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Abstract

Background. Observational studies suggest a correlation between post-traumatic stress dis-
order (PTSD) and gastrointestinal tract (GIT) disorders. However, the genetic overlap, causal
relationships, and underlining mechanisms between PTSD and GIT disorders were absent.
Methods. We obtained genome-wide association study statistics for PTSD (23 212 cases, 151
447 controls), peptic ulcer disease (PUD; 16 666 cases, 439 661 controls), gastroesophageal
reflux disease (GORD; 54 854 cases, 401 473 controls), PUD and/or GORD and/or medica-
tions (PGM; 90 175 cases, 366 152 controls), irritable bowel syndrome (IBS; 28 518 cases,
426 803 controls), and inflammatory bowel disease (IBD; 7045 cases, 449 282 controls). We
quantified genetic correlations, identified pleiotropic loci, and performed multi-marker ana-
lysis of genomic annotation, fast gene-based association analysis, transcriptome-wide associ-
ation study analysis, and bidirectional Mendelian randomization analysis.
Results. PTSD globally correlates with PUD (rg = 0.526, p = 9.355 × 10−7), GORD (rg = 0.398,
p = 5.223 × 10−9), PGM (rg = 0.524, p = 1.251 × 10−15), and IBS (rg = 0.419, p = 8.825 × 10−6).
Cross-trait meta-analyses identify seven genome-wide significant loci between PTSD and
PGM (rs13107325, rs1632855, rs1800628, rs2188100, rs3129953, rs6973700, and
rs73154693); three between PTSD and GORD (rs13107325, rs1632855, and rs3132450);
one between PTSD and IBS/IBD (rs4937872 and rs114969413, respectively). Proximal pleio-
tropic genes are mainly enriched in immune response regulatory pathways, and in brain,
digestive, and immune systems. Gene-level analyses identify five candidates: ABT1,
BTN3A2, HIST1H3J, ZKSCAN4, and ZKSCAN8. We found significant causal effects of
GORD, PGM, IBS, and IBD on PTSD. We observed no reverse causality of PTSD with
GIT disorders, except for GORD.
Conclusions. PTSD and GIT disorders share common genetic architectures. Our work offers
insights into the biological mechanisms, and provides genetic basis for translational research
studies.

Introduction

Post-traumatic stress disorder (PTSD) is a prevalent psychiatric disorder that occurs in some
individuals after a traumatic event (Duncan et al., 2018). PTSD poses strong social impacts:
suicide, hospitalization, and substance use (Davidson, 2000). Although scholars have now
begun to prioritize PTSD in ameliorating various social burdens, fundamental questions
remain on the genetic etiology of PTSD.

Gastrointestinal tract (GIT) disorders frequently co-occur with psychiatric diagnoses
marked by irritability, fearfulness, hypervigilance, and physiological mobilization (Kolacz,
Kovacic, & Porges, 2019). GIT-psychiatric comorbidities emerge in a range of psychiatric dis-
orders: PTSD, anxiety, and depression (Graff, Walker, & Bernstein, 2009; Grinsvall, Tornblom,
Tack, Van Oudenhove, & Simren, 2018; Hejazi & McCallum, 2014; Henningsen,
Zimmermann, & Sattel, 2003). Growing evidence suggest traumatic experiences are related
to GIT disorders: a history of abuse exacerbates symptoms of irritable bowel disease (IBD)
(Drossman et al., 2018; Leserman, 2005); acute early-life stressors induce long-term sensory
and motor digestive changes in irritable bowel syndrome (IBS) (O’Mahony, Hyland, Dinan,
& Cryan, 2011; Vannucchi & Evangelista, 2018). However, whether GIT disorders are a risk
factor for PTSD and vice versa are unclear.
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Large-scale genome-wide association studies (GWASs) have
documented a growing number of single-nucleotide polymorph-
isms (SNPs), genes, and susceptibility loci respectively for PTSD
and GIT disorders (An et al., 2019; Nievergelt et al., 2019;
Watanabe et al., 2019; Wu et al., 2021), providing a basis to evalu-
ate the genetic etiology of PTSD and GIT disorders including gas-
troesophageal reflux disease (GORD), peptic ulcer disease (PUD),
PUD and/or GORD and/or medications (PGM, an alternative
combination of diagnosis and/or treatments for PUD and/or
GORD), IBS, and IBD. Nevertheless, no study has reported
their shared genetic architectures.

