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Abstract

In this paper, we study the boundary blow-up problem related to the infinity Laplacian⎧⎪⎪⎨⎪⎪⎩Δ
h
∞u = uq in Ω,

u = ∞ on ∂Ω,

where Δh
∞u = |Du|h−3〈D2uDu, Du〉 is the highly degenerate and h-homogeneous operator associated with

the infinity Laplacian arising from the stochastic game named Tug-of-War. When q > h > 1, we establish
the existence of the boundary blow-up viscosity solution. Moreover, when the domain satisfies some
regular condition, we establish the asymptotic estimate of the blow-up solution near the boundary. As an
application of the asymptotic estimate and the comparison principle, we obtain the uniqueness result of
the large solution. We also give the nonexistence of the large solution for the case q ≤ h.
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1. Introduction

In this paper, we consider the following family of degenerate elliptic equations with a
parameter h > 1: ⎧⎪⎪⎨⎪⎪⎩Δ

h
∞u = uq in Ω,

u = ∞ on ∂Ω,
(1-1)

where q is a given constant and

Δh
∞u := |Du|h−3〈D2uDu, Du〉 = |Du|h−3

n∑
i,j=1

uxi uxj uxixj
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denotes the h-homogeneous nonlinear operator. Due to the high degeneracy of the
operator Δh

∞u, the associated problems do not have smooth solutions in general.
Therefore, solutions are understood in the viscosity sense (see Section 2 for the precise
definition). Notice that the h stands for the homogeneous degree of the operator.
Throughout this paper, we denote Ω to be a bounded domain in the Euclidean space
R

n(n ≥ 2) and ∂Ω to be its boundary.
The boundary condition in (1-1) is understood in the following sense:

lim
x→z

u(x) = ∞, z ∈ ∂Ω,

and the solution of (1-1) is called the ‘boundary blow-up solution’, ‘large solution’,
or ‘explosive solution’ due to the explosive boundary condition. The motivation for
the name is as follows: if U is a boundary blow-up solution, the comparison principle
(Theorem 2.3) implies that any solution V to Δh

∞u = uq in Ω with bounded boundary
data satisfies V(x) ≤ U(x), x ∈ Ω. Hence, the boundary blow-up solution provides local
uniform bounds for all other solutions in the domain Ω, regardless of the boundary
data.

The boundary blow-up problem (1-1) has been studied in two special cases,
h = 1 [19] and h = 3 [29]. For h = 1, Δh

∞u is the 1-homogeneous normalized infinity
Laplacian operator,

ΔN
∞u := |Du|−2〈D2uDu, Du〉.

For h = 3, Δh
∞u is the 3-homogeneous infinity Laplacian operator,

Δ∞u := |Du|2ΔN
∞u.

And for other h, we have

Δh
∞u = |Du|h−3Δ∞u = |Du|h−1ΔN

∞u.

The infinity Laplacian Δ∞ was first introduced by Aronsson [2] in the 1960s in
connection with the geometric problem of finding the so-called absolutely minimizing
Lipschitz extension. For more properties of the infinity harmonic functions (the
viscosity solution to Δ∞u = 0), one can see the works of Crandall [10], Crandall et al.
[11], Aronsson et al. [3], and the references therein.

For the inhomogeneous equation

Δ∞u = f (x),

Lu and Wang [26] proved the existence and uniqueness of a viscosity solution of
the Dirichlet problem when the inhomogeneous term f does not change its sign. In
[4, 5], Bhattacharya and Mohammed studied the existence or nonexistence of viscosity
solutions to the Dirichlet problem⎧⎪⎪⎨⎪⎪⎩Δ∞u = f (x, u) in Ω,

u = g on ∂Ω,

under some conditions for f and g.

https://doi.org/10.1017/S1446788722000131 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000131


[3] Boundary blow-up solutions to equations involving the infinity Laplacian 339

The normalized version ΔN
∞u was first introduced by Peres, Schramm, Sheffield,

and Wilson from the point of randomized theory named Tug-of-War [33]. Now let us
briefly recall the random-turn, ε-tug-of-war game. This is a zero sum game with two
players in which the earnings of one of them are the losses of the other. Given a step
size ε > 0, let f ∈ C(Ω) be a running payoff function and g ∈ C(∂Ω) be a final payoff
function. The starting position is x0 ∈ Ω. At the k th step, a fair coin is tossed, and the
player who wins the toss may move the token from xk−1 to any xk with |xk − xk−1| < ε.
The game ends when xm ∈ ∂Ω, and player II pays to player I the amount

Payoff = g(xm) +
m∑

i=1

f (xi−1).

If the token never reaches ∂Ω and the game thus fails to terminate, each of the players
must pay a fine of +∞. The value function VI(x0) for Player I is, roughly, the minimum
that Player I can expect to win by playing optimally, while the value function VII(x0) is
the maximum that Player II can expect to be required to pay, by playing optimally.

According to the dynamic programming principle, one gets VI(x) = VII(x) and VI

satisfies ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 (u(x) − min

B(x,ε)∩Ω
u(y)) − 1

2 ( max
B(x,ε)∩Ω

u(y) − u(x)) = f (x) in Ω,

u = g on ∂Ω.

Furthermore, the corresponding expectation value function uε of this game exists and
converges (as ε→ 0) to a function u which is the unique solution of the problem

⎧⎪⎪⎨⎪⎪⎩Δ
N
∞u = f (x) in Ω,

u = g on ∂Ω.

