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Abstract

In this paper we discuss the decay properties of Markov branching processes with
disasters, including the decay parameter, invariant measures, and quasistationary
distributions. After showing that the corresponding q-matrix Q is always regular and,
thus, that the Feller minimal Q-process is honest, we obtain the exact value of the decay
parameter λC . We show that the decay parameter can be easily expressed explicitly. We
further show that the Markov branching process with disaster is always λC -positive. The
invariant vectors, the invariant measures, and the quasidistributions are given explicitly.
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1. Introduction

Markov branching processes (MBPs) with or without disasters occupy a major niche in the
theory and applications of probability theory. Good references for the latter are, among many
others, [2] and [10]. Although the number of references in the literature for MBPs with disasters
is far less than that for MBPs without disasters, the importance, both in theory and application, of
MBPs with disasters is well recognised. This is in particular because the existence of disasters is
well known to significantly change the behavior of the branching process. Also, from the point
of view of applications, the effect of disasters is extremely important. Kaplan et al. [12], for
example, discussed the effect of disasters on the extinction probabilities of branching processes.
A special kind of disaster in which the whole population instantly goes extinct, usually referred to
as killing, has attracted particular attention due to its fatal and catastrophic effect on the whole
population. For example, as early as 1982, Karlin and McGreger [13] thoroughly analyzed
the properties of the birth–death process with killing. In this paper we primarily discuss the
properties of MBPs with killing, but we still use the terminology MBPs with disasters.
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When analyzing absorbing Markov processes, to which the process we discuss in this paper
belongs, it is extremely important to study the delay properties, including the quasistationary
behavior. In particular, studies have focused on existence as well as uniqueness conditions for
quasistationary distributions. For general absorbing continuous-time Markov chains, Ferrari
et al. [8] provided an important sufficient condition, usually referred to as the asymptotic
remoteness condition, for the existence of quasistationary distributions. See also the very
important contribution by Pakes [16], who pointed out that there are many processes that
possess a quasistationary distribution without satisfying the asymptotic remoteness condition.

For birth–death processes with killing, quasistationary distributions and related properties
have been analyzed by Van Doorn and others. Van Doorn and Zeifman studied the extinction
probability and other interesting properties of birth–death processes with killing in [23] and
[24], respectively.

Quasistationary distributions for birth–death processes with killing were studied in [6].
Recently, Van Doorn [21] obtained some further interesting conditions for the existence of
quasistationary distributions for birth–death processes with killing and also provided some
challenging conjectures regarding more general absorbing continuous-time Markov chains with
killing. We note that, for one-dimensional diffusion processes with killing, quasistationary
distributions were recently investigated by Kolb and Steinsaltz [15]. See also the earlier paper
[18]. As early as 1959, Feller [7] showed that a close relationship exists between birth–death
processes and one-dimensional diffusion processes, and, thus, that the two processes with
killing share similar quasistationary behavior.

In spite of the abovementioned progress, the decay properties of MBPs with disasters have not
been fully discussed. To the authors’ knowledge, even the most basic problem of determining
the exact value of the corresponding decay parameter (see [14]) has not been solved. The
main aim of this paper is to fill this gap by considering the decay properties of MBPs with
disasters. More specifically, we define the model by specifying the infinitesimal characteristic,
i.e. the so-called q-matrix, as follows, where Z+ = {0, 1, 2, . . .} denotes the set of nonnegative
integers.

Definition 1.1. A q-matrix Q = (qij ; i, j ∈ Z+) is called a branching q-matrix with disaster
(henceforth referred to as a BWD q-matrix) if

qij =

⎧⎪⎨
⎪⎩

i(bj−i+1 − aδij ) if j ≥ i − 1, i ≥ 1,

ia if j = 0,

0 otherwise,

(1.1)

where a > 0, bj ≥ 0, j �= 1, −b1 = ∑
j �=1 bj , and δij is the Kronecker symbol.

To avoid discussing trivial cases, we assume throughout this paper that

b0 > 0 and
∞∑

j=2

bj > 0. (1.2)

We show later that any BWD q-matrix is regular and, thus, that there exists only one
Q-function, the Feller minimal Q-function which is honest and satisfies both the Kolmogov
backward and forward equations.

Note that, under condition (1.2), the class C = Z+ \ {0} is an irreducible class for the
q-matrix Q as well as for the corresponding Feller minimal Q-process. It then follows from, for
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example, [14] that there exists a nonnegative number, denoted by λC , called the decay parameter
of the corresponding process such that, for all i, j ∈ C, (1/t) log pij (t) → −λC as t → +∞.

