths, like air (see Sundararajakumar & Koch 1996). The Knudsen
number Kn = λ0/a∗, where λ0 is the mean free path of the medium and a∗ =
(a1 + a2)/2 is the average of the sphere radii a1 and a2, measures the strength
of non-continuum effects. Previous studies have obtained collision rates due to
non-continuum interactions for particles subject to differential sedimentation, uniaxial
compressional flow (Dhanasekaran, Roy & Koch 2021a), simple shear flow (Patra, Koch
& Roy 2022), Brownian motion (Patra & Roy 2022) and turbulent flow (Dhanasekaran,
Roy & Koch 2021b). Surface deformations of droplet pairs in Stokes flow become
significant when the lubrication pressure becomes comparable to the Laplace pressure.
Droplet deformation becomes important when 3μf Vrela∗/2h∗2 ∼ 2σ/a∗, where Vrel =
2(ρp − ρf )(a2

1 − a2
2)g/(9μf ) is the relative velocity of two unequal-sized non-interacting

droplets settling under gravity, h∗ is the gap thickness (in μm) between the surfaces and
σ is the surface tension at the air–water interface. Gopinath & Koch (2002) showed that
deformation becomes important when h∗ is approximately equal to 6.74 × 10−5a∗2, where
the average droplet radius is in μm. However, we ignore the surface deformations of small
water droplets moving in air. This is a reasonable assumption because van der Waals
attraction and non-continuum effects will occur before deformation (see Dhanasekaran
et al. 2021a). However, it is true that drops ultimately must deform to coalesce. Therefore,
drops interacting through non-continuum hydrodynamics must begin to deform at small
separations where the attraction force due to van der Waals or electrostatic interactions
is large and drops have reached the point of no return for coalescence. For collision rate
calculations, we are concerned about whether drops will come up to the separation, after
which they must coalesce. So, we do not need to resolve the drop deformation to calculate
the collision rate. In the present work, we will analyse the collision rate of non-deformable
charged droplets sedimenting through a quiescent atmosphere while interacting through
non-continuum hydrodynamics and electrostatic forces.

Cloud droplets can acquire electric charge through different mechanisms, such as
diffusion of ions, convection charging, inductive charging, thermoelectric effects and
contact potential effects (see Pruppacher & Klett 1997). Tinsley et al. (2000) studied the
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effect of image charge forces on the collision between a charged aerosol particle (a point
charge) and a charged conducting droplet and concluded that electrostatic forces result in a
significant increase in collision efficiency as compared with that for an uncharged aerosol
and droplet. They also reported that electrical effects accelerate the scavenging rate of
charged aerosol particles even in non-thunderstorm clouds. Khain et al. (2004) obtained
an approximate expression for the electrostatic force between two charged conducting
spheres using the method of electrical images and showed that the electrostatic force
between the charged droplets makes the collision process much more efficient. They
suggested that droplet seeding in clouds can be an efficient tool for rain enhancement and
fog elimination. However, none of these studies have considered appropriate electrostatic
and hydrodynamic interactions between the droplets. Also, all studies have assumed the
charged water droplets as conductors, which is not entirely correct because the dielectric
constant of water is not infinite. In the present study, we will explore the role of finite
dielectric constant on the collision dynamics of inertialess charged droplets sedimenting
in still air.

Collision rate calculations of charged drops require information on the sizes and
electrical charges of the interacting drop pairs. However, the size of a drop and the
amount of charge it carries are not independent parameters. There are several field
measurements on droplet sizes and charges in a weakly electrified cloud (see Twomey
1956; Krasnogorskaya 1969; Colgate & Romero 1970). Almost all field observations
reported a quadratic relationship between the droplet charge q1 and droplet radius a1
(i.e. q1 ∝ a2

1). Various empirical fits of the measured droplet sizes and charges are
available in the literature (see Pruppacher & Klett 1997). Rayleigh (1882) derived the
maximum charge carrying capacity of a drop by equating the repulsive electrostatic stress
and the stabilizing surface tension stress and found qmax to be 8π(ε0σ0a3

1)
1/2, where

ε0 ≈ 8.85 × 10−12 C2 N−1 m−2 is the permittivity of free space or air, σ0 = 0.073 N m−1

is the surface tension of water. If the amount of charge exceeds the Rayleigh limit charge,
the drop will experience electromechanical instability and disintegrate into several smaller
drops. Corona discharge occurs when the drop surface potential exceeds a breakdown value
Vb. For drops with a1 < 100 μm, Vb ≈ 0.327 kV. Based on this condition, the maximum
charge qmax is determined to be 4πε0a1Vb, referred to as the Paschen limit. Figure 1(a)
shows the variation of droplet charge with droplet radius for four different formulas, and
it is evident from the figure that the charge of a cloud drop is much less than the Rayleigh
or Paschen limits. In § 2, we will define a non-dimensional parameter Ne measuring the
relative strength of the electrostatic and gravitational forces. In figure 1(b), we show how
Ne varies with the droplet radius while charges on droplets vary according to the relations
given in figure 1(a).

The calculation of electrostatic interactions between two charged spheres has a long
history. Maxwell (1873) calculated the electrostatic energy of two spheres of different
sizes and charges, obtaining the expression for the interaction energy as an expansion
in inverse powers of r (centre-to-centre distance) until O(r−22). Maxwell’s calculation
obtains the self-energy and Coulomb energy at leading order. At the next order, the
mutual polarization term appears, and it is always negative irrespective of the sign of
the charges. Russell (1909) derived the expressions for capacitance coefficients of two
equal-sized charged conducting spheres at small separations. Davis (1964) calculated
the electrostatic forces between two charged conductors in an imposed electric field by
solving the potential field in a bispherical coordinate system. Following the work of
Russell (1909), Lekner (2012, 2016) provided an analytical expression for the electrostatic
force near contact for arbitrary values of size ratio and charge ratio. He found that two
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Figure 1. (a) The droplet charge as a function of radius from four different formulas. The top two lines show
the maximum droplet charge based on the Rayleigh and Paschen limit. The blue line indicates the charge
measured by Twomey (1956), and the black line is an empirical fit given in Pruppacher & Klett (1997). (b) The
quantity Ne as a function of droplet radius for charge values given in panel (a) when the size ratio is 0.5.

like-charged conducting spheres always attract each other at short distances, except for
those charge ratio values that the spheres would attain when they are brought into contact.
The surface potentials of the spheres are equal in this exceptional case. Thus we would
almost always encounter attractive near-field interactions when studying particle collisions
in a polydisperse suspension of conducting spheres. Calculating the interaction force
between charged dielectric spheres is more challenging than their perfectly conducting
counterparts since it requires the additional calculation of the non-uniform electric
potential inside the spheres. Feng (2000) used the Galerkin finite difference method
to estimate the electrostatic interaction force between two charged dielectric spheres in
contact. The theoretical calculation of the interaction forces between two charged dielectric
spheres has received considerable attention recently (see Bichoutskaia et al. 2010; Munirov
& Filippov 2013; Khachatourian et al. 2014). Two like-charged dielectric spheres, like
conducting spheres, almost always attract each other at close separations. However, the
charge ratio–size ratio parameter space in which they repel each other forms a band
region (in the case of conducting spheres, this repulsive region becomes a curve; see
figure 4). The attraction between like-charged spheres occurs because of surface charge
redistribution due to mutual polarization. In the current analysis, we utilize the work of
Khachatourian et al. (2014), who calculated the electrostatic interaction force between
two charged spheres of dielectric materials by using the general solution of the Laplace
equation in bispherical coordinates.