For more stochastic games related to the normalized infinity Laplacian, one can consult
the papers [21, 23, 24, 32, 35], and so on. The normalized infinity Laplacian equation
was also well studied by Lu and Wang based on partial differential equation methods
in [27]. Notice that ΔN

∞u is not only degenerate but also singular when the gradient
of u vanishes. In the last three decades, the infinity Laplacian has received much
attention because it is not only highly degenerate but also has many applications in
image processing [1, 6, 13] and optimal mass transportation problems [14].

In [22], Liu and Yang established the existence of the viscosity solutions for the
Dirichlet problem of the inhomogeneous equation

Δh
∞u(x) = f (x).

In [34], Portilheiro and Vázquez studied the parabolic version of the operator
Δh
∞. They proved the existence and uniqueness of viscosity solutions for the
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initial-Dirichlet boundary problem⎧⎪⎪⎨⎪⎪⎩ut − Δh
∞u = 0 in Q =: Ω × (0, T),

u = g on ∂pQ.

They also established the asymptotic behavior of the viscosity solution for the problem
posed in the whole space.

The boundary blow-up solutions to the elliptic equations have many applications
in stochastic differential processes [20], population dynamics [15, 31], and the
equilibrium state of charged gas in a container [16], and so on. Specifically, Lasry
and Lions [20] considered a stochastic control problem

dXt = a(Xt) dt + dBt, X0 = x ∈ Ω, t > 0,

where the state of the controlled system is a diffusion process, Bt is a standard
Brownian motion, a is the control process, Xt is the state process, and P(Xt ∈ ∂Ω) > 0.
To get the state constraints (that is, Brownian motion in a bounded domain), one needs
to use the unbounded drifts a. In other words, one will have to choose feedback controls
that push back the state process inside Ω when it gets near ∂Ω. And the intensity of
the state blows up at the boundary of Ω. Therefore, they defined the class A of such
feedback controls. And for each a ∈ A, they considered the cost function

J(x, a) = E
{ ∫ ∞

0

[
f (Xt) +

1
q
|a(Xt)|q

]
e−λtdt

}
for all x ∈ Ω,

where E denotes the expectation, q > 1, f is a given function on Ω which is bounded
from below and the positive parameter λ denotes the so-called discount factor. Then,
by the dynamic programming principle and probability analysis, they showed that the
minimum u (called the value function) of the function J

u(x) = inf
a∈A

J(x, a) for all x ∈ Ω,

satisfies the following boundary blow-up problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1

2
Δu +

1
p
|Du|p + λu = f (x), x ∈ Ω,

u(x) = ∞, x ∈ ∂Ω,

where p = q/(q − 1) and the optimal feedback control a(·) = −|Du|p−2Du(·). Note that
for h = 1, the operator Δh

∞ shares the same structure with the standard Laplacian for
1-dimension. Hence, it is meaningful to consider the boundary blow-up problem of
Δh
∞.

In the present work, we are interested in the boundary blow-up problem (1-1).
The h-degree homogeneous infinity Laplacian equation (1-1) is of intrinsic interest,
because it is not only strongly degenerate, but also has no variational structure and
divergence form.

Our main results are summarized as follows.
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THEOREM 1.1. Let Ω ⊂ Rn be a bounded domain. If q > h, then there exists a positive
viscosity solution to the boundary blow-up problem (1-1).

When the domain possesses C1 regularity, we can establish the following asymp-
totic estimate near the boundary and uniqueness of large solutions to (1-1).

THEOREM 1.2. LetΩ ⊂ Rn be a bounded domain. Assume that there exists a neighbor-
hoodN of ∂Ω such that dist(x, ∂Ω) ∈ C1(N ∩Ω) and q > h, then the viscosity solution
u to (1-1) satisfies the precise boundary behavior

u(x) ∼
((h + 1

q − h

)h q + 1
q − h

)1/(q−h)

dist(x, ∂Ω)−(h+1)/(q−h) as dist(x, ∂Ω)→ 0. (1-2)

Furthermore, the viscosity solution of (1-1) is unique.

THEOREM 1.3. LetΩ ⊂ Rn be a bounded domain. If q ≤ h, then the boundary blow-up
problem (1-1) has no positive solution.

In [19], Juutinen and Rossi established the existence, uniqueness, and asymptotic
behavior for the large solutions of the normalized infinity Laplacian⎧⎪⎪⎨⎪⎪⎩Δ

N
∞u = uq in Ω,

u = ∞ on ∂Ω,

for q > 1. In [29, 30], Mohammed and Mohammed studied the boundary blow-up
solutions of the infinity Laplacian⎧⎪⎪⎨⎪⎪⎩Δ∞u = b(x) f (u) in Ω,

u = ∞ on ∂Ω,
(1-3)

where b ∈ C(Ω) is nonnegative, f ∈ C[0,∞) ∩ C1(0,∞), f (0) = 0, f (s) > 0, s > 0, and
f (s) is nondecreasing on (0,∞]. They proved that the boundary blow-up problem
of (1-3) has a nonnegative viscosity solution if the following Keller–Osserman-type
condition holds:

Ψ (r) :=
∫ ∞

r

dτ

4F(τ)1/4 < ∞ for all r > 0,

where F(τ) =
∫ τ

0 f (ν) dν.
Most recently, Wang et al. [36] studied the second-order asymptotic behavior

of boundary blow-up viscosity solutions (1-3) based on Karamata regular variation
theory which was first introduced by Cîrstea and Rǎdulescu in a stochastic process to
study the boundary behavior and uniqueness of solutions to boundary blow-up elliptic
problems. A series of rich and significant information about the boundary behavior of
solutions was obtained based on such theory [7–9]. In [37], under appropriate structure
conditions on the nonlinear term f , Zhang established the following the boundary
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estimate of large solutions to problem (1-3):

lim
d(x)→0

u(x)
ψ(K(d(x)))

= 1,

where k ∈ C1 is positive and nondecreasing, K(t) =
∫ t

0 k(s) ds satisfies

lim
t→0+

d
dt

(K(t)
k(t)

)
= Ck,

and ψ satisfies ∫ ∞
ψ(t)

ds
(4F(s))1/4 = t.