As is well known, there exists a close link between the important concepts of the decay
parameter and the invariant measure, invariant vector, and quasistationary distribution.

An elementary but detailed discussion of the theory regarding decay parameters and quasis-
tationary distributions is given in [1]. For more recent developments, we refer the reader to the
good survey paper of Van Doorn and Pollett [22]. For more related works, see [9], [14], [17],
[19], [20], and [25], among others.

The structure of this short paper is as follows. In Section 2 we consider the uniqueness,
construction, and extinction probability of the MBPs with disaster. In Section 3 we concentrate
on studying the decay parameter and the quasistationary distributions. We give the exact value
of the decay parameter in explicit form. After showing that our process is always λC-positive,
we present the corresponding invariant measure and invariant vector. The generating function
form for the quasistationary distribution is also given.

2. Uniqueness, construction, and extinction

Our known data, the sequence {bj ; j ≥ 0} and the constant a > 0, packaged into a
generating function will play an important role in our later analysis. Let B(s) = ∑∞

j=0 bj s
j

and G(s) = B(s) − as. Clearly, these functions have the same convergence radius ρ =
1/ lim supn→∞ n

√
bn. Obviously, ρ ≥ 1. The properties of B(s) are well known and those of

G(s) are very similar. For convenience, in the following lemma we list the useful properties
that we use later. The proof is trivial and thus omitted.

Lemma 2.1. (i) The function G(s) has no zero on the complex unit circle {z; |z| = 1} and has
a unique zero on the complex open disk {z; |z| < 1}. Furthermore, this unique zero, denoted
by q, is a positive real number.

(ii) G(s) is a convex function of s on [0, ρ).

(iii) If
∑∞

j=2(j − 1)bj ≤ a + b0 then G(s) is a strictly decreasing function of s on [0, 1], while
if

∑∞
j=2(j − 1)bj > a + b0 (including

∑∞
j=2(j − 1)bj = +∞) then there exists an η ∈ (q, 1)

such that G(s) is strictly decreasing on [0, η) and strictly increasing on [η, 1].
(iv) At the unique zero q > 0 of G(s), we have G

′
(q) < 0.

Our first result is that any BWD q-matrix is always regular and, thus, that the corresponding
Feller minimal process is honest.

Theorem 2.1. Any BWD q-matrix Q = {qij } as defined above is regular and, thus, the Feller
minimal Q-function is honest.

Proof. Let �(λ) = {φij (λ); i, j ∈ Z+} be the Feller minimal Q-resolvent. Then, for each
λ > 0, λ

∑∞
j=0φij (λ) is the minimal nonnegative solution of the nonnegative linear equation

xi =
∑
k �=i

qik

λ + qi

xk + λ

λ + qi

, i ∈ Z+; (2.1)

see, for example, [11]
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Let x∗
i (λ) = λ

∑∞
j=0 φij (λ), i ≥ 0. Then x∗

0 (λ) = 1 since 0 is an absorbing state and
x∗
i (λ) ∈ [0, 1] for i ≥ 1. Now, by (2.1) we have, for i ≥ 1,

x∗
i (λ) ≥ qi0

λ + qi

x∗
0 (λ) + λ

λ + qi

= λ + ia

λ + i(a + b)
= 1 − b

λ/i + a + b
,

where we set b = −b1 > 0. The above inequality together with the fact x∗
0 (λ) = 1 implies that

inf i≥0 x∗
i (λ) ≥ a/(a + b) > 0. Therefore, (2.1) does not have a nonnegative solution {yi; i ≥

0} such that inf i≥0 yi = 0. It follows from Theorem 9.2.1 of [11] that x∗
i (λ) ≡ λ

∑∞
j=0 φij (λ) =

1 for all i ≥ 0. This completes the proof.

Our next aim is to determine the structure of this honest minimal Q-function. To this end,
we consider the following nonconservative q-matrix Q∗ = {q∗

ij ; i, j ≥ 0}:

q∗
ij =

{
ibj−i+1 − aδij if j ≥ i − 1, i ≥ 1,

0 otherwise.