Here, we performed a comprehensive genome-wide cross-trait
analysis to investigate the genetic overlaps and the causal relation-
ships between PTSD and GIT disorders. We quantified the global
and local genetic correlations, analyzed partitioned heritability
and cell-type-specific enrichment, identified pleiotropic loci, per-
formed functional annotations, conducted gene-level analyses,
and inferred putative causal associations.

Methods

GWAS summary statistics

Overall study design is shown in Fig. 1. GWAS data are summar-
ized in online Supplementary Table S1. We obtained GWAS sum-
mary statistics for PTSD from the Psychiatric Genomics
Consortium (PGC) comprising 23 212 cases and 151 447 controls

of European ancestry (Nievergelt et al., 2019). In the original
study, PTSD assessment was based on lifetime or current PTSD,
and the unaffected control individuals did not have a PTSD diag-
nosis; PTSD was diagnosed using various instruments and differ-
ent versions of the Diagnostic and Statistical Manual of Mental
Disorders; quality control was performed by PGC pipeline and
dataset was imputed by the 1000 Genomes European panel. We
obtained GWAS for GIT traits including PUD (16 666 cases
and 439 661 controls), GORD (54 854 cases and 401 473 con-
trols), IBS (28 518 cases and 426 803 controls), and IBD (7045
cases and 449 282 controls) from a recent publication (Wu
et al., 2021). Clinically, PUD medications are indicated in
GORD and gastritis. Accordingly, GWAS combining diagnosis
for PGM commonly used for these disorders was conducted,
and we used this GWAS data (90 175 cases and 366 152 controls)
as a proxy for PUD or GORD (Wu et al., 2021). The criteria for
GIT disorders are: diagnosis phenotypes from death register,
self-report, hospital admission, or primary care record; treatment
phenotypes based on the operation and medication-taking code.
Dataset was imputed to a mixed panel of UK10K+1000 Genomes
and Haplotype Reference Consortium (Bycroft et al., 2018).

Genetic correlation

We conducted a post-GWAS global correlation analysis by linkage
disequilibrium (LD) score regression (LDSC) (Bulik-Sullivan

Figure 1. Overall study design of genome-wide cross-trait analysis.
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et al., 2015). LDSC estimates correlation between true causal
effects of two traits (ranging from −1 to 1). SNPs in a high LD
region would have a larger χ2, and a similar relationship would
appear when single-study statistics are replaced by the product
of z-scores from two studies of traits with correlation. We per-
formed LDSC with unconstrained intercept using pre-computed
LD scores from the 1000 Genomes Project Phase 3 (European
ancestry), and restricted our analysis to only haplotype map 3
(HapMap3) SNPs to minimize bias of low imputation quality
(Bulik-Sullivan et al., 2015). We set Bonferroni-corrected signifi-
cant threshold at a p value of 0.01 (0.05/5 = 0.01).

We calculated pairwise local correlations for PTSD and GIT
disorders in 2343 pre-specified LD-independent segments using
the SUPER GeNetic cOVariance Analyzer (SUPERGNOVA),
which identifies locally associated small contiguous genomic
regions using GWAS summary statistics and a reference panel
as input data, and provides p values (PSUPERGNOVA) between
pairs of traits in local regions (Zhang et al., 2021). Here, we
removed SNPs with missing values, used the 1000 Genomes
Project, with rare variants (minor allele frequency < 5%) filtered
out, as the reference panel to generate the genome partition
files in SUPERGNOVA. PSUPERGNOVA < 1 × 10−4 was used as a
cut-off value to indicate significance (Chen, Wang, Huang, &
Jia, 2022).

SNP heritability and cell-type-specific enrichment

We partitioned SNP heritability of PTSD and GIT disorders
respectively by stratified LDSC, to determine if SNPs sharing
high heritability are clustered in the 24 main functional annota-
tions (Finucane et al., 2015). We retrieved LD scores, regression
weights, and allele frequencies from European samples (https://
alkesgroup.broadinstitute.org/LDSCORE). We assumed the esti-
mates to be significant if p value surpasses an α level of 0.002,
derived by Bonferroni correction.