We will study the collision efficiency of charged spheres of dielectric material settling
in still air. In § 2, we will formulate the problem and outline the procedure for calculating
the collision efficiency. Then, in § 3, we will calculate the collision efficiency of a pair of
hydrodynamically interacting spheres due to the combined effect of gravity, electrostatic
and van der Waals forces. Finally, in § 4, we will summarize our results and discuss their
implications.

2. Problem formulation

2.1. Expression for the relative velocity of two particles
We consider a dilute polydisperse suspension of charged spherical particles settling under
gravity in still air and interacting with each other through non-continuum hydrodynamics.
In dilute systems, the probability of a third particle affecting the relative motion of two
interacting particles is negligible. Thus we can restrict our analysis to binary interactions
of particles with radii a1 and a2 as shown in figure 2(a). Particles are assumed inertialess
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due to their small sizes, and fluid motion is assumed to be sufficiently slow, satisfying the
Stokes equations for creeping flow. Since the equations governing the flow field are linear,
we can write the resultant relative velocity between a pair of spheres as a vector sum of the
relative velocities caused by gravity, van der Waals and electrostatic forces (see Batchelor
1982; Davis 1984)

v̂12(r̂) = v̂
(0)
12 ·

[
L

r̂r̂
r̂2 + M

(
I − r̂r̂

r̂2

)]

+ 1
6πμf

(
1
a1

+ 1
a2

)[
G

r̂r̂
r̂2 + H

(
I − r̂r̂

r̂2

)]
· (F vdW + F e) , (2.1)

where r̂ is the vector from the centre of particle 2 to the centre of particle 1, r̂ = |r̂|,
I is the unit second-order tensor, v̂

(0)
12 = 2(ρp1 − ρf )(a2

1 − γ a2
2)g/(9μf ) is the relative

velocity between the particle pairs in the absence of interaction and F vdW and F e are,
respectively, the van der Waals and electrostatic forces acting on the particles. Moreover,
ρpj is the density of the jth particle and γ = (ρp2 − ρf )/(ρp1 − ρf ) captures scenarios
when the particles have different densities. The viscous drag on the two particles having
a finite size difference can be different even if their masses are the same. Therefore, a
pair of sedimenting spheres would have non-zero relative velocity if they were of unequal
sizes, densities or both. The motivation for the current study is to analyse the settling
dynamics of charged water droplets in air; thus, we assume ρp1 = ρp2 = ρp → γ = 1.
Here, L,M are axisymmetric mobility (representing the relative motion along the line
of centres) functions for two unequal-sized spherical particles settling under gravity
through a quiescent fluid, and G,H are asymmetric mobility (representing the relative
motion normal to the line of centres) functions for two spherical particles interacting
hydrodynamically and moving because of central potentials. These mobility functions
depend on the size ratio, κ = a2/a1, and non-dimensional centre-to-centre distance, r =
2r̂/(a1 + a2). For calculating continuum axisymmetric mobilities, we utilize the solution
of the Stokes equations in a bispherical coordinate system (see Lin, Lee & Sather 1970;
Wang, Zinchenko & Davis 1994; Zinchenko & Davis 1994). We calculate continuum
asymmetric mobilities using the twin multipole expansion technique developed by Jeffrey
& Onishi (1984). Recently, Dhanasekaran et al. (2021a) calculated the modifications of
the axisymmetric mobilities due to non-continuum lubrication interactions, where they
considered continuum lubrication interactions when the separation ξ = r − 2 > O(Kn)
and non-continuum lubrication interactions when the ξ ≤ O(Kn). They utilized the work
of Sundararajakumar & Koch (1996) that provided the non-continuum lubrication force
between particles colliding in a gaseous medium. In the present analysis, we use the
uniformly valid solution of axisymmetric mobilities developed by Dhanasekaran et al.
(2021a). We expect that continuum breakdown will not strongly influence asymmetric
mobilities because these mobilities remain finite at contact. Thus we consider continuum
hydrodynamics for asymmetric motion at all separations. We also expect that the
non-continuum interactions for the tangential motions will not significantly alter our
collision rate calculations because axisymmetric and asymmetric relative motions of an
inertialess particle pair are independent. However, one must consider non-continuum
lubrication forces for asymmetric motions for calculating the collision rate of inertial
particles in a gas (see Li Sing How, Koch & Collins 2021).

The van der Waals force FvdW = −dΦvdW/dr, where ΦvdW is the van der Waals
potential, always acts along the line of centres of the two spheres. Using a
pairwise additivity theory, Hamaker (1937) derived an analytical expression for ΦvdW .
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x2c
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Figure 2. (a) Schematic of the coordinate system used in the analysis. Here, ‘1’ indicates the sphere with
radius a1 and charge q1; ‘2’ indicates the sphere with radius a2 and charge q2. The sphere marked ‘3’ is the
collision sphere of radius a1 + a2. The electrostatic force F e acts along the line joining the centres of the two
spheres, and gravity acts along the negative x3 direction. We use êr and êθ as the unit vectors in the r and θ
directions, respectively. (b) Schematic of three trajectories: the red line is a collision trajectory, the golden line
is the limiting trajectory, and the blue line is an open trajectory.

However, Hamaker’s calculation ignored the electromagnetic retardation. One must
consider the effects of retardation when the separation is comparable to or more than the
London wavelength λL(≈ 0.1 μm). In the present analysis, we use the work of Zinchenko
& Davis (1994), who derived the expression for the retarded van der Waals potential
between two particles. The retarded ΦvdW is a function of r, κ , AH and Nl. Here, AH is the
Hamaker constant and the non-dimensional quantity Nl is the radius of the spheres scaled
with λL (i.e. Nl = 2π(a1 + a2)/λL = 2πa1(1 + κ)/λL). The values of AH for several
common materials are available in the literature (see Friedlander 2000).

The electrostatic interaction force between two charged conducting spheres has been
studied extensively. Most importantly, the analytical expressions of the force for far and
close interparticle separations are now well established (see Lekner 2012). Lekner (2012)
derived the near-field asymptotic expression for the force by approximating the capacitance
coefficients for small separations. The study found that a pair of like-charged conducting
spheres always attract each other at close separations except when the charge ratio β =
q2/q1 obeys the following relation (shown as the yellow line in figure 4):

β =
γ + ψ

(
a1

a1 + a2

)

γ + ψ

(
a2

a1 + a2

) =
γ + ψ

(
1

1 + κ

)

γ + ψ

(
κ

1 + κ

) , (2.2)

where γ = 0.5772156649 · · · is the Euler constant,ψ is the digamma function (i.e.ψ(z) =
d lnΓ (z)/dz is the logarithmic derivative of the gamma function Γ (z)) and q1 and q2 are
the charges of the spheres with radii a1 and a2 respectively. We assume that the charges
reside entirely on the surface of the particles; there are no volumetric charges.