The only difference between Q and Q∗ are the entries of the first column. Let P ∗(t) =
{p∗

ij (t); i, j ≥ 0} be the Feller minimal Q∗-function. We shall see that the structure of P ∗(t)
is very similar to an ordinary MBP. Define F ∗

i (t, s) = ∑∞
j=0 p∗

ij (t)s
j , i ≥ 0, and F ∗(t, s) =

F ∗
1 (t, s). Now, using the Kolmogorov forward equations, we immediately obtain the following

basic partial differential equation:

∂F ∗
i (t, s)

∂t
= G(s)

∂F ∗
i (t, s)

∂s
. (2.2)

Let σ(t) = ∑∞
j=0 p∗

1j (t) and ρ(t) = p∗
10(t). Note that ρ(t) defined here has no relation

with the ρ defined above as the convergence radius of G(s) and B(s). Using (2.2), we can
immediately prove the following lemma.

Lemma 2.2. For the Q∗-function P ∗(t) = {p∗
ij (t); i, j ≥ 0}, we have

(i) F ∗
i (t, s) = (F ∗(t, s))i , i ≥ 0;,

(ii) ∂F ∗(t, s)/∂t = G(F ∗(t, s)) or, equivalently,
∫ F ∗(s,t)
s

dy/G(y) = t;

(iii) dσ(t)/ dt = G(σ(t)) or, equivalently,
∫ σ(t)

1 dy/G(y) = t;

(iv) dρ(t)/ dt = G(ρ(t)) or, equivalently,
∫ ρ(t)

0 dy/G(y) = t .

A direct consequence of Lemma 2.2 is the following corollary.

Corollary 2.1. For the minimal Feller Q∗-function P ∗(t) = {p∗
ij (t)}, we have

(i)
∑∞

j=0 p∗
ij (t) = (σ (t))i , i ≥ 0;

(ii) p∗
i0(t) = (ρ(t))i;

(iii)
∑∞

j=0 p∗
kj (t) ↓ qk and p∗

k0(t) ↑ qk as t → ∞, k ≥ 1, where q is the unique zero of
G(s) given in Lemma 2.1;

(iv) limt→∞
∑∞

j=1 p∗
kj (t) = 0.

Proof. Parts (i) and (ii) are direct consequences of Lemma 2.2(i). Using exactly the same
method as in [4], we easily prove (iii). Then (iv) follows directly from (iii).
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The second main result of this section is the construction theorem of the Q-function for a
BWD q-matrix Q.

Theorem 2.2. Suppose that Q is a BWD q-matrix as defined in (1.1). Then there exists only
one Q-function, the Feller minimal Q-function, P(t) = {pij (t); i, j ≥ 0}, whose structure is
as follows.

(i) p0j (t) = δ0j .

(ii) For all i ≥ 1 and j ≥ 1, pij (t) = p∗
ij (t),where {p∗

ij (t)} is the Feller minimalQ∗-function
constructed in Lemma 2.2.

(iii) pi0(t) = 1 + (ρ(t))i − (σ (t))i , i ≥ 1, where ρ(t) and σ(t) are defined above.

Proof. Part (i) follows from the fact that 0 is an absorbing state. Part (ii) is a direct
consequence of the resolvent decomposition theorem; see [3] and [4]. It can also easily
be proved directly. Part (iii) follows from Theorem 2.1 and Lemma 2.2.

We are now ready to consider the properties of the MBP with disaster. Recall that, for the
MBP without disaster, the process may be explosive. However, we shall see that this is not the
case if disaster occurs.

Theorem 2.3. For the MBP with disaster, the extinction probability is always 1, starting from
any initial distribution.

Proof. We only need to show that, for all i ≥ 1, we have limt→∞ pi0(t) = 1. However, this
follows directly from Theorem 2.2 and Corollary 2.1.

This result is intuitively quite interesting, though not surprising. It states that some tiny
disaster could prevail over a very strong possibility of explosion when disaster does not happen.
Even more interesting, we can show that the mean extinction times are finite and even bounded.

To this end, let {Xt ; t ≥ 0} be the MBP with disaster, let T = inf{t ≥ 0; X(t) = 0} be the
extinction time, and let Ei(T ) be the mean extinction time when the process starts from i ≥ 1.

Theorem 2.4. For all i ≥ 1, Ei(T ) < +∞. Moreover, we further have supi≥1 Ei(T ) ≤ 1/a.