We performed heritability partitioning for the 396 annotations
constructed by the Roadmap project for six chromatin marks
(‘DHS’, ‘H3K27ac’, ‘H3K36me3’, ‘H3K4me1’, ‘H3K4me3’,
‘H3K9ac’) in a set of 88 primary cell types or tissues (Finucane
et al., 2018). Each annotation corresponds to a chromatin mark
in a single-cell type. These 396 cell-type-specific annotations
belong to nine groups: adipose, central nervous system, digestive
system, cardiovascular, musculoskeletal, and connective tissue,
immune and blood, liver, pancreas, and other. We calculated
annotation-specific enrichment values for each trait using
LDSC, and performed visualization by hierarchical clustering.
We used adjusted p value to correct for multiple testing.

Cross-trait meta-analysis

Multi-trait analysis of GWAS (MTAG) applies generalized
inverse-variance-weighted meta-analysis for multiple correlated
traits, and detects genetic associations for each trait by borrowing
correlations among correlated traits to boost statistical power
(Guo et al., 2022; Tadros et al., 2021; Yang et al., 2021). We per-
formed MTAG and implemented options that assume equal SNP
heritability for each trait (Turleyet al., 2018).Wedenoted the single-
trait GWAS statistics as GWASPTSD, GWASPUD, GWASGORD,
GWASPGM, GWASIBS, and GWASIBD, respectively, and the PTSD
statistics from MTAG analysis as MTAGPTSD. Using functional
mapping and annotation (FUMA) platform (Watanabe, Taskesen,
van Bochoven, & Posthuma, 2017), we identified genome-wide

significant SNPs of MTAGPTSD ( p < 5.0 × 10−8; pairwise R2 < 0.6
in a 1Mb window), and conducted gene-set and tissue expression
analyses by multi-marker analysis of genomic annotation
(MAGMA v.1.08, implemented in FUMA). For gene-set analysis,
we used gene ontology (GO) gene sets from the Molecular
Signatures Database (MSigDB, v.6.2). For tissue analysis, we used
data from Genotype-Tissue Expression project (GTEx, v.8). For
comparison, we additionally performed annotations of the signifi-
cant SNPs identified from GWASPTSD using the FUMA platform.

To determine if assumption violations biased the MTAG
results, we performed pleiotropic analysis under composite null
hypothesis (PLACO) as a sensitivity analysis (Ray & Chatterjee,
2020). PLACO identifies pleiotropic loci by testing the composite
null hypothesis that a locus is associated with zero or one of the
traits (Ray et al., 2021). We prioritized independent SNPs with
genome-wide significance in both MTAG and PLACO (PPLACO
< 5 × 10−8, and trait-specific PMTAG for PTSD < 1 × 10−5), follow-
ing identification by LD clumping (r2 < 0.2 within 500-kilobase
windows) in ‘PLINK v1.9’ (https://www.cog-genomics.org/plink/
1.9), based on 1000 Genomes reference data (Purcell et al., 2007).

Functional annotation

To annotate functions of the identified pleiotropic SNPs, we used
Ensembl variant effect predictor and human variation annotation
database (http://www.licpathway.net/VARAdb) (Pan et al., 2021;
Zerbino et al., 2018). We then queried these loci in the GWAS
catalogue (https://www.ebi.ac.uk/gwas) to determine their identity
in PTSD and GIT disorders.

We assessed GO biological process functional categories and
Kyoto encyclopedia of genes and genomes pathways for enriched
pleiotropic SNPs between PTSD and five GIT traits. We per-
formed tissue enrichment using ‘GENE2FUNC’ function in the
FUMA platform with 30 general tissue types from GTEx v.8
(GTEx Consortium et al., 2017; Watanabe et al., 2017). We
applied Benjamini–Hochberg procedure to correct for multiple
testing.

Gene-level analysis

Using methods with different assumptions to obtain overlapped
signals can avoid the risk of false discoveries. Thus, we applied
three parallel gene-level analyses with distinct principles:
MAGMA, genome-wide complex trait analysis-fast set-based
association analysis (GCTA-fastBAT), and transcriptome-wide
association study (TWAS) analysis.

MAGMA uses a multiple regression structure to allow general-
ized analysis of continuous properties of genes and simultaneous
analysis of multiple gene-sets and other gene properties (de
Leeuw, Mooij, Heskes, & Posthuma, 2015). Here, we submitted
summary statistics for MTAGPTSD in MAGMA to analyze all
protein-coding genes to which at least one SNP is annotated
within a 0 kb interval. We applied Bonferroni correction for mul-
tiple testing based on the number of genes tested (PMAGMA =
2.66 × 10−6).