The near-field results mentioned above rely on the asymptotic expansions for the
capacitance coefficients to find the electrostatic energy for small separations and thus the
force (Banerjee et al. 2021; Lekner 2021). The capacitance method will work only for the
case of perfect conductors. To find the electrostatic force for small gaps for large but finite
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dielectric constant, one can adopt the lubrication analysis of Batchelor & O’Brien (1977)
who calculated the effective thermal/electric conductivity of a suspension of densely
packed highly conducting spheres. Khair (2013) did a similar lubrication analysis for
perfect conductors, confirming the leading-order asymptotic expression of Lekner (2012).
For completeness, we formulate the lubrication analysis to derive the expression for
the electrostatic force between two charged spheres separated by a small distance. We
choose a cylindrical coordinate system (ρ, ϕ, z) with the origin at the midpoint of the two
interacting spheres, as shown in figure 3. The potential φ is invariant to rotation around
the z-axis, and thus, Laplace’s equation for φ reduces to

∂2φ

∂z2 + 1
ρ

∂

∂ρ

(
ρ
∂φ

∂ρ

)
= 0. (2.3)

The boundary conditions for (2.3) are: φ = φ1 at the surface S1, φ = φ2 at the surface
S2 and φ → 0 as the surface-to-surface distance approaches infinity. For small ρ, we
approximate the spherical surfaces as paraboloids. Thus, the surface to surface distance
between the spheres is given by

h(ρ) = h0 + ρ2

2a
, (2.4)

where h0 is half of the minimum gap thickness and a = 2a1a2/(a1 + a2) is the reduced
radius. The length scale across the gap (i.e. in the z direction) over which φ varies is h0,
whereas the length scale along the gap for variations in φ is Lρ = O(

√
ah0) (see Khair

2013). So, the latter is O(
√

h0/a)(� 1) smaller than the former, and hence at the leading
order, (2.3) becomes ∂2φ/∂z2 = 0. Hence, the variation of potential within the gap is given
by

φ = φ1 + φ2

2
+ φ1 − φ2

2
z

h(ρ)
. (2.5)

We consider that the particles carry unequal but fixed charges. The amount of charge
carried by the particle 1 can be expressed as

q1 = −ε
∮
∂φ

∂n
dS1, (2.6)

with dS1 = ρ dϕ dρ with ϕ being the azimuthal coordinate. For sphere 1, ∂φ/∂n =
−∂φ/∂z = −(φ1 − φ2)/2h(ρ). Thus (2.6) becomes

q1 ∼ επ

∫ R

0

(φ1 − φ2)ρ

h0 + (ρ2/2a)
dρ. (2.7)

The upper limit R(� Lρ) of the above integration corresponds to the outer boundary of the
lubrication region. Here, q2 = −q1 to the leading order because ∂φ/∂z is constant across
the gap. This simply says that two almost touching particles subject to a fixed potential
difference acquire charges of opposite signs but equal magnitudes at the leading order.
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S2

φ = φ1

φ = φ2

S1

a1, q1

h0

h(ρ) = h0 + ρ2/2a

z

a2, q2

αk

ρ

αk

k

Figure 3. Schematic of two-sphere geometry at close separation. Here, k and αk are the relative permittivities
of the fluid medium and sphere materials.

Thus we can write

q1 − q2 ∼ 2επ
∫ R

0

(φ1 − φ2)ρ

h0 + (ρ2/2a)
dρ. (2.8)

For small gap thickness, the force on each particle acts along the z direction. Let us say
that the force on particle 1 is F 1 = Fêz, where êz is the unit vector in the z direction and

F = 1
2
ε

∮ (
∂φ

∂n

)2

n̂1 · êz dS1. (2.9)

Here, n̂1 is the outward unit normal to S1 and at leading order n̂1 · êz = −1. So, (2.9)
becomes

F ∼ −επ
4

∫ R

0

(φ1 − φ2)
2ρ(

h0 + (ρ2/2a)
)2 dρ. (2.10)

By symmetry, the force on particle 2 equals −F 1. For perfect conductors, the dielectric
constant is infinite, and φ1 and φ2 are constants. The leading-order contribution to the
force can be found by taking R → ∞. Thus, the expression for F reduces to

F ∼ −επ
4
(φ1 − φ2)

2 a
h0
. (2.11)

Similarly, we can simplify the expression for the charge difference between particles 1 and
2 as follows:

q1 − q2 ∼ 2επ(φ1 − φ2)

∫ R

0

ρ

h0 + (ρ2/2a)
dρ

= 2επ(φ1 − φ2)

∫ a

0

ρ dρ
h0 + (ρ2/2a)

+ · · ·

∼ 2επa(φ1 − φ2) ln[a/h0]. (2.12)

Thus, the potential difference between the spheres for the small gap thickness can be
expressed in terms of the charge difference as

φ1 − φ2 ∼ q1 − q2

2επa ln(a/h0)
. (2.13)
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Putting φ1 − φ2 from (2.13) into (2.11), we have

F ∼ − 1
16επa2

(
a
h0

)
(q1 − q2)

2

[ln(a/h0)]2 . (2.14)

Equation (2.14) implies that the attraction force has an O(ξ−1[ln ξ ]−2) singularity, which
approaches −∞ as ξ → 0. From this, we can conclude that two like-charged spherical
conductors interacting through continuum hydrodynamics can come into contact in finite
time. In practice, the perfect conductor approximation is sufficiently accurate for particles
with very high dielectric constants, such as metal particles. However, this assumption
would not be valid for cloud drops since the dielectric constant for water is finite (k ≈ 80).

In the present work, we consider the effects of finite dielectric constant on the collision
rate. Depending on the size ratio and charge ratio values, a pair of like-charged spheres
of dielectric materials attract one another at small surface-to-surface distances (see
Bichoutskaia et al. 2010; Munirov & Filippov 2013; Khachatourian et al. 2014). Here,
we will utilize the work of Khachatourian et al. (2014), who calculated the electrostatic
interaction force between two charged spheres of dielectric materials using bispherical
coordinates. In Appendix A, we outline the procedure for computing the non-dimensional
electrostatic force fe = |F e|/(q2

1/4πε0a2
1) for given values of r, κ , β, k1 (dielectric constant

of sphere 1), k2 (dielectric constant of sphere 2) and km (relative permittivity of the fluid
medium). Figure 4(a) shows the contour plot of ln |fe| in the β − κ parameter space for
two like-charged water drops in air when they almost touch each other. To illustrate the
distinct feature in the case of dielectric, in figure 4(b), we further show the contour plot
of fe for the same values of k, β, k1, k2 when 0 ≤ β ≤ 1 and 0 ≤ κ ≤ 1. The dark red
region in figure 4(b) indicates the positive values of fe (i.e. repulsion). This band-like
region becomes a curve given by (2.2) (the yellow line in figure 4b) in the case of perfectly
conducting spheres (i.e. k1 = k2 = ∞). For a given size ratio, the attractive electrostatic
force in near-field decreases with increasing the charge ratio, and it turns into a repulsive
force for a certain range of β values. With a further increase in β, the force again becomes
attractive and increases monotonically with β. The inset in figure 4(b) shows this behaviour
for κ = 0.5. The electrostatic force between two like-charged dielectric spheres deviates
significantly from that of a perfect conductor case when the dielectric constant is higher
than that of water (see figure 5). Therefore, in the lubrication regime, collision dynamics of
dielectric spherical pairs is expected to be altered from that of a pair of perfect conductors.
The inset in figure 5 shows that the magnitude of the attraction force at close separation
increases with increasing dielectric constant.