In [28], the boundary behavior of the boundary blow-up viscosity solutions to problem
(1-3) was studied under different conditions on the weight function b(x) and the
nonlinear term f .

To obtain the existence of boundary blow-up viscosity solutions of (1-1), we
first establish the comparison principle and then combine Perron’s method with
compactness arguments. Due to the strong degeneracy of the operator Δh

∞ and the
boundary blow-up condition, it is difficult to study the comparison principle for
viscosity solutions of (1-1). To overcome this difficulty, we employ the perturbation
method and the logarithmic transformation of functions so that the double variables
method can be carried out in the usual way. Then we consider the approximate
problems with boundary condition u = M, where M ≥ 1 is a constant. To establish
the existence of large solutions, a difficulty with respect to the degenerate operators is
the lack of the existence of barriers. Thanks to the particular structure of Δh

∞, we can
construct ‘good’ barriers and use the standard Perron method to get the existence of
approximate solutions. Finally, based on compactness analysis, we establish that the
limit function of the approximate solutions is the desired boundary blow-up solution.
To conclude that the limit is finite, we use again the comparison principle with a radial
large solution obtained by analyzing the corresponding ordinary differential equation.

One should notice that if the regularity assumption of Theorem 1.2 holds, then the
distance function is a solution of Δh

∞v = 0 near the boundary. Therefore, we can perturb
the distance function to analyze the asymptotic behavior near the boundary. Based on
the asymptotic estimates and the comparison principle, the uniqueness result of the
viscosity solution follows immediately. Let us point out that, unlike the case h = 1,
the operator Δh

∞ is quasi-linear even in dimension 1. Therefore, we must make a subtle
analysis.

Due to the high degeneracy of Δh
∞, we employ the logarithmic transformation of

functions and comparison principle to obtain the nonexistence of the large solution of
(1-1) for the case q ≤ h.

The outline of this paper is as follows. In Section 2, we give the definition of
the viscosity solution to (1-1) and prove the comparison principle for the equation
Δh
∞u = uq based on the perturbation method of viscosity solutions. In Section 3, based
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on the comparison principle, we establish the existence of viscosity solutions to (1-1)
by Perron’s method and compactness analysis for q > h. In Section 4, under some
regular assumption of the domain, we give the characteristic of the boundary blow-up
solution near the boundary, and then by the comparison principle, we obtain the
uniqueness of solutions to (1-1). Finally, in Section 5, we give the nonexistence of
viscosity solutions to (1-1) for q ≤ h.

2. Comparison principles

In this section, we first give the definition of the viscosity solutions to the equation

Δh
∞u = uq in Ω, (2-1)

where q > 0, and then establish the comparison results by the double variables method
based on the viscosity solutions theory. Notice that the operator Δh

∞ is singular for
1 < h < 3 at points where the gradient of the function vanishes. To give a reasonable
explanation when the gradient vanishes, we use the definition of viscosity solutions
based on semi-continuous extension and we refer the reader to [12, 22, 27], and so
on. In fact, the singularity is removable when h > 1 since we are not considering here
h = 1. Therefore, we can write (2-1) as

Fh(D2u, Du) = uq in Ω,

where Fh : S × (Rn\{0})→ R and Fh(M, p) := |p|h−3(Mp) · p. Here S denotes the set of
n × n real symmetric matrices. Since h > 1, we have limp→0 Fh(M, p) = 0 for arbitrary
M ∈ S. Hence, we can define the continuous extension of Fh as follows:

Fh(M, p) :=

⎧⎪⎪⎨⎪⎪⎩Fh(M, p) if p � 0,
0 if p = 0.

We remark that due to the strong degeneracy of (2-1), it is not clear that the functions
that one would like to call solutions are actually differentiable even once.

DEFINITION 2.1. Suppose that u : Ω→ R is an upper semi-continuous and nonnega-
tive function. If, for every x0 ∈ Ω and test function ϕ ∈ C2(Ω) such that u(x0) = ϕ(x0)
and u(x) ≤ ϕ(x) for all x ∈ Ω near x0, there holds

Fh(D2ϕ(x0), Dϕ(x0)) ≥ ϕ(x0)q,

then we say u is a viscosity subsolution of (2-1).
Similarly, suppose that u : Ω→ R is a lower semi-continuous and nonnegative

function. If, for every x0 ∈ Ω and test function ϕ ∈ C2(Ω) such that u(x0) = ϕ(x0) and
u(x) ≥ ϕ(x) for all x ∈ Ω near x0, there holds

Fh(D2ϕ(x0), Dϕ(x0)) ≤ ϕ(x0)q,

then we say u is a viscosity supersolution of (2-1).
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If a continuous function u is both a viscosity subsolution and a viscosity supersolu-
tion of (2-1), then we say u is a viscosity solution of (2-1).

REMARK 2.2. Let u, v ∈ C(Ω). The two statements below follow easily from the
definition of a viscosity sub (super)-solution of (2-1).

(i) If u and v are both viscosity subsolutions of (2-1), then max{u, v} is also a
viscosity subsolution of (2-1).

(ii) If u and v are both viscosity supersolutions of (2-1), then min{u, v} is also a
viscosity supersolution of (2-1).

Because of the degeneracy at the points where the gradient vanishes and the
explosive boundary condition, the general comparison result stated in [12] does
not apply to (2-1). Now we present a comparison principle which is proved via a
perturbation argument.