GCTA-fastBAT analyzes human complex traits using
summary-level data from GWAS and LD data from a reference
sample with individual-level genotypes (Bakshi et al., 2016).
Here, we conducted a gene-based analysis by GCTA-fastBAT
using MTAGPTSD for all 24 763 genes and LD information from
1000 Genomes Project Phase 3. We only analyzed the SNPs
located within the gene to examine the gene–trait associations.
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We set Bonferroni-corrected significance at PfastBAT < 2.02 × 10−6

(0.05/24 763).
TWAS integrates GWAS and expression quantitative trait locus

(eQTL) data to identify tissue-specific gene–trait associations (Hu
et al., 2019). We used MTAGPTSD and the unified test for molecu-
lar signatures (UTMOST) program combined with generalized
Berk–Jones (GBJ) models in a two-stage TWAS analysis
(https://github.com/Joker-Jerome/UTMOST). We used GBJ mod-
els with transcriptome data derived from 44 different tissues
(GTEx, v.6). We set Bonferroni-corrected significance at PTWAS

< 3.24 × 10−6 (0.05/15 430).

Causal inference

We conducted Mendelian randomization (MR) analysis with R
packages ‘TwoSampleMR’ and ‘MR-PRESSO’. We used five MR
methods: inverse-variance weighted (IVW) (Burgess,
Butterworth, & Thompson, 2013), MR–Egger (Burgess &
Thompson, 2017), weighted median (Bowden, Davey Smith,
Haycock, & Burgess, 2016), weighted mode (Hartwig, Davey
Smith, & Bowden, 2017), and MR-PRESSO (Verbanck, Chen,
Neale, & Do, 2018), with different assumptions in the extent
and nature of horizontal pleiotropy. We applied the IVW method
as our primary approach (Burgess, Scott, Timpson, Davey Smith,
& Thompson, 2015), and we considered relationships with con-
sistent evidence of causality in all MR methods to be more reliable
and noteworthy.

IVW assumes if an uncorrelated pleiotropy exists, a mean of
zero adds noise only to regressions with multiplicative random
effects. MR–Egger allows the presence of directional (i.e. non-zero
mean) uncorrelated pleiotropy, and adds an intercept to the IVW
regression to exclude confounding. Weighted median measures
the median rather than the mean of SNP ratio, and identifies
true causality if ≤50% of the weights are from invalid SNPs.
Weighted model divides SNPs into groups based on estimated
effects, assesses evidence of causality using only the group with
the most SNPs, essentially relaxing the hypothesis, and identifies
true effects even if most tools are invalid. In these MR analyses,
we used independent SNPs (LD clumping r2 < 0.05 within
1000-kb windows using PLINK v1.9) associated with the ‘expos-
ure’ trait ( p < 1 × 10−5) as instrumental variables, and merged with
SNPs from the ‘outcome’ trait in Harmonizing data step. To avoid
sample overlapping effect, we used the function ‘power_prune’
from R package ‘TwoSampleMR’ in Harmonizing data step.

Results

Genetic correlations

With unconstrained intercept, we found positive global correla-
tions of PTSD with PUD (rg = 0.5261, p = 9.3549 × 10−7),
GORD (rg = 0.3977, p = 5.2225 × 10−9), PGM (rg = 0.5236,
p = 1.2506 × 10−15), IBS (rg = 0.4185, p = 8.8245 × 10−6), and a
marginal correlation with IBD (rg = 0.179, p = 0.0558) (Table 1).
We identified no statistically significant local correlation of
PTSD with GIT disorders in specific genomic regions (online
Supplementary Data files S1–S5).

Partitioned SNP heritability and cell-type-specific enrichment

In partitioned SNP heritability analysis, we found significant
enrichments of the functional categories ‘conserved’, ‘FetalDHS’,

‘H3K27ac’, ‘H3K4me1’, ‘H3K4me3’, ‘Intron’, ‘SuperEnhancer’,
‘TSS’, and ‘WeakEnhancer’ for PGM, ‘conserved’ for GORD
and IBS, and ‘Enhancer’, ‘super Enhancer’, ‘TFBS’, and
‘H3K27ac’ for IBD. We observed no functional categories enrich-
ment for PUD and PTSD (online Supplementary Table S2).