We choose a spherical coordinate system (r, θ, ϕ) with the origin at the centre of sphere
2 with θ = 0 (i.e. x3-axis) being the gravity axis. To non-dimensionalize the system,
we consider a∗, v̂(0)12 = |v̂(0)12 | and a∗/v̂(0)12 as the characteristic length, velocity and time
scale of the problem. Thus the non-dimensional radial separation between the centres of
the two spheres lies in the range r = 2 (referred to as the collision sphere, indicated as
sphere 3 in figure 2) to ∞ (where one sphere does not influence the other). We denote the
dimensionless coordinates with an overbar, i.e. x̄i = 2xi/(a1 + a2) (i = 1, 2, 3). The size
ratio κ , which can vary in the range (0, 1], captures the geometry of the two-sphere system.
The dimensionless relative velocity v = v̂12/v̂

(0)
12 can be written as v = vrêr + vθ êθ , where

vr = dr
dt

= −L cos θ − NvG
dΦvdW

dr
+ NeGfe, (2.15)
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Figure 4. Variation of electrostatic force with size and charge ratio when the separation ξ = 10−6. Panel
(a) shows the contour plot of the logarithm of the normalized electrostatic force (normalized by q2

1/4πε0a2
1) at

contact in the charge ratio–size ratio parameter space when k1 = k2 = 80. In (b), the dark red region indicates
the repulsive forces (i.e. the force values are positive in this region). Everywhere else, the forces are attractive
(i.e. negative). The yellow line is for a conducting spherical pair along which the forces are repulsive. The inset
in (b) indicates the non-monotonic variation of the near-field electrostatic force with the charge ratio when the
size ratio is 0.5.

vθ = r
dθ
dt

= M sin θ, (2.16)

and Nv and Ne are dimensionless quantities that capture relative strengths of van der Waals
and electrostatic forces to gravity

Nv = 3AH

2πκ
(
1 − κ2

)
(ρp − ρf )ga4

1
, (2.17)

Ne = 3q2
1

16π2ε0(ρp − ρf )gκ(1 − κ)a5
1
. (2.18)

In the definition of the non-dimensional parameter Ne above, when we refer to gravity force
in the ratio of electrostatic to gravity, we consider the force due to the sum of gravity and
viscous forces that drives the relative motion of the two drops. The particles are inertialess
(St = 0); thus, there is an instantaneous balance between viscous drag and external forces.
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Figure 5. The non-dimensional electrostatic forces as a function of separation for different dielectric constant
when κ = 0.5, β = 1.0. This plot shows that the interaction forces between two dielectric spheres deviate more
from the perfect conductor case when they come close to each other. The inset shows how the forces at contact
vary with the dielectric constants.

2.2. Expressions for the particle collision efficiency
We consider a dilute dispersion with different drop sizes and aim to determine the rate at
which drops of radii a1 and a2 with number densities n1 and n2 collide with each other
per unit volume. Mathematically, the collision rate K12 is equal to the flux of pairs into the
collision sphere of radius r̂ = a1 + a2 and can be expressed in terms of the pair distribution
function P(r̂) and the relative velocity v̂12 by

K12 = −n1n2

∫
(r̂=a1+a2) and (v̂12·n<0)

(
v̂12 · n

)
P dA, (2.19)

where n is the outward unit normal at the collisional surface. For a dilute dispersion,
the pair distribution function is governed by the quasi-steady Fokker–Planck equation for
regions of space outside the contact surface

∇ · (
P v̂12

) = 0. (2.20)

The absence of far-field correlations defines the upstream boundary condition: P → 1 as
r̂ → ∞. For the calculation purpose, we take r̂ = r̂∞, which is large but finite.

The relative motion of a pair of non-Brownian drops settling under gravity in a quiescent
fluid is deterministic, and thus we can use a trajectory analysis to find the collision rate.
Using (2.20) and the divergence theorem, the integral in (2.19) can be taken over the
surface that encloses the volume occupied by all trajectories that originate at r̂ = r̂∞ and
terminate at r̂ = a1 + a2. The flux through the cross-sectional area Ac of this volume at
r̂ = r̂∞ determines the collision rate. As the motion due to gravity is symmetric about the
gravity axis, the area Ac is a circle. We label Ac as the upstream interception area. Since
P = 1 and v̂12 = v̂

(0)
12 at r̂ = r̂∞, the collision rate is

K12 = −n1n2

∫
Ac

(
v̂12 · n′) |r̂∞P dA = n1n2v̂

(0)
12 πx2

2c, (2.21)

where n′ is the unit outward normal vector at the area element of Ac and x2c is the critical
impact parameter (i.e. the radius of the circle at r̂ = r̂∞). In other words, this critical
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impact parameter is the horizontal distance from the gravity axis for two widely separated
drops that will graze each other. The pair trajectory of two grazing drops is called the
limiting trajectory that separates the open and close trajectories (see figure 2b). Equation
(2.21) bypasses the evaluation of the pair probability P. The collision rate K0

12 without
interparticle interactions and Brownian diffusion is given by the classical Smoluchowski
model, where x2c = a1 + a2. Thus the ideal collision rate becomes

K0
12 = n1n2v̂

(0)
12 π (a1 + a2)

2 . (2.22)

The collision efficiency E12 is defined as the ratio of K12 to K0
12

E12 = K12

K0
12

= x2
2c

(a1 + a2)
2 = 1

4
x̄2

2c, (2.23)

where x̄2c = 2x2c/(a1 + a2) is the dimensionless critical impact parameter. For x̄2 < x̄2c,
the drops collide; for x̄2 > x̄2c, the drops move past one another without colliding. The
problem becomes reduced to determining x̄2c. We find the limiting trajectory by integrating
the following dimensionless trajectory equation:

dθ
dr

= vθ

rvr
= M sin θ

r
(

−L cos θ − NvG
dΦvdW

dr
+ NeGfe

) . (2.24)

The closed-form analytical solution for the collision efficiency exists for Nv = Ne = 0 in
(2.24). The expression of E12 for Nv = Ne = 0 is given by (see Davis 1984)

E12 = exp
(

−2
∫ ∞

2

M − L
rL

dr
)
. (2.25)

3. Results and discussion

We have discussed in § 1 that the interaction force between two like-charged spheres can
be attractive at close separations depending on the size and charge ratio values. However,
like-charged particles always repel each other for moderate to large separations. Here, we
aim to quantify how electrostatic interactions affect the collision dynamics. Therefore,
we initially consider a situation where two like-charged spheres settle under gravity and
interact via non-continuum hydrodynamics and electrostatic forces but do not experience
van der Waals forces. Later, we will expand the analysis and determine the collision rate
for cases where non-continuum hydrodynamics, van der Waals and electrostatic forces act
together. We will present all the results for droplets with k1 = k2 = 80.