Proof. Let y∗
i = Ei(T ), i ≥ 1. Then by using, e.g. Theorem 9.4.1 of [11], we know that

{y∗
i ; i ≥ 1} is the minimal nonnegative solution of the equation

xi = 1

qi

∑
k �=i

qikxk + 1

qi

, i ≥ 1, (2.3)

with x0 = 0.
If we let yi = 1/a, i ≥ 1, and y0 = 0 in (2.3), then, for all i ≥ 1, we obtain

1

qi

∑
k �=i

qikyk + 1

qi

= 1

qi

∑
k �=i;k≥1

qikyk + 1

qi

≤ 1

aqi

(qi − a) + 1

qi

= 1

a
= yi,

and, thus, by the comparison theorem (see Theorem 3.3.1 of [11]) we obtain Ei(T ) ≤ 1/a for
all i ≥ 1.
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3. Decay parameter and quasistationary distributions

We now consider the decay properties of the MBP with disaster, focusing on the decay
parameter and quasistationary distributions.

Recall that the class C is an irreducible class for the BWD q-matrix Q as well as for the
Feller minimal Q-function. Therefore, the decay parameter λC does exist. To find λC , we first
show the following result.

Lemma 3.1. There exists a μ-invariant vector of Q on C for μ = (−1)G′(q) > 0, with the
corresponding μ-invariant vector given by xj = jqj−1, j ≥ 1, where q is again the unique
zero of G(s) on the unit disk {z; |z| ≤ 1}.

Proof. We only need to show that, for all i ≥ 1, we have
∑∞

j=1 qij xj = G′(q)xi . Indeed,
for i = 1, we have

∑∞
j=1 q1j xj = (b1 − a) + ∑∞

j=2 bj jqj−1 = G′(q) = G′(q)x1. For i ≥ 2,
we obtain

∞∑
j=1

qij xj =
∞∑

j=i−1

ibj−i+1xj − iaxi

= i

[ ∞∑
j=0

bjxj+i−1 − axi

]

= i

[ ∞∑
j=0

bj (j + i − 1)qj+i−2 − aiqi−1
]

= iqi−1
[ ∞∑

j=1

jbjq
j−1 − a + i − 1

q

( ∞∑
j=0

bjq
j − aq

)]

= iqi−1
[
G′(q) + i − 1

q
G(q)

]
= iqi−1G′(q)

= G′(q)xi .

This completes the proof.

We can now present our first important conclusion regarding the decay parameter.

Theorem 3.1. For the MBP with disaster, the decay parameter λC is given by λC =
(−1)G′(q) > 0.

Proof. It follows from Lemma 3.1 that λC ≥ (−1)G′(q); hence, we only need to show
that λC ≤ (−1)G′(q). Assume that this is not true. Then there exists a μ > 0 such that
(−1)G′(q) < μ < λC . Since μ < λC, we know that, for all i, j ≥ 1,

∫ ∞
0 eμtpij (t) dt < ∞,

which, using Theorem 2.2(ii), is just∫ ∞

0
eμtp∗

ij (t) dt < ∞, i, j ≥ 1. (3.1)

However, by the Kolmogorov forward equation for Q∗, i.e. dP ∗(t)/ dt = P ∗(t)Q, we know
that dp∗

i0(t)/ dt = b0p
∗
i1(t) and, thus, (3.1) implies that (recall that b0 > 0)∫ ∞

0
eμt dp∗

i0(t)

dt
dt < ∞. (3.2)
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We now show that (3.2) implies that

lim
t→∞ eμt (qi − p∗

i0(t)) = 0 (3.3)

and ∫ ∞

0
eμt (qi − p∗

i0(t)) dt < ∞. (3.4)

Of course, (3.3) is an immediate consequence of (3.4), but we need to show (3.3) first. To claim
(3.3), we use the fact that p∗

i0(t) ↑ qi as t → ∞; see Corollary 2.1. Thus,

0 ≤ eμt (qi − p∗
i0(t)) = eμt

∫ ∞

t

dp∗
i0(s)

ds
ds.

This implies that

0 ≤ eμt (qi − p∗
i0(t)) ≤

∫ ∞

t

eμs dp∗
i0(s)

ds
ds. (3.5)

Letting t → ∞ in (3.5) and applying (3.2) immediately yields (3.3). We now use (3.3) to show
that (3.4) is also true. Indeed, by integration by parts and noting that (−1)G′(q) < μ < λC ,
we obtain, for any constant T such that 0 < T < ∞,∫ T

0
eμt dp∗

i0(t)

dt
dt = qi − eμT (qi − p∗

i0(T )) + μ

∫ T

0
eμt (qi − p∗

i0(t)) dt.