THEOREM 2.3. Let q ≥ h. Suppose that u and v are nonnegative continuous functions
defined in a bounded domain Ω and satisfy

Δh
∞u(x) ≥ u(x)q for all x ∈ Ω

and

Δh
∞v(x) ≤ v(x)q for all x ∈ Ω

in the viscosity sense. If

lim sup
u(x)
v(x)
≤ 1 as dist(x, ∂Ω)→ 0, (2-2)

then we have u ≤ v in Ω.

One should notice that assumption (2-2) implies that v > 0 near ∂Ω so as to make
the ratio u/v well defined.

PROOF. We argue it by contradiction. Suppose that

sup
Ω

(u − v) > 0.

Then, due to (2-2), there exist ε > 0 small enough and x0 ∈ Ω such that

M := u(x0) − vε(x0) = sup
x∈Ω

(u(x) − vε(x)) > 0, (2-3)

where vε := (1 + ε)v. Notice that assumptions (2-2) and (2-3) also imply that there
exists an open set Ω0 ⊂⊂ Ω such that x0 ∈ Ω0 and

M = sup
x∈Ω0

(u(x) − vε(x)) > sup
x∈∂Ω0

(u(x) − vε(x)).

Since q ≥ h and v is a viscosity supersolution of (2-1), one can verify that

Δh
∞vε = (1 + ε)hΔh

∞v ≤ (1 + ε)hvq = (1 + ε)h−qvq
ε ≤ vq

ε
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in the viscosity sense, that is, vε is also a viscosity supersolution of (2-1).
Based on the ideas in [12], we double the variables

wj(x, y) := u(x) − vε(y) − j
4
|x − y|4, (x, y) ∈ Ω0 ×Ω0, j = 1, 2, . . . .

We denote the maximum point of wj over Ω0 ×Ω0 by (xj, yj) and Mj := wj(xj, yj).
According to Proposition 3.7 in [12], we have

lim
j→∞

Mj = lim
j→∞

(u(xj) − vε(yj) − j|xj − yj|4/4) = M

and

lim
j→∞

j|xj − yj|4/4 = 0.

Furthermore, xj → x0, yj → x0 as j→ ∞. It is obvious that M = u(x0) − vε(x0). Due to
M > sup∂Ω0

(u − vε), we have xj, yj are interior points of Ω0 for j large enough.
Set

ψ(x) = j|x − yj|4/4, φ(y) = −j|xj − y|4/4.

It is clear that the functions u − ψ and vε − φ have a local maximum at xj and a local
minimum at yj. We consider the two cases: either xj � yj or xj = yj for j large enough.

Case 1: If xj = yj, we have Dψ(xj) = 0 and D2ψ(xj) = 0. Since u is a viscosity
subsolution, we have

0 ≥ uq(xj) = ψ
q(xj). (2-4)

By (2-3), we have

u(xj) ≥ u(xj) − vε(yj) ≥ u(xj) − vε(yj) −
j
4
|xj − yj|4 = wj(xj, yj) ≥ u(x0) − vε(x0) > 0.

(2-5)

Obviously, (2-5) contradicts (2-4).

Case 2: If xj � yj, we use jets and the maximum principle for semi-continuous
functions, see [12]. Now we recall the definitions of super-jets and sub-jets. The
second-order super-jet of an upper semi-continuous function γ at x0 ∈ Ω is the set

J2,+γ(x0) = {(Dϕ(x0), D2ϕ(x0)) : ϕ ∈ C2(Ω) and γ − ϕ has a local maximum at x0},

and its closure is

J
2,+
γ(x0) :={(p, M) ∈ Rn × S : there exists (xi, pi, Mi) ∈ Ω × Rn × S

such that (pi, Mi) ∈ J2,+γ(xi) and (xi, γ(xi), pi, Mi)→ (x0, γ(x0), p, M)}.
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Here S denotes the set of n × n real symmetric matrices. Similarly, the second-order
sub-jet of a lower semi-continuous function γ at x0 ∈ Ω is the set

J2,−γ(x0) = {(Dϕ(x0), D2ϕ(x0)) : ϕ ∈ C2(Ω) and γ − ϕ has a local minimum at x0},

and its closure is

J
2,−
γ(x0) :={(p, M) ∈ Rn × S : there exists (xi, pi, Mi) ∈ Ω × Rn × S

such that (pi, Mi) ∈ J2,−γ(xi) and (xi, γ(xi), pi, Mi)→ (x0, γ(x0), p, M)}.

By the maximum principle for semi-continuous functions in [12], there exist
symmetric matrices Xj, Yj ∈ S such that Yj − Xj ≥ 0 and

( j|xj − yj|2(xj − yj), Xj) ∈ J
2,+

u(xj),

( j|xj − yj|2(xj − yj), Yj) ∈ J
2,−

vε(yj).

For simplicity, we denote pj = j|xj − yj|2(xj − yj). Again since u and vε are a viscosity
subsolution and supersolution, respectively, we have

0 ≤ |pj|h−3〈Xj pj, pj〉 − uq(xj)
≤ |pj|h−3〈Yj pj, pj〉 − vq

ε(yj) + vq
ε(yj) − uq(xj)

≤ vq
ε(yj) − uq(xj),

where we use Yj − Xj ≥ 0. Passing to the limit and noting q ≥ h > 1, we obtain vε(x0) ≥
u(x0), which is a contradiction to (2-3). �

REMARK 2.4. In the above proof, the assumption q ≥ h was used to guarantee that
(1 + ε)v is also a supersolution if v is, and the rest of the argument does still work for
all q > 0. Therefore, we can also establish the following comparison result which will
be needed to establish the existence of the large solution in Section 3. We leave its
proof to the reader.