A collision trajectory is a path traced by an evolving satellite sphere (sphere 1) that starts
far upstream and eventually collides with the test sphere (sphere 2) located at the origin.
The relative radial velocity must be inward at all separations for a colliding trajectory
(see the condition vr < 0 in (2.19)). Thus, from (2.15), we have Ne < (L cos θ)/(Gfe) for
r ∈ [2,∞). The radial relative velocity due to gravity (the first term on the right-hand side
in (2.15)) is inward for 0 ≤ θ < π/2, and it is maximum at θ = 0. Therefore, the condition
of getting at least one collision trajectory becomes Ne < (L/G)/fe for r ∈ [2,∞). For a
given κ and β, we found a critical Ne value above which no collision trajectory exists.
We denote this critical Ne as (Ne)c. To obtain (Ne)c, we compute the quantity (L/G)/fe
as a function of separation and (Ne)c equal to the lowest positive value of (L/G)/fe. For
a given κ and Kn, (Ne)c decreases monotonically as the charge ratio β increases (see
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Figure 6. (a) The computed values of the critical Ne as a function of charge ratio β for different κ when
Kn = 10−2 and Nv = 0. (b) The radial component of the relative velocity vr as a function of separation for Ne
less than, equal to and greater than (Ne)c when Kn = 10−2, κ = 0.5, β = 10 and Nv = 0.

figure 6a). In figure 6(b), we demonstrate the importance of (Ne)c by plotting vr with ξ
when θ = 0. As expected, vr is negative for all ξ when Ne < (Ne)c, and thus a pair of
drops starting far apart will eventually collide in this condition. For Ne = (Ne)c, vr is zero
at one particular ξ and negative for all other values of ξ . Beyond the critical Ne, there are
some separation distances where the magnitude of the inward radial velocity due to gravity
is less than the radial velocity due to electrostatic repulsion; hence, no collision will occur.
Primarily gravity governs the relative motion at large separations since the electrostatic
force decreases rapidly with increasing r.

Electrostatic interaction forces will modify the relative trajectories of the pure
differential sedimentation problem. To obtain relative drop trajectories, we set initial
conditions on the collision sphere and perform backward integrations of (2.24) using
a fourth-order Runge–Kutta method (the ‘ode45’ subroutine in MATLAB). Exactly at
r = 2, vr = 0 since the hydrodynamic mobilities L and G are zero at r = 2. However,
in the case of non-continuum lubrication interactions, vr approaches zero slowly enough
with decreasing ξ that the pair would come into contact in finite time. To avoid the
locations of zero relative radial velocity, we start the integrations with initial conditions on
a sphere of radius 2 + ζ , where ζ is a small separation from the contact surface. We will
show converged results without too much computational load when ζ = 10−6. Because of
symmetry about the gravity axis, it is sufficient to analyse the problem in θ ∈ [0,π].

As mentioned earlier, the non-continuum lubrication force allows collision to occur
in finite time. For Ne = 0, we found that two types of pair trajectories (open and
colliding) exist (see figure 7a) and the separatrix (the limiting colliding trajectory)
that separates these two types of trajectories touches the contact surface at θ = π/2.
Therefore, the trajectories that depart from the contact surface with an initial θ in the
range [0,π/2] and go to infinity are collision trajectories. It is noticeable from figure 7(a)
that open trajectories are top–bottom symmetric for Ne = 0. With increasing Kn, the
non-dimensional critical impact parameter and hence the collision efficiency will increase.
For 0 < Ne < (Ne)c, the types of trajectories remain the same (i.e. open and colliding).
However, unlike the Ne = 0 case, the satellite sphere can collide on the rear side of the
test sphere. Depending on the value of Ne, the θ location of the limiting trajectory on
the contact surface varies between π/2 and π. We take a sufficiently large number of
initial points on the collision sphere with θ in the range [π/2,π] and then determine the
relative trajectories for all initial conditions by backward integrating (2.24). Out of these
trajectories, the limiting colliding trajectory is the one whose distance from the axis of
symmetry is maximum in the far field. We find that, as Ne increases from 0 to (Ne)c, the
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Figure 7. Relative trajectories of two like-charged sedimenting spheres (gravity acts vertically downwards,
i.e. along negative x3-axis) for Kn = 10−2, κ = 0.5, β = 10 and Nv = 0 when (a) Ne = 0, (b) Ne = 0.1 and
(c) Ne = 1.8. The value of (Ne)c for the above specified values of Kn, κ and β is approximately 1.77. Collision
trajectories exist for the first two cases. For Ne > (Ne)c, collision is not possible.

initial θ locations of the limiting trajectories on the collision sphere gradually shift from
π/2 to π. Figure 7(b) shows typical pair trajectories when κ = 0.5, β = 10, Kn = 10−2

and Ne = 10−1. For these parameter values, (Ne)c is approximately 1.77. It is evident
from figure 7(b) that the electrostatic interaction breaks the top–bottom symmetry of open
trajectories. For Ne > (Ne)c, gravity fails to overcome the electrostatic repulsion force for
some relative separations, and thus no collision trajectory exists in this case. Figure 7(c)
shows the pair trajectories for the same values of κ , β and Kn when Ne = 1.8(> (Ne)c).
As expected, in this case, a thin layer appears at some distance from the collision sphere
where vr is positive. The green line in figure 7(c) indicates this layer. A trajectory starting
from far upstream will never be able to cross this layer, and therefore, two surfaces will not
come into contact. An external non-hydrodynamic attractive force or particle inertia can
overcome this repulsive region and bring particles up to a separation where electrostatic
forces are attractive. Therefore, colliding trajectories can exist in those cases. We do not
consider those scenarios in the present study. However, to prove our argument, we consider
a hypothetical situation where trajectories starting with an initial r less than the radial
coordinate of this layer can eventually hit the contact sphere (see pink lines in figure 7c).
As per the definition in (2.19), these trajectories do not contribute to the collision rate of
settling drops with initially large separations.

Hydrodynamic interactions retard the relative velocity at small separations, thus making
the collision process less efficient. The collision efficiency, defined as the ratio of the
collision rate with interparticle interactions to the ideal collision rate, quantifies the effect
of interactions. In this case, the collision efficiency depends on Kn (measures the strength
of non-continuum hydrodynamic interactions), κ (describes the relative geometry of
interacting spheres), β (represents the relative electrostatic strength of the spheres) and Ne
(captures the electrostatic interactions). We span these parameters to obtain the important
features of the collision dynamics. We present most of our results for the Knudsen number
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Figure 8. Collision efficiencies as a function of Ne when Kn = 10−2, κ = 0.3, 0.5 and β = κ . The dashed
lines indicate collision efficiencies due to non-continuum lubrication interactions when Nv = 0.