Letting T → +∞ in the above equality, and applying (3.2) and (3.3), we obtain

+∞ >

∫ ∞

0
eμt dp∗

i0(t)

dt
dt = qi + μ

∫ ∞

0
eμt (qi − p∗

i0(t)) dt,

which shows that (3.4) is true. However, qi is the extinction probability of the Q∗-process
when the process starts from state i. It therefore follows that

∑∞
j=0 p∗

ij (t)q
j = qi for all i ≥ 1,

and so (3.4) can be rewritten as∫ ∞

0
eμt

( ∞∑
j=1

p∗
ij (t)q

j

)
dt < +∞. (3.6)

We now rewrite (2.2) as

∂

∂t

∞∑
j=0

p∗
ij (t)s

j = G(s)

∞∑
j=1

jp∗
ij (t)s

j−1.

Multiplying both sides of this equality by eμt yields

eμt dp∗
i0(t)

dt
+

∞∑
k=1

eμt dp∗
ik(t)

dt
sk = G(s)

∞∑
k=1

keμtp∗
ik(t)s

k−1. (3.7)

Integrating (3.7) from 0 to ∞ yields, for 0 ≤ s < q,∫ ∞

0
eμt dp∗

i0(t)

dt
dt +

∞∑
k=1

(∫ ∞

0
eμt dp∗

ik(t)

dt
dt

)
sk

= G(s)

∞∑
k=1

k

(∫ ∞

0
eμtp∗

ik(t) dt

)
sk−1. (3.8)
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Note that all the three integrals in (3.8) are finite and, thus, (3.8) makes sense. Indeed, (3.6)
together with the fact that G(s) > 0 for 0 ≤ s < q guarantees that the right-hand side of (3.8)
is finite for 0 ≤ s < q, while (3.2) guarantees that the first term on the left-hand side is finite.
These two facts then imply that the second term on the left-hand side is also finite since all three
terms are nonnegative.

Note that (3.1) also implies that limt→∞ eμtp∗
ik(t) = 0 for all i, k ≥ 1 and, hence, (3.8) can

be rewritten as

∫ ∞

0
eμt dp∗

i0(t)

dt
dt − si = μ

∞∑
k=1

(∫ ∞

0
eμtp∗

ik(t) dt

)
sk +G(s)

∞∑
k=1

k

(∫ ∞

0
eμtp∗

ik(t) dt

)
sk−1

for all i ≥ 1 and 0 ≤ s < q. Differentiating with respect to s over the interval [0, q) yields

(−i)si−1 = (μ + G′(s))
∞∑

k=1

(∫ ∞

0
eμtp∗

ik(t) dt

)
ksk−1

+ G(s)

∞∑
k=1

k(k − 1)

(∫ ∞

0
eμtp∗

ik(t) dt

)
sk−2.

Note that 0 < q < 1 and that all the terms in the above equality are finite for s = q. Thus, the
above equality actually holds for s = q. More exactly, by letting s ↑ q in the above equality,
we easily obtain

(−i)qi−1 = (μ + G′(q))

∞∑
k=1

(∫ ∞

0
eμtp∗

ik(t) dt

)
kqk−1. (3.9)

Since the second multiplier on the right-hand side of (3.9) is a positive finite number, μ <

(−1)G′(q), which contradicts (−1)G′(q) < μ < λC . Hence, λC ≤ (−1)G′(q), which
completes the proof.

Using the known sequence {bj ; j ≥ 0} and the parameter a > 0, the decay parameter
λC = (−1)G′(q) can be rewritten as λC = a + b0 + ∑∞

j=2 bj − ∑∞
j=2 jbjq

j−1, where q is
the unique zero of G(s). As the exact value of q is in many cases quite difficult to obtain, we
instead provide some bounds that can be easily calculated. We give lower and upper bounds in
the following two corollaries whose proofs are straightforward and are thus omitted.

Corollary 3.1. Let λC be the decay parameter given in Theorem 3.1.

(i) If
∑∞

j=2(j − 1)bj ≤ b0 then λC > a + b0 − ∑∞
j=2(j − 1)bj ≥ a.

(ii) If
∑∞

j=2(j − 1)bj > b0 (including the case
∑∞

j=2(j − 1)bj = +∞) then

λC > a + b0 +
∞∑

j=2

bj −
∞∑

j=2

jbj τ
j−1 > a,

where 0 < τ < 1 is the unique zero of B(s) on (0, 1).

