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Abstract

We investigate the relationship between lower bounds for the Mahler measure and splitting of primes, and
prove various lower bounds for the Mahler measure of algebraic integers in terms of the least common
multiples of all inertia degrees of primes. The results generalise work of the second author and Kumar
[‘Lehmer’s problem and splitting of rational primes in number fields’, Acta Math. Hungar. 169(2) (2023),
349-358].
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Keywords and phrases: Lehmer’s problem, Mahler measure, absolute Weil height, prime factorisation,
inertia degree.

1. Introduction

The Mahler measure of an algebraic number «, denoted by M(«), is defined by

d
M(@) = lagl | | max(1,lail),
i=1

and its absolute logarithmic height (Weil height) is defined by

(1.1

where ay, ..., @, are the conjugates of @ over Q and ay is the leading coefficient of
the minimal polynomial of @ over Z. Kronecker [4] proved that M(a) = 1 if and only
if @ is either zero or a root of unity. In [5], Lehmer investigated algebraic integers with
small Mahler measure. He showed that if @ € C is a root of

X0+ x? X -x-X-X-X+X+1=0,

then M(@) = 1.176.. .. and could not find any algebraic integer @ with M(a) < 1.176.. ..
Lehmer asked whether there exists a constant ¢ > 1 such that M(a) > ¢ for any nonzero
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algebraic integer @ which is not a root of unity. This question is now known as Lehmer’s
problem. Though this problem is still open, it has been solved for various classes of
a. If a is a nonreciprocal algebraic integer which is not a root of unity, then Smyth
[9] proved that M(a) > 1.3247 ..., the smallest Pisot number, which is the real root
of the polynomial x> — x — 1. The best unconditional lower bound for M(a) is given
by Voutier [10], who improved the lower bound of Dobrowolski [1]. Voutier proved
that if « is a nonzero algebraic integer of degree d > 2 and is not a root of unity, then
M(e) > 1 + ;(loglogd/logd)’.

The relationship between lower bounds for the Mahler measure and splitting of
primes has been explored by several mathematicians. For example, Mignotte [6]
proved that if there exists a rational prime p < dlog d which is unramified in Q(«), then
M(@) > 1.2. In particular, by taking d > 3, if 2 is unramified in Q(«), then M(a) > 1.2.
In the opposite direction, Garza [3] proved that if 2 is totally ramified in Q(a), then
M(a) > 2% = 1.189.. .. The second author and Kumar [8] generalised Garza’s result
by showing that if all the inertia degrees of primes of Og(,) which lie above 2 are
equal to one, then M(a) > 2!/4. Also, in [7], the second author generalised the results
of [8] to arbitrary base number fields. We further generalise these results, without
putting any conditions on the ramification index, and prove various lower bounds for
the Mahler measure of algebraic integers in terms of the least common multiple of all
inertia degrees of primes.

THEOREM 1.1. Fixanyr € N.Let f = (fi, fo, ..., f,) be any r-tuple of natural numbers
and f =lecm(fy, ..., f,). Consider the set S; defined by

{@ € Q: 20q(0) = PIPE - - P with [Ogwe)[P; - Z/2Z] = f; forall i € {1,...,r}).

Then, for any a € S; which is neither zero nor a root of unity,

M@) > 2UDMAQ D e r w6 and f # f; forallie{l,...,r},
a P .
21/4@/-1) if f=6o0rf=f forsomeic{l,...,r}.

REMARK 1.2. Taking ]_‘ =(1,1,...,1) in Theorem 1.1 yields [8, Theorem 1]. Also,
for any n € N, by taking f = (n,n,...,n) in Theorem 1.1, we deduce that if all the
inertia degrees of primes of Og,) Which lie above 2 are equal to n, then either M(a) >
21420 or M(a) = 1.

We prove the following result for odd rational primes.

THEOREM 1.3. Fix any reN. Let f=(fi, f....,[f.) be any r-tuple of natural
numbers with f =lem(fi,..., f;). Let p be any odd rational prime. Define the set

Sp7 by

{@ € Q: pOqg) = P'PS -+ P with [Ogue)/P; : Z/pZ] = f; foralli € {1,...,r}}.
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[3] Lower bounds for the Mahler measure 3

Then, for any algebraic unit a € Sp? which is neither zero nor a root of unity,

(p)l/l’(l’f—l) if (f,p) = (2,2° = 1) for some s € N

M) > 2 or f = f; forsomeie{l,...,r},
|/ p\UHDIP D .
(5) otherwise.