Kn = 10−2, a realistic value for water droplets in warm cumulus clouds. For a given Kn, κ
and β, we vary Ne in the range (0, (Ne)c). Figure 8 shows the variation of the collision
efficiency with Ne for Kn = 10−2 and κ = β = 0.3, 0.5 when Nv = 0. For Ne greater
than or equal to (Ne)c, the collision efficiency E12 becomes zero. As we decrease Ne
from (Ne)c, E12 increases and attains a maximum before it decreases again. With further
decrease of Ne, E12 asymptotes to the value corresponding to the collision efficiency due
to non-continuum lubrication interactions of two unequal-sized uncharged spheres settling
under gravity through a still fluid medium. The variation of E12 with Ne is qualitatively
similar for the two values of κ . The κ = β line lies in the positive band of the force contour
(given in figure 4b) beyond κ = β ≈ 0.8, and thus no collision will occur for κ = β > 0.8.

We find that the electrostatic interactions can either impede or assist the collision
process of a pair of like-charged droplets settling under gravity, and the collision dynamics
strongly depends on the parameters κ , β and Ne. Nonetheless, the collision efficiency
will asymptote to the results corresponding to Ne → 0 (the effects of gravity dominate)
and Ne → ∞ (electrostatic forces dominate) limits. In Ne → 0 limit, E12 will approach
gravitational collision efficiency due to non-continuum hydrodynamics alone when Nv =
0 and non-continuum hydrodynamics plus van der Waals interactions when Nv /= 0. For
Ne → ∞, E12 will approach zero. Figure 9 shows how collision efficiencies vary with Ne
when κ = 0.3, 0.5, 0.7, 0.9, Kn = 10−2, β = 0.1, 1, 10 and Nv = 10−3. The electrostatic
attraction force at small interparticle separations increases with increasing κ when the
charge ratio is small (for example, β = 0.1). With increasing β, this trend reverses
gradually and becomes the opposite when β is high (for example, β = 10). Therefore,
for small values of β, the collision efficiency is higher for higher κ when Ne is large.
When β is high, the variation of the collision efficiency with κ is exactly opposite to that
of the small β cases. On the other hand, when gravity with non-continuum hydrodynamics
plus van der Waals forces drive the dynamics (i.e. Ne → 0 regime), the collision efficiency
always increases with increasing κ . Since for small charge ratio values, the variations of
collision efficiencies with size ratios are similar in the two extreme regimes (i.e. Ne → 0
and Ne → ∞), the curves for different κ in figure 9(a) do not intersect with each other. The
strength of electrostatic attraction forces is weak for small size ratio values (for example,
κ = 0.3, 0.5), and thus the collision efficiencies, in these cases, are always smaller than
the respective Ne → 0 asymptotic values. However, for high size ratio values (for example,
κ = 0.7, 0.9), the electrostatic attraction forces are so strong that the collision efficiencies
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Figure 9. Collision efficiencies as a function of Ne for Kn = 10−2, κ = 0.3, 0.5, 0.7, 0.9, Nv = 10−3 when
(a) β = 0.1, (b) β = 1 and (c) β = 10.

for a range of values of Ne overshoot the results corresponding to Ne = 0. For β = 1.0, the
behaviours of E12 with κ are opposite in the two extreme regimes, and thus the curves
corresponding to various κ values intersect with each other in some intermediate Ne
values (see figure 9b). Also, in this case, collision efficiencies overshoot the Ne = 0 results
for lower κ values because the magnitudes of electrostatic attraction forces are higher
for smaller κ . For β = 10, the electrostatic attraction forces in the lubrication regime
are so strong that the collision efficiencies overshoot the results corresponding to the
non-continuum plus van der Waals case for all κ values (see figure 9c). However, as in the
previous case, different κ curves intersect before approaching the respective asymptotes.
One must note that the non-monotonic behaviour of the collision efficiency for different β
and a fixed κ is consistent with our prior observation of the near-field variation of fe with
β (see the inset of figure 4b).

So far, we have analysed the role of size and charge ratios on the collision rate of
two like-charged spheres settling in a non-continuum gas. Now, we will quantify how
the strength of non-continuum effects and van der Waals attraction force influence the
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Figure 10. Collision efficiencies as a function of Kn for κ = 0.5, Ne = 1.0, Nv = 10−3 when β = 0.1, 1.0, 10.
The black and red lines indicate the collision efficiency for non-continuum (NC) effects alone and
non-continuum plus van der Waals (NC+vdW) interactions, respectively. Blue lines represent the collision
efficiencies for different charge ratios when non-continuum hydrodynamics, van der Waals and electrostatic
forces act together (NC+vdW+EF).

collision rate, and to do so, we will fix κ to 0.5 and Ne to 1.0. Figure 10 shows
the variation of the collision efficiency with Kn when Nv = 10−3 and β = 0.1, 1.0, 10.
Taking the effects of non-continuum lubrication interactions into account, Dhanasekaran
et al. (2021a) calculated the collision efficiency of two uncharged sedimenting drops,
both with and without van der Waals force. The black line in figure 10 obtained using
(2.25) represents the collision efficiency due to non-continuum effects alone. As Kn
decreases, E12 due to non-continuum effects only decreases monotonically and will
approach zero for Kn → 0. The collision rate due to non-continuum hydrodynamics and
van der Waals forces (NC+vdW) decreases with decreasing Kn. Still, it approaches a
non-zero value because van der Waals interactions between the particles drive the entire
collision dynamics when Kn approaches zero (see the red line in figure 10). Collision
dynamics becomes more complicated when non-continuum effects, van der Waals and
electrostatic interactions (NC+vdW+EF) act simultaneously. For small charge ratio
values (for example, β = 0.1, 1.0), collision efficiency slowly decreases with decreasing
Kn, and asymptotes to the collision efficiency value that can be obtained by considering
full continuum hydrodynamic interactions. Collision efficiencies for small β values are
less than that of NC+vdW result. Interestingly, in this case, the collision efficiency is less
than the pure non-continuum result when Kn > 10−2 and β is unity. Electrostatic forces
for large charge ratio values (for example, β = 10) dominate over all other effects, and thus
collision efficiency becomes higher than that of the NC+vdW result. Also, E12 becomes
almost independent of Kn when β is large.