In particular, for both cases, we have λC > a.

https://doi.org/10.1239/jap/1409932662 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1409932662


Markov branching processes with disasters 621

Corollary 3.2. The decay parameter λC satisfies

λC < a + b −
∞∑

j=2

jbj

(
b0

a + b

)j−1

.

Moreover, if b2 > 0 then λC ≤ a + b − ∑∞
j=2 jbjq

j−1
c , where b = −b1 and qc =

((a + b) − √
(a + b)2 − 4b0b2)/2b2. Furthermore, the inequality above becomes an equality

if and only if bk = 0 for all k ≥ 3.

The lower and upper bounds obtained in Corollaries 3.1 and 3.2 are meaningful since in
many situations it is quite easy to find the smallest nonnegative zero of B(s) but quite difficult
to find the smallest zero of G(s).

Upon obtaining the decay parameter λC , we now determine whether or not the process is
λC-recurrent, which is straightforward.

Theorem 3.2. The MBP with disaster is λC-recurrent.

Proof. Suppose that it is λC-transient. Then
∫ ∞

0 eλCtpij (t) dt < ∞ for all i, j ≥ 1. Under
these conditions, we can easily see that the proof of Theorem 3.1 applies and, thus, we again
obtain

(−i)qi−1 = (λC + G′(q))

∞∑
k=1

(∫ ∞

0
eλctpik(t) dt

)
kqk−1, i ≥ 1.

Then, as before, we obtain λC < (−1)G′(q), which contradicts Theorem 3.1.

In order to investigate the property of λC-positive recurrence further, we need to obtain the
λC-invariant measure. Since we have just proved that the MBP with disaster is λC-recurrent,
then it follows from [14], or Theorem 5.2.8 of [1, p. 177], that there exists a unique (in the
sense of up to constant multiples) λC-invariant measure as well as a unique (up to constant
multiples) λC-invariant vector. The unique λC-invariant vector was obtained in Lemma 3.1.
We now investigate the unique λC-invariant measure. In the following theorem we give the
generating function of the unique λC-invariant measure {mj ; j ≥ 1}. Since the uniqueness of
the λC-invariant measure is in the sense of up to constant multiples, we assume without loss of
generality that m1 = 1.

Theorem 3.3. For the MBP with disaster, there exists a unique (up to constant multiples) λC-
invariant measure {mj ; j ≥ 1}. The generating function of this λC-invariant measure (with
m1 = 1) is given for −q < s < q by

M(s) =
∞∑

j=1

mjs
j =

∫ s

0
exp

{
−

∫ t

0

G′(x) − G′(q)

G(x)
dx

}
dt, (3.10)

where q is again the unique positive zero of G(s) on the complex unit disk {z; z ≤ 1}.
Proof. The existence and uniqueness of the λC-invariant measure {mj ; j ≥ 1} follow from

Theorem 3.2 and Kingman’s lemma (see [14]). Then this invariant measure is also the λC-
invariant measure of the BWD q-matrix Q on C = {1, 2, . . .}. Hence, we have

∞∑
k=1

mkqkj = −μmj , j ≥ 1,
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or, by noting the structure of the BWD q-matrix Q,

j+1∑
k=1

mkkbj−k+1 + mj(−ja) = −μmj , j ≥ 1, (3.11)

where μ = (−1)G′(q) denotes the decay parameter.
By (3.11), it is easily seen that, similarly as proved in [5] (see the proof of Theorem 5.1

therein), the generating function of this unique λC-invariant measure M(s) = ∑∞
j=1 mjs

j

is convergent at least in a sufficiently small interval (−τ, τ ). Multiplying sj on (3.11) and
summing j from 1 to ∞ for s ∈ (−τ, τ ) immediately yields

∞∑
j=1

(j+1∑
k=1

mkkbj−k+1

)
sj − a

∞∑
j=1

jmj s
j = −μ

∞∑
j=1

mjs
j .