REMARK 1.4. Taking 7 =(1,1,...,1) in Theorem 1.3 shows that if all the inertia
degrees of primes of Oga) Which lie above p are equal to 1, then M(a) > (p/2)"/PP~D,
A similar type of lower bound for M(a) is obtained in [8, Theorem 3] with the
additional assumption that max{e;}<i<, < p < V[Q(a) : QJ.

We also give generalisations of these results to an arbitrary base number field K.

THEOREM 1.5. Fix any r € N. Let ]_‘= (fi, for---, fr) be any r-tuple of natural
numbers. Let K be a number field of degree d over Q. Let P be a prime ideal of Ok
which lies above 2. Consider the set Sf defined by

{a' € @ : ‘PO[((Q) = @f' :@262 cee :@f’, [O[((a)/a@,' . O[(/P] = f, forall i€ {1, . ,r}}.
Then, for any algebraic unit @ € S7 which is neither zero nor a root of unity, M(«) >
C(K, f), where C(K, f) > 1 is a constant which depends only on [K : Q] =d and f =
lem(fi, ..., f»).

THEOREM 1.6. Fix any r € N. Let ]_”: (f1, f2s---» fr) be any r-tuple of natural

numbers. Let K be a number field of degree d over Q. Let P be a prime ideal of Og
which lies above the odd prime p. Consider the set S o F defined by

{a' E@ : ‘PO[((Q) = yf] 9;2 @f’,[OK(Q)/BZi . OK/P] = f,-forallie {1,...,r}}.

Then, for any algebraic unit o € S which is neither zero nor a root of unity,
h(a@) > ¢, where ¢ >0 is a constant which depends only on p, [K:Q]=d and

f=lem(fi,..., fr).

Our paper is organised as follows. In Section 2, we recall necessary results on
absolute values on number fields and results on Zsigmondy primes. We will prove
Theorems 1.1 and 1.3 in Section 3 and Theorems 1.5 and 1.6 in Section 4.

2. Preliminaries

2.1. Valuations. Let K be a number field and | - | be a nontrivial absolute value on
K. It induces a topology on K. Two absolute values on K are said to be equivalent if
they induce the same topology on K. In each equivalence class v of nontrivial absolute
values, we choose the representative | - |, which is normalised in the following way:

x|, = x if x € Q,x > 0 and v is Archimedean,
|pl, = 1/p if v extends the p-adic absolute value on Q.
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Indeed, if v is Archimedean, then there exists an embedding o : K — C such that |x|, =
lo(x)| for all x € K. Similarly, if v extends the p-adic absolute value on Q, then there
exists a prime ideal  in O such that |x|, = p™7®/*®) for all x € K, where vp(x) is
the exponent of $ appearing in the prime factorisation of the ideal xOk; set |x|, = |x|p.
Let Mg be the set of all nontrivial normalised absolute values on K. For any v € Mg,
let K, be the completion of K with respect to v and Q, be the completion of Q with
respect to the restriction of v to Q. Put d, = [K, : Q,]. For all a € K*, we have the

product formula (see [11, page 74])
[l =1. 2.1)

veMyg

For any fixed w € Mg, we write v | w if v € My and the restriction of v to Q is w. Then
we have the degree formula (see [11, page 74])

>, K Qul=1K:Ql 2.2)
veMyg vlw
For any number field K containing «,
1
K : Q]

(see [11, page 79]). Comparing (1.1) and (2.3) gives

h(a) = Z d,log(max{l, |&|,}) (2.3)

veMg

M(a) = ]_[ max{1, |al,}%.

veMoa)

2.2. Zsigmondy primes. Let a and n be integers greater than 1. A Zsigmondy prime
for (a,n) is a prime p such that p | (@ —1) but pf (@ —1) for 1 <i<n. Ifpisa
Zsigmondy prime for (a, n), then p = 1 (mod n) and so p > n + 1. The following result
of Zsigmondy describes the cases in which Zsigmondy primes exist.