THEOREM 2.5. Let q > 0. Suppose that u and v are nonnegative continuous functions
defined in the closure of a bounded domain Ω, and satisfy

Δh
∞u(x) ≥ u(x)q for all x ∈ Ω

and

Δh
∞v(x) ≤ v(x)q for all x ∈ Ω

in the viscosity sense. Then u ≤ v on ∂Ω implies u ≤ v in Ω.

3. Existence of boundary blow-up solutions for q > h

In this section, we focus on the existence of boundary blow-up solutions to (1-1)
for the case q > h. First, we show certain radial solutions to (1-1) on a ball. Then we
establish the existence of large solutions of (1-1) based on Perron’s method and the
compactness argument.
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First, we consider the following boundary blow-up problem in the ball BR(x0):⎧⎪⎪⎨⎪⎪⎩Δ
h
∞u = uq in BR(x0),

u = ∞ on ∂BR(x0),
(3-1)

where q > h. We look for solutions of the form u(x) = g(r), where r = |x − x0|. By
direct calculation, we get

Du(x) = g′(r)
x − x0

|x − x0|
and

D2u(x) =
[
g′′(r)

(x − x0) ⊗ (x − x0)
|x − x0|2

+ g′(r)
1

|x − x0|
I − g′(r)

(x − x0) ⊗ (x − x0)
|x − x0|3

]
for x � x0, where ⊗ denotes the tensor product. Then u satisfies

Δh
∞u = uq, x ∈ BR(x0)\{x0}, (3-2)

if and only if

|g′(r)|h−1g′′(r) = gq(r), r ∈ (0, R), (3-3)

which is a 1-dimensional case for (3-2).
Now we consider the nonnegative solution of the following initial value problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

|g′(r)|h−1g′′(r) = gq(r), r ∈ (0, R),
g(0) = τ,
g′(0) = 0,

(3-4)

where τ > 0 and 0 < R < ∞. Our aim is to find a solution satisfying (3-4) and

lim
r→R

g(r) = +∞. (3-5)

LEMMA 3.1. Let 0 < R < ∞ and q > h > 1 be given. Then, there exists τ > 0 (depend-
ing on R, q, and h) such that problem (3-4) admits a nonnegative solution g ∈
C2((0, R)) ∩ C1([0, R)) satisfying (3-5).

PROOF. Notice that the above discussion implies g ∈ C2((0, R)) ∩ C1([0, R)). Since
gq is nonnegative and g′(0) = 0, we integrate (3-3) on (0, r), and then we get g′ is
nonnegative in (0, R). Next we multiply both sides of the differential equation (3-3) by
g′ and integrate on (0, r). We get

g′(r) =
[h + 1
q + 1

(g(r)q+1 − g(0)q+1)
]1/(h+1)

.

Therefore, an implicit solution of the initial value problem (3-4) is∫ g(r)

τ

ds
(sq+1 − τq+1)1/(h+1)

=

(h + 1
q + 1

)1/(h+1)

r for every r ∈ (0, R). (3-6)
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Using the change of variables kq+1 = sq+1 − τq+1, we get

ds = kq · (kq+1 + τq+1)−q/(q+1) dk

and ∫ g

τ

ds
(sq+1 − τq+1)1/(h+1)

=

∫ v

0

k(qh−1)/(h+1)

(kq+1 + τq+1)q/(q+1)
dk,

where v = (gq+1 − τq+1)1/(q+1). Since q > h, this integral is finite for any v > 0. Thus
for any g > τ, we have

lim
v→∞

∫ v

0

k(qh−1)/(h+1)

(kq+1 + τq+1)q/(q+1)
dk ≤

∫ τ

0
τ−qk(qh−1)/(h+1) dk + lim

v→∞

∫ v

τ

k−(q+1)/(h+1) dk

=

( h + 1
h(q + 1)

+
h + 1
q − h

)
τ−(q−h)/(h+1)

and

lim
v→∞

∫ v

0

k(qh−1)/(h+1)

(kq+1 + τq+1)q/(q+1)
dk ≥

∫ τ

0

k(qh−1)/(h+1)

2q/(q+1)τq dk

= 2−q/(q+1) h + 1
h(q + 1)

τ−(q−h)/(h+1).

By continuity, this means that for any fixed τ > 0, the function

g �−→
∫ g(r)

τ

ds
(sq+1 − τq+1)1/(h+1)

is a bijection from [τ,∞) to [0, �τ) for some constant �τ > 0. Moreover, �τ → 0 as
τ→ ∞ and �τ → ∞ as τ→ 0. Choosing τ such that

�τ =
(h + 1
q + 1

)1/(h+1)

R,

we get the implicit function defined in (3-6) satisfying (3-4) and (3-5). �

REMARK 3.2. During the above procedure, we have obtained

C1τ
−(q−h)/(h+1) ≤

∫ ∞
τ

ds
(sq+1 − τq+1)1/(h+1)

≤ C2τ
−(q−h)/(h+1),

where C1 = 2−q/(q+1)(h + 1)/(h(q + 1)) and C2 = (h + 1)/(h(q + 1)) + (h + 1)/(q − h).
This implies

C1τ
−(q−h)/(h+1) ≤ �τ ≤ C2τ

−(q−h)/(h+1).

Since g(0) = τ and

�τ =
(h + 1
q + 1

)1/(h+1)

R,
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we get

C̃1R−(h+1)/(q−h) ≤ g(0) ≤ C̃2R−(h+1)/(q−h), (3-7)

where C̃1 and C̃2 are positive constants, which depend only on q. Moreover, the
solution g obtained as above satisfies

C̃1(R − r)−(h+1)/(q−h) ≤ g(r) ≤ C̃2(R − r)−(h+1)/(q−h), r ∈ (0, R).