Applying Fubini’s theorem to the first term on the left-hand side of the above equality together
with a trivial algebra yields( ∞∑

j=0

bj s
j − as

) ∞∑
k=1

kmksk−1 + μ

∞∑
k=1

mks
k = m1b0,

i.e.
G(s)M ′(s) + μM(s) = m1b0. (3.12)

By noting that G(s) in (3.12) has only one zero, q, in the complex unit disk {z; |z| ≤ 1}, we
know that M(s) is at least well defined on the complex disk {z; |z| < q}. Consequently, both
G(s) and M(s) are infinitely differentiable on the disk {z; |z| < q}. Now differentiating (3.12)
with respect to s within the interval (−q, q) yields

(G′(s) + μ)M ′(s) + G(s)M ′′(s) = 0. (3.13)

However, both M ′(s) and G(s) are strictly positive on the interval [0, q) and, thus, (3.13) can
be rewritten as

M ′′(s)
M ′(s)

= −G′(s) + μ

G(s)
. (3.14)

Noting that m1 = 1 and, thus, ln M ′(0) = 0, using (3.14) we obtain

M ′(t) = c exp

{
−

∫ t

0

G′(s) + μ

G(s)
ds

}
, 0 ≤ t < q.

By noting that M ′(0) = 1, once again, we know that the constant c in the above is equal to 1.
Hence, by noting that μ = (−1)G′(q) = λC , we obtain

M ′(t) = exp

{
−

∫ t

0

G′(s) − G′(q)

G(s)
ds

}
, 0 ≤ t < q. (3.15)

Now (3.10) follows from (3.15) directly by noting M(0) = 0. The proof is complete.

In fact, we can do even better. Indeed, the following corollary shows that the convergence
radius of M(s) in (3.10) can be further expanded to the complex unit disk {z; |z| ≤ 1}. Although
this is an easy corollary, it has significant consequences for the quasistationary distribution of
the MBP with disaster.
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Corollary 3.3. LetM(s) = ∑∞
j=1 mjs

j be the generating function of theλC-invariant measure
for the MBP with disaster. Then, for any −1 < s < 1, we have M(s) < +∞ and M ′(s) < +∞.
In particular, we have M ′(q) < +∞.

Proof. Following from Theorem 3.3 we know that (3.10) holds for any 0 ≤ s < q. Now let
s ↑ q in (3.10). Note that q is the single zero of G(s) and, thus,

lim
s↑q

G′(s) − G′(q)

G(s)
= G′′(q)

G′(q)
,

which is a finite number. Indeed, we know that G(s), as a power series, is convergent for all
|s| ≤ 1, and, hence, both G′(q) and G′′(q) are finite and also G′(q) �= 0 since 0 < q < 1 is
the single zero of G(s). Therefore, the integral

∫ q

0 ((G′(x) − G′(q))/G(x)) dx is finite. Then
it follows from the fact that G(s) has only one zero on {z; |z| ≤ 1} and (3.10) that M(s) < +∞
for all |s| ≤ 1. We also have M ′(s) < +∞ for all |s| < 1.

We are now able to show that the MBP with disaster is λC-positive-recurrent.

Theorem 3.4. The MBP with disaster is λC-positive-recurrent. Moreover, the generating
function of the quasistationary distribution {πi; i ≥ 1}, denoted by �(s) = ∑∞

k=1 πks
k, is

given by

�(s) =
∫ s

0 exp{− ∫ t

0 ((G′(x) − G′(q))/G(x)) dx} dt∫ 1
0 exp{− ∫ t

0 ((G′(x) − G′(q))/G(x)) dx} dt
. (3.16)

Proof. By Kingman’s theorem (see [14] or Theorem 5.2.8 of [1]) we know that the class
C = Z+ \ {0} is λC-positive if and only if

∑
k∈C mkxk < +∞, where {mk; k ∈ C} is

a λC-invariant measure and {xk; k ∈ C} is a λC-invariant vector. However, as shown in
Theorem 3.1 and Theorem 3.3, we know that the λC-invariant vector and λC-invariant measure
are respectively given by xj = jqj−1 for j ≥ 1 and (3.10). It then follows from Theorem 3.3
that ∑

k∈C

mkxk =
∞∑

k=1

mkkqk−1 = M ′(q) < +∞,

and, thus, the MBP with disaster is λC-positive. Also, by Corollary 3.3 we know that
∑∞

k=1 mk<

+∞. Hence, the unique quasistationary distribution {πi; i ≥ 1} does exist and is given by
πj = mj/

∑∞
j=1 mj , j ≥ 1. Therefore, the generating function of {πj ; j ≥ 1}, denoted by

�(s) = ∑∞
j=1 πj s

j , can be written as �(s) = M(s)/M(1). Now, using (3.10), we obtain
(3.16), which completes the proof.
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