LEMMA 2.1 [2, Theorem 2.2]. If a and n are integers greater than 1, then there exists
a Zsigmondy prime for (a,n) unless (a,n) = (2,6) or n =2 and a = 2° — 1 for some
s €N,

3. Proof of Theorems 1.1 and 1.3
PROOF OF THEOREM L1. Put K = Q(e). We are given 20 = P{'P7 --- Py, with

[Ok/Pi : Z/2Z] = f.. So, we have |Ox/P;| = 2% for all i € {1,...,r}. It follows that,

fi

¥ —aeP;forallie{l,...,r}. If @ is not a unit, then M(a) > 2. So, we can
assume that @ is a unit in Og which implies that Al-1e P;forall i e{l,...,r}.
Let F =lem(2/' — 1,2 —1,...,2/ = 1). Since 2/ — 1 | F and, for any n € N,

K=y = -y )y, 3.1
we deduce that of — 1 e P, foralli e {1,...,r}.
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For each ie{l,...,r}, choose s; minimal such that 2% > e;. For any fixed
i, by the minimality of s;, we have 2" <e; for each m=0,1,...,s; — 1. Since
20 =PPY - Py CPTCPH for m=0,1,...,5,—1, we have 2€P? for
m=0,1,...,5;,—1.Since2e P;and af — 1 e P;, wehave o -1 +2=a" +1 € P,
whence o* —1¢€ Pl.z. Since 2 € Pizm for m=0,1,...,s; — 1, by repeating this
argument, o' — 1 € P2 C P, Since 2 € P, we have o*'F —1+2=0*F +1¢
P4, Thus, *"'F ~ 1 € P> for each i € 1,..., 1}.

Define s = max{sy, 52, ..., s,}. Without loss of generality, assume s = s, so that

s+1
| epfe‘.

Take any i # 1. Then, o®" F -1 ¢ 7’?6". Since 2 € P; and o®""'F — 1 € P,, we have
@®'F + 1 € P, whence o®F — 1 € P2*". Applying the same method inductively

. sj+s—si+1 4 5—S: s+1 b S—S; .
yields @®"""'F — 1 € P Thus, o®"'F — 1 € PXHT C P2, So,

02" —lp, <2720 = 1 < Lmax({1, Jalp, )" forallie(l,...,r).
1

If v | oo, then |2 F = 1|, < |o2'F + 1 < 2max({1, |a|>"'F}. Thus,

I max(L, lal,)>"'F ifv]2,

12— 11, < {max{1, [}, *"F ifvi2,v oo, (3.2)

25+1F

2max{1,|al,} if v | oo,

Since « is not a root of unity, a?"'F—1%0. Applying the product formula (2.1) to the
element @®"'F — 1 and using (3.2),

0= > [K : Qllogle?"" - 1|,
veMy
< Y Ky : Qul{—log4 + 2! Fmax{0, log |}, }}
V|2
+ > [Ky s Q2" F max{0, loglal, }
v{2,vtoo
+ D [Ky : Ql{log2 + 27! Fmax{0, log |l }}

v]oo

= -[K,: Q]log4 + Y [K, : Qullog2+ Y 2'*'Fmax{0, loglal}K, : Q).

V|2 V|co veMg

By (2.2), ZyplK, : Q1 = [K : Qland T, [K, : Q] = [K : Q). By (2.3),
D IK, : @, 1max{0, loglal,} = [K : Qlh(@).

veMg

Therefore,

0<—[K:Q]log4 +[K : Qllog?2 + 2°"'F[K : Qlh(a),
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which implies

log?2 .

2t

Using the minimality of s, we have 2°*! < 4e; < 4[Q(a) : Q]. So
log M(a) S log2 ‘
[Q@) : Q] 4[Q(a) : QIF

ha) >

from which M(a) > 2'/4F.