Indeed, for 0 < r < R, ε > 0, let g̃(s) be the solution of (3-4) in the interval (0, r +
Rε), where Rε = R − r − ε. Since g̃(s) blows up on the boundary of the ball Br+Rε(x0),
that is,

lim
s→r+Rε

g̃(s) = +∞,

the comparison principle implies g ≤ g̃ in the interval (0, r + Rε). Especially, we have

g(r) ≤ g̃(r) ≤ C̃2R−(h+1)/(q−h)
ε ,

where we use (3-7). Letting ε→ 0, we have g(r) ≤ C̃2(R − r)−(h+1)/(q−h). For the lower
bound estimate, see Remark 3.4.

LEMMA 3.3. There exists a positive viscosity solution of problem (3-1).

PROOF. Set

U(x) := g(|x − x0|), (3-8)

where g and τ are defined in Lemma 3.1. We want to show that the function U in (3-8)
is the desired viscosity solution of the problem (3-1).

Noticing that U ∈ C2(BR(x0) \ {x0}) ∩ C1(BR(x0)), we have that U is a classical
solution in BR(x0) \ {x0}, which implies U is also a viscosity solution in the ball BR(x0)
except x0.

Now we show that U is indeed a viscosity solution at x0. Let ϕ ∈ C2(BR(x0)) be
such that ϕ touches U from below at x0 ∈ BR(x0). Noting that Dϕ(x0) = DU(x0) = 0,
we have Δh

∞ϕ(x0) = 0 ≤ U(x0)q. Therefore, U is a viscosity supersolution at x0.
Next we show that U is a viscosity subsolution at x0. Consider the test function

ϕ ∈ C2(BR(x0)) such that U − ϕ has a local maximum at x0 ∈ BR(x0). Since Dϕ(x0) =
DU(x0) = 0, we have

U(x) − U(x0) ≤ ϕ(x) − ϕ(x0)

= 1
2 〈D

2ϕ(x0)(x − x0), x − x0〉 + o(|x − x0|2) as |x − x0| → 0.

Taking x − x0 = te, where e is a unit vector and t > 0, we get

U(x0 + te) − U(x0) ≤ 1
2 〈D

2ϕ(x0)e,e〉t2 + o(t2) as t → 0.

This is equivalent to

g(t) − g(0) ≤ 1
2 〈D

2ϕ(x0)e,e〉t2 + o(t2) as t → 0. (3-9)
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Multiplying by g′(r) in (3-3) and integrating on (0, r), we get

1
h + 1

|g′(r)|h+1 =

∫ g(r)

τ

uqdu ≥ τq(g(r) − τ).

Since g′(r) is nonnegative in (0, R), one has

g′(r)[(h + 1)(g(r) − τ)]−1/(h+1) ≥ τq/(h+1).

Integrating this again on (0, r), we have

g(r) − τ ≥ Cr(h+1)/h, r ∈ (0, R),

where C is a positive constant. Then we have

Ct(h+1)/h ≤ g(t) − τ = g(t) − g(0),

which contradicts (3-9). Hence, U is a viscosity subsolution at x0. �

REMARK 3.4. One can verify that

uR(x) :=
((h + 1

q − h

)h q + 1
q − h

)1/(q−h)

(R − |x − x0|)−(h+1)/(q−h)

is a classical solution of (3-2) in BR(x0) \ {x0}. Noticing q > h, we have that
limx→∂BR(x0) uR(x) = ∞. Since uR is not differentiable at x = x0, we have uR is a
classical boundary blow-up solution of (3-1) in BR(x0) \ {x0}. Additionally, uR is a
viscosity subsolution of (3-1) in BR(x0) since there are no test functions touching uR

from above at x0. However, it is not a viscosity supersolution at x0 because one can
test it from below by test functions with small but nonzero gradient and any Hessian.

REMARK 3.5. If u is a viscosity solution of (3-1) in BR(x0), then uR ≤ u. In fact, for
any ε > 0, we have uR+ε ≤ u in BR(x0) based on the comparison principle. Therefore,
uR+ε converges locally uniformly to u as ε→ 0.

Next, we study the following problem:⎧⎪⎪⎨⎪⎪⎩Δ
h
∞u = uq in Ω,

u(x) = M on ∂Ω,
(3-10)

where M > 1 is a fixed constant. Since we want to study the boundary blow-up solution
of the problem (1-1), in fact, we are interested in M sufficiently large.

THEOREM 3.6. For any M > 1, there exists a unique, nonnegative viscosity solution
uM ∈ C(Ω) to (3-10).

PROOF. The uniqueness follows immediately by the comparison principle,
Theorem 2.5. The proof of the existence relies on Perron’s method applied to viscosity
solutions. It is obvious that u = M is a viscosity supersolution of (3-10).
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Next we want to construct a viscosity subsolution with appropriate boundary value.
For z ∈ ∂Ω, let

vz(x) = M − C|x − z|α, x ∈ Ω,

where α ∈ (0, 1) and C ≥ 1 is to be determined. One can verify that

Δh
∞vz(x) = (1 − α)(αC)h|x − z|h(α−1)−1 ≥ (1 − α)αh|x − z|h(α−1)−1.

Choosing 0 < δ = Mq/((1 − α)αh)1/(h(α−1)−1) < 1 and C = (δ/2)−αM, we get vz ≤ 0
outside Bδ/2(z) and

Δh
∞vz(x) ≥ Mq ≥ vq

z (x) for all x ∈ Bδ(z).