Partitioning SNP heritability using 396 cell-type-specific anno-
tations, we found significant enrichments for GORD and IBS in
the central nervous and digestive systems: brain dorsolateral pre-
frontal cortex, brain inferior temporal lobe, and fetal stomach. We
observed significant enrichments for IBD in the blood and
immune system: primary natural killer cells and primary T helper
17 cells. We found insignificant enrichments for PUD, while
enrichments are clustered closely to GORD/IBS at each chromatin
mark in the central nervous and digestive systems. Comparing
enrichments for all GIT disorders, we observed differential pat-
terns, where only IBD is enriched in the immune system (online
Supplementary Data files S6–S11).

Cross-trait meta-analysis and pleiotropic loci

In meta-analysis of GWASPTSD, GWASPUD, GWASGORD,
GWASPGM, GWASIBS, and GWASIBD using MTAG, we obtained
a total of 6 443 162 SNPs, and we identified 541 genome-wide sig-
nificant SNPs in MTAGPTSD with FUMA annotations (online
Supplementary Data file S12). The Manhattan plots for
GWASPTSD and MTAGPTSD are shown in online Supplementary
Fig. S1. We found the number of risk loci increases from two
in GWASPTSD to seven in MTAGPTSD, and the number of lead
SNPs (PMTAG < 5 × 10−8 and R2 < 0.1) increases from two in
GWASPTSD to eight in MTAGPTSD (online Supplementary
Tables S3 and S4). In MAGMA analysis for MTAGPTSD, we iden-
tified significant gene-sets linked to regulation of biosynthetic
process and regulation of gene expression function, and we asso-
ciated MTAGPTSD expressions in brain tissues (brain frontal cor-
tex BA9, brain anterior cingulate cortex BA24, brain cortex, brain
cerebellar hemisphere, brain cerebellum, brain hypothalamus)
(online Supplementary Data files S13 and S14).

Using both MTAG and PLACO, we identified seven loci with a
genome-wide significance in the meta-analysis of PTSD and PGM
(rs13107325, rs1632855, rs1800628, rs2188100, rs3129953,
rs6973700, and rs73154693); three in the meta-analysis of
PTSD and GORD (rs13107325, rs1632855, and rs3132450); and
one in the meta-analysis of PTSD and IBS/IBD (rs4937872 and
rs114969413, respectively) (online Supplementary Tables S5 and

Table 1. Genome-wide global correlations between PTSD and GIT disorders by
unconstrained LD score regression

Trait 1 Trait 2

Unconstrained

rg rg_se p

PTSD PUD 0.526 0.107 9.355 × 10−7

PGM 0.524 0.066 1.251 × 10−15

GORD 0.398 0.068 5.223 × 10−9

IBS 0.419 0.094 8.825 × 10−6

IBD 0.179 0.094 0.056

PTSD, post-traumatic stress disorder; PUD, peptic ulcer disease; PGM, PUD and/or GORD
and/or medications; GORD, gastroesophageal reflux disease; IBS, irritable bowel syndrome;
IBD, inflammatory bowel disease; rg, genetic correlation, se, standard error; GIT,
gastrointestinal tract.
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S6). We observed no genome-wide significant locus in the
meta-analysis of PTSD and PUD. We queried each locus for
pleiotropic associations with other traits via GWAS catalogue,
and identified proximal genes: SLC39A8, MUC21, MUC22,
TNF, LTB, FAM209A/FAM209B, and PRRC2A (online
Supplementary Tables S7 and S8). In functional and tissue enrich-
ment analysis of proximal genes, we found that PTSD shares
‘immune response related regulation’ withPGMand IBD, and ‘pro-
tein processing’ and ‘regulation of acute inflammatory response’with
IBD (online SupplementaryTables S9 andS10).UsingGTExdata,we
found significant enriched expression of PTSD- and PGM-shared
genes in blood, and PTSD- and IBD-shared genes in brain and liver
(online Supplementary Figs S2 and S3).We found no statistically sig-
nificant enrichment for other traits.