Case 1. Let f £6 and f # f; fori € {1,...,r}. In this case, by Lemma 2.1, there is a
Zsigmondy prime for (2, f) and it is greater than or equal to f + 1. So,

2/ -1

F=lemQ2" -1,22-1,...,2 - 1) < )
em( )<

Therefore, M(a) > 2(/+D/4@/-1,

Case 2. Let f =6 or f = f; for some i € {1,...,r}. In this case, a Zsigmondy prime
for (2, f) does not exist. So, F = lem(2 — 1,22 —1,...,27 — 1) < 27 — 1. Therefore,
M(a) > 2" 42'-1) This completes the proof of Theorem 1.1. ]

PROOF OF THEOREM 1.3. Put K = Q(e). We are given pOg = PP --- Py, with
[Ok/P; : Z/pZ] = fi. Let E = lem(p/' — 1, p” — 1,..., p/ = 1). Following exactly the
arguments in the first paragraph of the proof of Theorem 1.1, we deduce

oF —1ep;, foralliel,...,r).

LetA={ie{l,...,r} :e; > p}. Foreachi € A, choose s; minimal such that p* > e;.
For any fixed i € A, we have p" <e¢;forn =1,...,s; — 1, so that
pOx CP” foralln=1,...,5~1 (3.3)

Taking the pth power (up to s; many times) of the element o — 1 and using (3.3), we
deduce

o”E_1e plf?” c Py forallicA.
Define s = max{si}jca. Then (@”'f — 1)P™* € P*. Using (3.1), we deduce
a’f-1le P forallieA. (3.4)

Suppose there exists i € {1, ..., r} such thate; < p. Since af — 1 € P, it follows that
a’® -1 e P! P and from (3.1), we deduce that a?'X — 1 € P{. Therefore, from
(3.4),

o”F—1ePi forallie(l,... r}

So,forallie{l,...,r},

§ —eile; 1 g
" = 1lp, < p~/* < — max({1, lalp,}"'".
p
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If v | oo, then |@”E — 1], < e’ F + 1 < 2max{1,|a|” ©}. Thus,

p ' max{l,le,}P'E ifv]p,
la”E — 1], < {max{L, |al],}”'F ifvtp,vtoo, 3-5)
2 max{1, |a|,}"'® ifv| co.

Since « is not a root of unity, ”'f — 1 # 0. Applying the product formula (2.1) to the
element o”’f — 1 and using (3.5),

0= > K : Qllogl”* — 1],

veMg
< D [K, 1 Qi-log p + p'E max{0,log |al,}
vip
+ ) [K 1 QHp'Emax{0, log la, }
vip,vfoo
+ > [K, : Q){log2 + pE max{0, log lal, }}
V]oo
= D 1K, Qllogp+ ) K, : Qllog2+ Y p'Emax{0,loglal,}[K, : Q]
vlp v]oo veMg

By (22)» Zv|p[Kv : Qv] = [K : Q] and Zv|oo[Kv : Qv] = [K : Q]’ and by (23)’
D [K, : Q1 max{0, loglal,} = [K : Qlh(@).
veMyg

Therefore,
0<-[K:Q]logp+[K:Q]log2+ p°E[K : Qlh(a),

which implies i(a) > log(p/2)/p°E-. However, p* < p[Q(e) : Q] from the minimality
of s, so

logM(@) _ _log(p/2)

[Q(e) : Q] ~ plQ(e) : QIE

Thus, M(a) > (p/2)/PE.

Case 1. Let (f,p) = (2,2° — 1) forsome s € Nor f = f; forsome i € {l,...,r}. In this
case, by Lemma 2.1, a Zsigmondy prime for (p, f) does not exist and

E=lem(p" - 1,p2-1,...,pf —D<p/ - L
Therefore, M(c) > (p/2)"/P®'=D).

Case 2. Let (f,p) # (2,2° = 1) and f # f; forall i e {l,...,r}. In this case, a Zsig-
mondy prime for (p, f) exists and is greater than or equal to f + 1. So, E = lcr_n(pf t—1,
ph—1,...,pF =1 <(p/ = D)/(f+1). Therefore, M(a) > (p/2)/+*D/P?’=D_ This
completes the proof of Theorem 1.3. ]
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4. Proof of Theorems 1.5 and 1.6

For the proof of our theorems, we need the following result from [7].

LEMMA 4.1 [7, Lemma 1]. Let K be a number field and S be a finite set of places of K
over a rational prime p. Let y1,y, € Ok and p > 0 be such that for all v € S,

lyi =yaly < p™*.