In figure 11, we show the variation of collision efficiencies with Nv for κ = 0.5,
Kn = 10−2, Ne = 1.0 when β = 0.1, 1.0, 10. For β = 0.1, E12 decreases monotonically
as the strength of the van der Waals force decreases. It asymptotes to the value
corresponding to the collision efficiency with non-continuum effects plus electrostatic
interactions (NC+EF). The collision efficiency for higher charge ratio values (β = 1.0, 10)
is independent of the van der Waals force because electrostatic forces dominate the
collision dynamics. As expected, collision efficiency for β = 10 is much higher than that
of β = 0.1 or 10. To show how electrostatic interactions between like-charged droplets
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Figure 11. Collision efficiencies as a function of Nv for κ = 0.5, Kn = 10−2, Ne = 1.0 when β = 0.1, 1.0, 10.
The black and red lines indicate the collision efficiency with full continuum hydrodynamics plus van der Waals
force and NC+vdW, respectively. Blue lines represent the collision efficiencies with NC+vdW+EF for different
charge ratios.

influence the collision dynamics, we compare our findings with the collision efficiency of
a pair of uncharged drops settling under gravity and interacting through the continuum and
non-continuum hydrodynamic interactions and van der Waals forces (see the black and red
lines in figure 11).

Now, let us estimate the collision efficiency of a physical system with a1 = 10 μm
and q1 = 200e (e = 1.602 × 10−19 C is the elementary charge) as a function of κ when
the charge ratio β = 5, 10 (see figure 12). The mean free path of air λ0 increases with
altitude (Wallace & Hobbs 2006) and is approximately 0.1 μm for warm cumulus clouds.
Thus the Knudsen numbers as a function of size ratio are given by Kn = 0.02/(1 + κ).
For water droplets in air, AH ≈ 3.7 × 10−20 J (see Friedlander 2000). So, the Nl and Nv
written in terms of κ are given by Nl = 200π(1 + κ) and Nv = 1.8 × 10−4/κ(1 − κ2).
The dimensionless parameter Ne varies with κ according to the relation Ne = 8.58 ×
10−4/κ(1 − κ). Given the numerical values of κ , we calculate the relevant dimensionless
parameters from the above relations and then calculate the collision efficiencies. Collision
efficiencies initially decrease with increasing κ and then increase when κ becomes close
to unity. For a fixed κ , the collision efficiency is larger for β = 10 than for β = 5.
As discussed in § 1, gravity-induced collisions without electrostatic interactions have
extensive treatment in the literature (see Davis 1984; Zhang & Davis 1991; Dhanasekaran
et al. 2021a). We show these results in figure 12 to demonstrate that electrostatic
interactions can enhance collision efficiency for higher charge ratios.

4. Summary and conclusions

We have quantified the effects of electrostatic interactions on the collision dynamics of
tiny charged particles sedimenting through a quiescent gaseous medium. We restricted
our analysis to dilute dispersions, where pairwise interactions between the particles are
dominant, and we can safely neglect the interactions between three or more particles.
When the surface-to-surface distance between two interacting spheres is less than the
mean free path of the gas, the lubrication interactions become non-continuum, resulting
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Figure 12. Collision efficiencies as a function of κ for a1 = 10 μm, q1 = 200e and β = 5, 10. We considered
the combined effects of non-continuum hydrodynamics (NC), van der Waals interactions (vdW) and
electrostatic forces (EF) in performing these collision calculations. The results from previous studies for
uncharged drops are included for reference.

in a finite collision rate even in the absence of attractive potentials. We utilized the
work of Dhanasekaran et al. (2021a), who calculated the uniformly valid axisymmetric
mobility functions that capture non-continuum lubrication interactions at close separations
and full continuum hydrodynamic interactions at moderate to large separations. The
charged water droplets in atmospheric clouds might not behave like perfect conductors,
mainly when the sphere separation is less than 0.01a1 (see Pruppacher & Klett 1997).
Therefore, to accurately capture the dynamics, we considered the electrostatic force
between two spheres of dielectric materials. We utilized the work of Khachatourian
et al. (2014), who computed the electrostatic interaction force between two like-charged
dielectric spheres. Using trajectory analysis, we calculated the collision efficiencies of two
differentially sedimenting spheres interacting through the continuum and non-continuum
hydrodynamics, van der Waals and electrostatic forces for a wide range of size ratio
and charge ratio values. Finally, we compared our findings with the existing studies on
gravity-induced collisions of uncharged spheres.

In § 2, we formulated the problem for inertialess systems. Relevant mobility functions
that accurately represent the hydrodynamic and interparticle interactions have been used to
express the relative velocity between two inertialess spheres due to the combined effects of
gravity, van der Waals attractions and electrostatic forces. To obtain the non-dimensional
relative velocity equations, we used the mean radius of the two spheres, the relative
velocity without interactions and the mean radius divided by the relative velocity without
interactions as the characteristic length, velocity and time scales. The parameters Nv and
Ne in the non-dimensional pair trajectory equation capture the relative strength of van der
Waals and electrostatic forces to gravity. With the relative velocity and the pair probability
at contact as the integrand, we have expressed the non-dimensional collision rate equation
as a surface integral over the collision sphere. We have determined the collision efficiency
by calculating the critical impact parameter using trajectory analysis.

We found that there exists critical Ne for given values of the Knudsen number,
charge ratio and size ratio. No collision occurs for Ne > (Ne)c. The electrostatic
interaction force alters the pair trajectories and the collision efficiencies due to pure
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differential sedimentation. Figure 7 provides a typical map of pair trajectories in the
absence of van der Waals forces for three different cases: Ne = 0, 0 < Ne ≤ (Ne)c and
Ne > (Ne)c. We have presented the typical variation of the collision efficiency with
non-continuum lubrication interactions as a function of Ne when Nv = 0 (see figure 8).
The interplay between different forces made the dynamics even more complicated
when gravity, non-continuum hydrodynamics, van der Waals and electrostatic forces act
together. We have shown that polydispersity in terms of particle sizes and charges has a
significant influence on the collision dynamics. As Ne increases from zero, we observed
two different types of dynamics depending on the size and charge ratio values. In one case,
the collision efficiency increases to a maximum and then decreases to zero. In the other
case, the collision efficiency decreases monotonically with increasing Ne and asymptotes
to zero as Ne → (Ne)c.

It is evident from this study that collisions of like-charged droplets can be much more
efficient than collisions of uncharged ones. Thus the seeding of charged aerosol particles
(i.e. the cloud seeding technology) that charge the droplets can increase the raindrop
formation rate in clouds by accelerating the collision process. Nowadays, cloud seeding
is an artificial method of rain enhancement in countries suffering from water shortages.
Cloud seeding is also an efficient tool that can improve visibility and ensure safe operations
of roads, airport runways and industrial facilities by clearing fog and low clouds. Better
knowledge of the collision process of charged droplets in natural clouds might improve the
DSD evolution prediction. The current work might also help in designing systems where
differential sedimentation drives collisions between charged particles interacting through
non-continuum hydrodynamics and van der Waals interactions. This work ignores the role
of Brownian diffusion on the collision dynamics. Recently, Patra & Roy (2022) calculated
the Brownian motion-induced (Pe = 0) collision rate with non-continuum hydrodynamics,
van der Waals and electrostatic interactions. In many physical scenarios, both Brownian
diffusion and gravitational settling would act in tandem during collisions of micron-sized
particles. For the coupled problem, one needs to solve the advection–diffusion equation
for the pair probability at arbitrary Pe. Zinchenko & Davis (1994) calculated the collision
efficiency at arbitrary Pe in the continuum limit where van der Waals forces and/or
interfacial mobility induce collisions. Thus, extending the current study to include the
effects of Brownian diffusion would be logical. We plan to communicate this work in the
future.