Then the function

u(x) = max{0, sup
z∈∂Ω

(M − C|x − z|α)}

is the desired viscosity subsolution. Hence, using the standard Perron method, we can
obtain the existence of a nonnegative viscosity solution uM to the problem (3-10). �

REMARK 3.7. From the above proof, we can see that Theorem 3.6 still holds for any
q > 0, not just for q > h. We use this fact in the proof of the nonexistence of boundary
blow-up solutions to (1-1) for 0 < q ≤ h in Section 5.

With the aid of Theorem 3.6 and the compactness method, we can establish the
existence of boundary blow-up viscosity solutions to (1-1). To establish the existence
of large solutions, a difficulty with respect to the degenerate operators is the lack of
existence of barriers. However, thanks to the special structure of the operator Δh

∞, we
can construct appropriate barriers without assuming any regularity of the boundary of
the domain.

Proof of Theorem 1.1. By the comparison principle, we have that the sequence {uM}
obtained in Theorem 3.6 is increasing. Hence, the limit function u∞ : Ω→ [0,∞]

u∞(x) := lim
M→∞

uM(x)

exists. Next we show that u∞ is finite in Ω and gives the desired solution to (1-1) for
q > h.

Fix x0 ∈ Ω and r > 0 so that Br(x0) ⊂ Ω. By Lemma 3.3, there exists a radial
function U as constructed in (3-8) satisfying⎧⎪⎪⎨⎪⎪⎩Δ

h
∞U(x) = Uq(x), x ∈ Br(x0),

lim
x→z

U(x) = ∞, z ∈ ∂Br(x0).

The comparison principle implies uM ≤ U in Br(x0) for every M > 1. Hence, u∞ ≤ U
in Br(x0). This means that u∞ is locally bounded in Ω.

Since Δh
∞uM = uq

M ≥ 0 in the viscosity sense and {uM} is locally uniformly bounded,
the Lipschitz continuity of uM (see for example Lemma 2.9 in [3]) implies that {uM}
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is also equicontinuous. Therefore, uM converges to u∞ locally uniformly as M → ∞.
Then we have u∞ is a viscosity solution of Δh

∞u = uq in Ω by the stability theory of
viscosity solutions [12].

Next we show that limx→z u∞(x) = ∞ for all z ∈ ∂Ω. Consider the barrier function

w(x) = Hq(|x − z| + ε)α, x ∈ Ω,

where z ∈ ∂Ω, ε > 0, α = −(h + 1)/(q − h), and

Hq =

((h + 1
q − h

)h q + 1
q − h

)1/(q−h)

.

Then, a direct calculation yields

Dw(x) = αHq(|x − z| + ε)α−1 x − z
|x − z|

and ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
D2w(x) = α(α − 1)Hq(|x − z| + ε)α−2 x − z

|x − z| ⊗
x − z
|x − z|

+αHq(|x − z| + ε)α−1
( I
|x − z| −

(x − z) ⊗ (x − z)
|x − z|3

)
.

Hence, for any x ∈ Ω, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δh
∞w(x) = (|α|Hq(|x − z| + ε)α−1)h−1α(α − 1)Hq(|x − z| + ε)α−2

= |α|h−1α(α − 1)Hh
q(|x − z| + ε)(α−1)h−1

=

(h + 1
q − h

)h q + 1
q − h

Hh
q(|x − z| + ε)αq

= Hq
q(|x − z| + ε)αq

= wq(x).

(3-11)

By the comparison principle, we get uM ≥ w in Ω for all M ≥ Hqε
−(h+1)/(q−h). Letting

first M → ∞ and then ε→ 0, we have

u∞(x) ≥ Hq|x − z|−(h+1)/(q−h), x ∈ Ω. (3-12)

Noticing q > h, we obtain limx→z u∞(x) = ∞ for all z ∈ ∂Ω. By (3-12), it is obvious
that the boundary blow-up solution u∞ is positive in Ω. This finishes the proof.

4. Boundary asymptotic estimate and uniqueness

In this section, we investigate the boundary asymptotic estimate of the large
solutions to problem (1-1). The lower growth estimate can be easily obtained by the
proof of the existence, Theorem 1.1. Hence, the key is to establish the upper growth
estimate. To reach to this goal, we use the perturbation of the distance function and
comparison principle. The idea comes from [19]. However, for h > 1, the operator Δh

∞
is quasi-linear even in dimension 1. Therefore, we must make a subtle analysis.
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LEMMA 4.1. Let q > h, Hq = (((h + 1)/(q − h))h(q + 1)/(q − h))1/(q−h) and u be a
viscosity solution to (1-1) in a bounded domain Ω. Assume that there exists a
neighborhood N of ∂Ω such that dist(x, ∂Ω) ∈ C1(N ∩Ω). Then there are constants
γ > 0 and μ > 0 depending only on the domain Ω such that

u(x) ≤ Hqdist(x, ∂Ω)−(h+1)/(q−h) + γ, x ∈ Ωμ, (4-1)

where Ωμ := {x| x ∈ Ω and dist(x, ∂Ω) < μ}.

PROOF. Let μ > 0 such that Ωμ ⊂ (N ∩Ω). Denote

Dμ := {x | x ∈ Ω and dist(x, ∂Ω) = μ}.

Then there exists some x0 ∈ Dμ such that

u(x0) = sup
x∈Dμ

u(x).