Gene-level analysis

In MAGMA, we observed 35 PTSD-related genes that survive cor-
rection for multiple testing; in GCTA-fastBAT, we found 93 genes
at the significant level (PfastBAT < 2.02 × 10−6); in TWAS

combining eQTL data from 44 tissues, we revealed 31 genes
with Bonferroni-corrected significance (online Supplementary
Tables S11–S13).

We checked the overlapping genes identified by MAGMA,
GCTA-fastBAT, and TWAS, and identified five PTSD-associated
candidates: ABT1 (PMAGMA = 7.76 × 10−7, PfastBAT = 1.38 × 10−8,
PTWAS = 1.57 × 10−6), BTN3A2 (PMAGMA = 2.60 × 10−8, PfastBAT =
7.52 × 10−10, PTWAS = 9.94 × 10−8), HIST1H3J (PMAGMA = 1.25 ×
10−8, PfastBAT = 1.15 × 10−6, PTWAS = 1.87 × 10−8), ZKSCAN4
(PMAGMA = 4.22 × 10−7, PfastBAT = 8.89 × 10−8, PTWAS = 2.95 ×
10−12), and ZKSCAN8 (PMAGMA = 4.72 × 10−8, PfastBAT = 2.60 ×
10−8, PTWAS = 5.71 × 10−7). For the proximal genes of pleiotropic
loci identified by our cross-trait meta-analysis, we found PRRC2A
(MAGMA and GCTA-fastBAT), MUC21 and MUC22
(GCTA-fastBAT) are significant in our gene-level analysis.

Causal associations

In IVW MR analysis, we found significant causal effects of PGM,
GORD, IBS, and IBD on PTSD (Fig. 2), estimates remain

Figure 2. MR analyses for causal effects of GIT disorders on PTSD. Boxes represent the point estimates of causal effects, and error bars represent 95% confidence
intervals. Inverse-variance-weighted approach was adopted as the primary analysis. PTSD, post-traumatic stress disorder; PUD, peptic ulcer disease; PGM, PUD
and/or GORD and/or medications; GORD, gastroesophageal reflux disease; IBS, irritable bowel syndrome; IBD, inflammatory bowel disease; GIT, gastrointestinal
tract.
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directionally consistent in MR–Egger and weighted median des-
pite larger statistical uncertainties, and MR-PRESSO sensitivity
analysis supports a causal association of four GIT disorders
with PTSD (online Supplementary Table S14). In reverse-
direction MR analysis, we found no statistically significant causal
effects of PTSD on GIT disorders, except for GORD (Fig. 3 and
online Supplementary Table S14).

Discussion

With large-scale GWAS summary data and multiple statistical
approaches, we present a comprehensive assessment of shared
genetic architecture between PTSD and GIT disorders. We iden-
tified significant genetic correlations between all five GIT disor-
ders with PTSD in global correlation analysis, and we did not
find a local correlation at statistical significance, suggesting that
current analyses are underpowered to detect correlation in specific
genomic regions between PTSD and GIT disorders. Significant
genetic correlation reflects not only a common genetic etiology
(biological pleiotropy), but also suggests a potential causal effect
(vertical pleiotropy). In agreement, we observed causal

associations of four GIT disorders (IBD, IBS, PGM, and
GORD) with PTSD using IVW and MR-PRESSO, and we
found the estimates remain directionally consistent in MR–
Egger and weighted median approaches.

In the cross-trait meta-analysis of PTSD, we found a genome-
wide significant locus rs13107325 for both PGM and GORD. This
independent SNP is mapped to the gene SLC39A8, encoding a
metal cation transporter Zrt-/Irt-related protein (ZIP8) in all ver-
tebrates. Missense mutation in SLC39A8 leads to reduced zinc
transport, which in turn perturbs electrophysiological recordings
of neurons, resulting in a significant reduction in spontaneous
excitatory postsynaptic currents and reduced surface expression
of glutamate receptors (Kalappa, Anderson, Goldberg, Lippard,
& Tzounopoulos, 2015; Tseng et al., 2021). A recent review recog-
nizes SLC39A8 exhibits significant pleiotropic effects associated
with clinical diseases in virtually every organ, tissue, and cell
type (Nebert & Liu, 2019). Among the central nervous system dis-
eases, SLC39A8 is associated with Parkinson’s disease and schizo-
phrenia (Pickrell et al., 2016; Schizophrenia Working Group of
the Psychiatric Genomes Consortium, 2014), and the latter is
possibly related to putamen gray matter volume mediated by