In the current study, we have assumed that the charges reside entirely on the surface of
the particles; there are no volumetric charges. The particles are assumed to be perfect
dielectrics. However, a cloud droplet is an aqueous solution, and ions would migrate
towards the charged interface. Thus a question arises – would the surface charge change
during the duration of droplet collisions? To answer this question, we will compare the
drop interaction time with the other relevant time scales associated with the evolution of
the surface charge. The time scale of drop encounter due to differential sedimentation
would be tcoll = a∗/Vrel, tcoll ≈ 0.04 s for water droplets in air with a1 = 10 μm and κ =
0.99. In an aqueous solution, there is substantial conductivity in the form of the electrical
migration of ions. The diffusion time scale for the ions would be tdiff = a2

1/D. For a
typical diffusivity of ions D = 10−10 m2 s−1 for a 10 μm drop, tdiff = 1 s. Thus tcoll � tdiff.
Another mechanism for altering the surface charge would be charge relaxation in the
surrounding air medium due to conduction; the mobility of free ions in the suspending
fluid medium can make the medium conductive. Thus, even when there is no corona
discharge, the droplet charge can decrease due to the conductivity of the medium. In this
case, the instantaneous droplet charge would be q0 exp(−t/τ), where q0 is the initial charge
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of the droplet, and τ = ε0/σ is the relaxation time with σ being the conductivity of the
fluid (Pruppacher & Klett 1997). The conductivity of clear air at sea level is approximately
2.3 × 10−14 Sm−1, which gives τ ≈ 6.5 min. However, the conductivity inside warm
clouds is substantially lower than the fair weather sea level conductivity because the
concentration of gas-phase free ions in clouds is significantly lower than in cloud-free
air. The conductivity inside a cloud can range from 1/40 to 1/3 of the fair weather
sea level conductivity, which suggests that τ can vary approximately from 20 min to 2 h
(Pruppacher & Klett 1997; Tinsley et al. 2000). Thus tcoll � τ , implying charge relaxation
to be a much slower process than drop encounter. A possible dominant mechanism for
the rearrangement of surface charge would be due to an electrokinetic flow inside charged
drop 1 under the influence of the electric field from charged drop 2. When the two drops
are sufficiently far apart, this slip velocity would be uslip ∼ (1/μw)β/a3

1q2
1/(16π2ε0).

This slip velocity would rearrange the surface charge on a convective time scale trearr =
2πa1/uslip ≈ 32a4

1π
3ε0μw/q2

1/β. Thus tcoll/trearr ∼ (μa/μw)βNe. Here, μw and μa are
the dynamic viscosities of water and air, respectively. The present study shows that
collisions for sedimenting charged spheres are most efficient when Ne = O(1); thus, a
drop encounter event would happen on a shorter time scale than the rearrangement of
the surface charge – tcoll � trearr. Future work might consider the interaction of falling
charged water droplets, accounting for the interior electrokinetic flow.

Direct numerical simulations of homogeneous isotropic turbulence seeded with
electrically charged, inertial point particles reveal that the electrostatic charge can
significantly modify the particle radial relative velocity, radial distribution function
and hence the collision rate (see Lu et al. 2010; Lu & Shaw 2015). These studies
assumed pairwise interactions, which is justifiable for dilute suspensions. However, one
must account for the influence of all other particles while tracking a single particle
in suspensions with high volume fractions. Yao & Capecelatro (2018) have recently
developed an efficient numerical scheme in an Eulerian–Lagrangian framework for
accurately capturing the effects of Coulomb forces between charged inertial particles in
an isotropic turbulent flow. We want to highlight that any point particle simulation of
charged particles will always lead to repulsive interactions between like-charged particles.
Our present analysis borrows from classical and more recent electrostatic studies to show
that like-charged particles can attract each other near contact, thus fundamentally altering
inferences regarding collision and evolution of particle size distributions. Collision rate
calculations of like-charged, finite-size particles in a turbulent flow with the appropriate
near-field form of the electrostatic forces would be an important subject for future studies.
A theoretical study of Zhang, Basaran & Wham (1995) showed that an external electric
field could significantly enhance the coalescence rate of uncharged droplets settling under
gravity. Experiments in a cloud chamber by Wang et al. (2020) demonstrated that a strong
electric field can dominate the collision process. Recently, Thiruvenkadam et al. (2023)
theoretically analysed the effects of an external electric on relative trajectories of a pair
of uncharged conducting spheres, and they showed that electric-field-induced forces allow
surface-to-surface contact in a finite time by overcoming continuum lubrication resistance.
We plan to study the combined effects of gravity, non-continuum interactions, van der
Waals forces and electric-field-induced forces on the collision dynamics of uncharged
micron-sized droplets.
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Appendix A. Computation of the electrostatic force

The expression for the electrostatic force is given by

F e = −êr
1
K

∞∑
n=0

fn

[
n
2
Φ1,n−1 eη1 −

(
n + 1

2

)
Φ1,n +

(
n + 1

2

)
Φ1,n+1 e−η1

]
Φ2,n,

(A1)
where K = 1/(4πε0) ≈ 9 × 109 VmC−1 and Φ1,n and Φ2,n are the coefficients of the
electrostatic potential generated by the charges residing on spheres 1 and 2, respectively.
These coefficients are calculated from two recursive relations. One of them is given by[(

n + 1
2

)
Φ1,n cosh η1 − n

2
Φ1,n−1 − n + 1

2
Φ1,n+1

]
(km + k1)+ sinh η1

2
(km − k1)Φ1,n

−
[(

n + 1
2

)
Φ2,nfn cosh η1 − n

2
Φ2,n−1fn−1 − n + 1

2
Φ2,n+1fn+1

]
(km − k1)

+ fn
sinh η1

2
(km − k1)Φ2,n =

√
2aKq1 exp

(
−

(
n + 1

2

)
η1

)
a2

1
, (A2)

and the other one is obtained by interchanging subscripts 1 and 2 in (A2). The expressions
for η1, η2, a and fn involved in the above two recursive relations are given by

η1 = cosh−1

[
(1 + κ) r

4
+

(
1 − κ2)
(1 + κ) r

]
, (A3)

η2 = cosh−1

[
(1 + κ) r

4κ
+

(
1 − κ2)

κ (1 + κ) r

]
, (A4)

a = a1

√√√√(1 + κ)2 r2

16
+

(
1 − κ2

)2

(1 + κ)2 r2
−

(
1 + κ2

)
2

, (A5)

fn = exp
(

−
(

n + 1
2

)
(η1 + η2)

)
. (A6)

The detailed derivations for the electrostatic force and the recursive relations of potential
coefficients are given in Khachatourian et al. (2014).
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