Define an integer k=k,, by k=0 if (p—Dp>1 and by PFlp-p<l<
PX(p — Dp otherwise. Also, for any nonnegative integer A, define Spp(d) = Pkp+
max{0, A — k}. Then, for any nonnegative integer A and for all v € S,

W =l < e,

PROOF OF THEOREM L.5. Put L = K(a). We are given PO, = P|' P3*--- P with
fi =101/ 2 : Og/P]. Let f* be the inertia degree of P over 2. Then, |O;/ ;| = 2/ /i
forie{l,...,r} and so e P forie{l,...,r}. Since « is a unit, this gives
e P forie{l,...,r}. Since f; | f, applying (3.1), we have P R = P;
forallie{l,...,r}.

For each i € {1, ..., r}, choose s; minimal such that 2% > ¢;. For any fixed i, by the
minimality of s;, we have 2" < e¢; forn =0,1,...,s; — 1. Since

PO, = PPy P PO C PP forn=0,1,....5 -1,

we have 2 € 2% forn=0,1,...,s; — 1. Since 2 € & and 1 Z 1 e P, this gives
@ o1+2=0""1+1€ P, whence ¥ ' 2-1¢ P?. Using 2 € &7 for
n=0,1,...,s; — 1 and, applying the same method inductively,

I frsi _0si Si i
o? Y _le P cpp

Define s = max{sy, sy,...,s,}. Without loss of generality, assume s = s; so that
¥ frs_ns . S* s s i .

" 1€ P Take any i # 1. Then, o* """ —= 1€ 7. Since 2 € P; and
S fsi _osi [ f+si _osi S frsi+l _osi+l :
@ 7 1 e P, we have @@ "2 + 1 € P, whence o T 2 —1€<@f‘+1.
. . . . [ fsj+s—s; _nsi+s—s; i+S—S;
Applying the same method inductively yields o """~ —_ ] € P Thus,

ff+s _ns g—g R
T -1 e PP C P and
* fos_gs —eile; _ _ .
a — 1| < = < or i e Th
2 2 1,,@1 <2 eileie 2 1/e <2 1/d fi el

where e is the ramification degree of # over 2. Let S, (1) be as in the statement of
Lemma 4.1. As lim;_,o, Sp ,(4) = o0, applying Lemma 4.1, we deduce that there exists
a A which depends only on d such that

[ f+s _9synd _ .
la® 22 —llijZZd fori=1,...,r.
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L TR [ f+s _n9synad *fts_ns
If v | oo, then [@® "™=222' — 1|, <]aof® "7 +1 < 2max{L, |al,}*" 292", Thus,

2724 max(1, o} 22 ity | P,

1}, < {max{1, o, )@ 292" ifv 4P, vt oo, 4.1
}(zf*fﬂ_zs)zﬂ

|a(2f* f+s_2s)2/l

2 max{l, ||, if v | oo,
Since « is not a root of unity, L ) Applying the product formula (2.1)
to the element @ '"292" _ 1 and using (4.1),

0= >"[L:Qllogla® " 22 — 1,

veM;
< Z[Lv : Q{=2dlog2 + (27 /* — 252  max{0, log |, }}
VP
+ O Ly QR = 292" max{0, logal, 1)
VP, vfoo
+ D ILy : Q)log2 + 277+ = 292" max{0, log lai}}
V]oco
< -2dlog?2 Z[Lv : Q] +log?2 Z[Lv Q]

VP v]co

+ (2f"f+5 — 2524 Z [L, : Q,] max{0, log|a|,}.

veM;,
Since ¥ ,ep, [Ly : Q] max{0,loglal} = [L : QlA(a) and },[L, : Q] = [L: Q],

0 < —2dlog?2 Z[Lv : Kpl[Kp : Qo] + [L: Qllog2 + (2/ 7+ — 2924L : Qlh(a).
VP

Using 2, p[Ly : Kp] = [L: K],
[Kp : Q[L: Q]

0 < —2dlog?2 T +[L:QJlog2 + 27/ —2924L : Qlh(a).
Thus,
ha) > [Kp : (sz]log4 —log?2 S 1f)g2 .
2/ f+s — 25)24 252/ f —1)24
Using the minimality of s, we have 2° < 2¢; < 2[K(@) : K] < 2[Q(e) : Q]. Also, since
fr<d,
log M(@) S log?2