Figure 3. MR analyses for causal effects of PTSD on GIT disorders. Boxes represent the point estimates of causal effects, and error bars represent 95% confidence
intervals. Inverse-variance-weighted approach was adopted as the primary analysis. PTSD, post-traumatic stress disorder; PUD, peptic ulcer disease; PGM, PUD
and/or GORD and/or medications; GORD, gastroesophageal reflux disease; IBS, irritable bowel syndrome; IBD, inflammatory bowel disease; GIT, gastrointestinal
tract.
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SLC39A8 variants and expression (Luo et al., 2019). In a
phenome-wide approach, functional SLC39A8 variants are corre-
lated with brain-related traits including delirium and dementia
(McCoy, Pellegrini, & Perlis, 2019). In the immune system,
reduced SLC39A8 expression decreases blood–brain barrier integ-
rity, increases interleukin-6/interleukin-1β and nuclear factor
kappa B expression following stimulation of tumor necrosis factor
α, suggesting that ZIP8 dysfunction may exacerbate immune and
inflammatory signaling (Kebir et al., 2007; Liu et al., 2013; Melia
et al., 2019). In a gastrointestinal system, a SLC39A8 variant is
associated with Crohn disease and altered colonic mucosal micro-
biota (Li et al., 2016).

Among the seven loci identified in our meta-analysis of PTSD
and PGM, rs6973700 is mapped to mitotic spindle-assembly
checkpoint gene MAD1L1, which correlates with psychiatric sus-
ceptibility (Liu et al., 2021). For the meta-analysis of PTSD and
IBS, we found that an independent SNP rs4937872, mapped to
the neural cell adhesion molecule (NCAM1) gene, is associated
with multiple psychiatric disorders (Shiwaku et al., 2022; Wendt
et al., 2022). Among genes identified in our gene-level analysis,
BTN3A2 encodes a member of the immunoglobulin superfamily
in the juxta-telomeric region of the major histocompatibility
class 1 locus (Wu et al., 2019). BTN3A2 is significantly
up-regulated in induced pluripotent stem cells derived neurons
from schizophrenia patients and gastric tumors (Wu et al.,
2019; Zhu et al., 2017). Thus, these genes might serve as potential
candidates for both PTSD and GIT disorders.

In the pathway-based analysis for PTSD and GIT disorders
(PGM and IBD), we observed a significantly enriched pathway
‘regulation of immune response’, which plays a critical role in
the brain–gut axis (Clark & Mach, 2016; Roth, Zadeh, Vekariya,
Ge, & Mohamadzadeh, 2021). Immune dissonance represents a
key element both in the pathogenesis of PTSD complications
and in tissue repair (Jiang, 2008), while the adaptive immune
response plays a major role in the pathogenesis of GIT disorders
(Jacenik & Fichna, 2020). Analyzing SNP heritability enrichments
for PTSD and GIT disorders, we found that GORD and IBS are
mainly enriched in the central nervous and digestive systems,
which is consistent with pathway-based analysis involving the
brain–gut axis; and IBD is mainly enriched in the immune sys-
tem, which emphasizes the vital role of immune response in
PTSD and GIT disorders.

Limitations

We acknowledge several limitations of our study. First, to avoid
bias from population stratification, we restricted all data to
European ancestry, undermining generalization in other ethnic
groups. Second, despite the large sample sizes of the consortium-
based meta-analysis, the number of participants and SNPs differ
among studies, limiting the direct comparison between different
GIT disorders. Third, data from the UK biobank constitutes
approximately 35% of the effective sample size of PTSD GWAS
summary statistics, leading to considerable sample overlap in
our study. Accordingly, we performed LDSC without a con-
strained intercept and used ‘power_prune’ function in MR ana-
lysis to minimize bias from sample overlap.

In conclusion, our study provides genetic insights into the
association of PTSD and GIT disorders, and demonstrates a
shared genetic susceptibility. We observed causal effects of
GORD, PGM, IBS, and IBD on PTSD, and identified several gen-
omic loci and genes shared by PTSD and GIT disorders,

particularly the SLC39A8 gene (or isoforms), allowing transla-
tional and research implications for PTSD, GIT disorders and
their co-morbidities.
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