[Q@) : Q] ~ 2[Q(a) : Q24 - 1)24

Thus, M(a) > 21/2"'@”=D _Since A is only a function of d, this completes the proof of
Theorem 1.5. o
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PROOF OF THEOREM 1.6. Put L = K(a). We are given PO, = F|' P5*--- P}, with
[01/ P : Og/P] = fi. Let f* be the inertia degree of P over p. So |0,/ % = p/'/i
for ie{l,...,r}. Thus, o’ _ae P, for ie{l,...,r}. Since « is a unit, we
have o "1 =1 ¢ P forie{l,...,r}. Since f;| f, applying (3.1), we deduce that
oo epiforiefl,....r).

LetA={ie{l,...,r} :e; > p}. Foreachi € A, choose s; minimal such that p* > e;.
So for any fixed i € A, we have p" < e; forn=1,...,s; — 1, and thus,

PO, C PV forn=1,...,5-1 (4.2)

Taking the pth power (up to s; many times) of the element a” =1~ 1 and using (4.2),
we deduce that o?"®' =D — 1 ¢ e@lp C P{ for i € A. Define s = max{s;}ica. Then,
(@ ®"=D 1y’ € . From (3.1),

P e P forieA.

Suppose there exists i € {1, ..., r} such that ¢; < p. Since Y ARE R = Z;, we have
a?® D 1 ¢ PP C 27, and using (3.1), we find a?? - _ 1 ¢ . Therefore,

P 1 e PO foriefl,...,r).
So, forief{l,...,r},
lapsu,f‘f_l) _ 1|@[ < p—ei/eie — p—l/e < p—l/d,

where e is the ramification index of # over p. From Lemma 4.1, there exists a A which
depends only on p and d such that

s(pf*f— / _ .
"= ), < pd forie{l,..., ).
S0 f* s(pl™f —1)pt SO f 1\l
If v | oo, then [a@”' @ '=DP" — 1|, < o’ ? ""DP" £ 1 < 2max{L,|el? " "~"7"}. Thus,

p~4 max{l, la| 17 =0t iy | Ds
S f_ A s * .
la? " =D 1) < {max{1, |al, 7@~ Dp" ifvp,veoeo, (4.3)

2 max{1, |al,}’'?" D' ify | co.

Since « is not a root of unity, a? @ =0rt _ 1 % 0. Applying the product formula (2.1)
to the element o” ®" '~Y7" — 1 and using (4.3),

0= Z [LV : Qv] IOg |aps(]7f*f—1)p,l _ 1|v

veM;,
< > Iy : Ql{~dlog p + p*(p" " — 1)p" max{0, logal, )
vip
+ ) L QP = Dp! max{0, log o))
vip,vfoo
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[11] Lower bounds for the Mahler measure

+ Y [Ly: Qflog2 + p'(p" — Dp* max{0, log |ef,}

v]oo
= > =dIL,: Qllogp+ ) [L, : Q]log?2
vip v|oo
+ > '@ = 1yt max{0, loglal )Ly : Q1.
veMy,

Since 3 ep, [Ly : Q] max{0,log|al,} = [L : Qlh(a) and 3, [L, : Q,] = [L: Q],

0<-dlogp Z[LV : Kpl[Kp : Qp] +[L: Qllog2 + p*(p” " = Dp'[L : Qlh(a).

vIP
Using },p[L, : Kp] = [L : K] gives
[Kp : Q,IIL : Q]
0<-dlogp———F——" =
SN TEYe]

Thus,
[Kp : Qp]llog p —log2 , _ log(p/2)

(I —ppt T p(pff = Dpt

h(a) >

From the minimality of s, we have p* < p[Q(«a) : Q]. Moreover, f* < d, so that

logM(@) _ log(p/2)
[Q@ Q= plQ@) : QT = Dpt”

+[L: Qllog2 + p*(p’/ - Dp'[L : Qlh(a).

Thus, M(@) > (p/2)"/7""' "=V _ Since A is only a function of d, this completes the proof

of Theorem 1.6.
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