For any 0 < r < μ, let vr be the radial function satisfying⎧⎪⎪⎨⎪⎪⎩Δ
h
∞vr(x) = vq

r (x), x ∈ Br(x0),
lim
x→z

vr(x) = ∞, z ∈ ∂Br(x0),

in the viscosity sense. The comparison principle implies u(x0) ≤ vr(x0) for all r > 0.
Therefore, we have

τ := u(x0) = sup
x∈Dμ

u(x) ≤ vμ(x0) := γ. (4-2)

For simplicity, we denote d(x) := dist(x, ∂Ω). Then we have |Dd(x)| = 1 for all x ∈
Ωμ. Furthermore, d(x) is a viscosity solution of Δh

∞u = 0 in Ωμ (see for example [3]).
Now for 0 < ε < μ, set

wε(x) := Hq(d(x) − ε)α, x ∈ Ωμ \Ωε,

where α = −(h + 1)/(q − h) < 0. By direct calculations, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δh
∞wε(x) = (|α|Hq(d(x) − ε)α−1)h−1α(α − 1)Hq(d(x) − ε)α−2

+(|α|Hq(d(x) − ε)α−1)h−1αHq(d(x) − ε)α−1Δh
∞d(x)

= |α|h−1α(α − 1)Hh
q(d(x) − ε)(α−1)h−1

=

(h + 1
q − h

)h q + 1
q − h

Hh
q(d(x) − ε)αq

= Hq
q(d(x) − ε)αq

= wq
ε(x)

in the viscosity sense in Ωμ \Ωε. Indeed, one can see that if wε(x) − ϕ(x) has a local
maximum (respectively minimum) at some point x̂ ∈ Ωμ \Ωε, then d(x) − ψ(x) with
ψ(x) = (1/Hqϕ(x))1/α + ε has a local maximum (respectively minimum) at x̂. Since
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d(x) is a viscosity solution of Δh
∞u = 0 in Ωμ, we obtain that wε verifies Δh

∞wε = wq
ε in

the viscosity sense in Ωμ \Ωε.
Noticing q > h > 1, we get

Δh
∞(wε + γ) ≤ (wε + γ)q

in the viscosity sense in Ωμ \Ωε. By (4-2), we have

u(x) ≤ τ ≤ γ ≤ wε(x) + γ, x ∈ Dμ.

Since

lim
x→z∈Dε

wε(x) = ∞,

the comparison principle implies

u(x) ≤ wε(x) + γ, x ∈ Ωμ \Ωε.

Letting ε→ 0, we have

u(x) ≤ Hqdist(x, ∂Ω)−(h+1)/(q−h) + γ, x ∈ Ωμ. �

REMARK 4.2. By Remark 3.2 and the proof above, we actually have that γ ≈
μ−(h+1)/(q−h). In particular, there is a constant C > 0 depending only on q such that
γ ≤ Cμ−(h+1)/(q−h).

With Lemma 4.1 in hand, we can immediately establish the asymptotic estimate.

Proof of Theorem 1.2. By Lemma 4.1, we have

u(x) ≤ Hqdist(x, ∂Ω)−(h+1)/(q−h) + γ, x ∈ Ωμ. (4-3)

Recall that in the proof of Theorem 1.1, we have (3-12). That is, if u is a viscosity
solution to (1-1) in a bounded domain Ω, then there holds

u(x) ≥ Hq|x − z|−(h+1)/(q−h) for all x ∈ Ω,

where z ∈ ∂Ω and Hq = (((h + 1)/(q − h))h(q + 1)/(q − h))1/(q−h). Hence, we can
immediately get the lower growth estimate

u(x) ≥ Hqdist(x, ∂Ω)−(h+1)/(q−h) for all x ∈ Ω. (4-4)

By the inequalities (4-3), (4-4), and Remark (4.2), we get the asymptotic behavior
estimate (1-2).

Finally, we give the uniqueness of the boundary blow-up viscosity solution. We
argue it by contradiction. Suppose that u and v are both viscosity solutions to (1-1). By
the inequality (4-4) and Lemma 4.1, we have

u(x)
v(x)
≤

Hqdist(x, ∂Ω)−(h+1)/(q−h) + γ

Hqdist(x, ∂Ω)−(h+1)/(q−h)
, x ∈ Ωμ.
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Therefore,

lim sup
u(x)
v(x)
≤ 1 as dist(x, ∂Ω)→ 0.

By the comparison principle, Theorem 3.6, we obtain u(x) ≤ v(x) in the whole
Ω. Similarly, we can obtain v(x) ≤ u(x) in the whole Ω. Hence, the uniqueness is
completed.

REMARK 4.3. One should notice that the assumption condition on the domain
in Lemma 4.1 holds for all C2-domains [17] and Lipschitz domains satisfying a
uniform interior ball condition [18]. In fact, the condition dist(x, ∂Ω) ∈ C1(N ∩Ω)
is equivalent to the geometric condition that for any x ∈ N ∩Ω, there exists a unique
z ∈ ∂Ω such that dist(x, ∂Ω) = |x − z|.

5. Nonexistence for q ≤ h

In this section, we show that problem (1-1) has no positive viscosity solution when
q ≤ h. We consider two cases, q ≤ 0 and 0 < q ≤ h.

THEOREM 5.1. Let Ω ⊂ Rn be a bounded domain and q ≤ 0. Then problem (1-1) has
no positive viscosity solution.

PROOF. Suppose that there is a positive solution u to (1-1). Since q ≤ 0, there exists
C > 0 such that

0 ≤ uq(x) ≤ C, x ∈ Ω.

In particular, we have that u is a viscosity supersolution of Δh
∞u = C inΩ. We introduce

w(x) := L +
h

h + 1
(Ch)1/h|x − x0|(h+1)/h, x ∈ Ω,

where L ∈ R is an arbitrary constant and x0 ∈ Rn\Ω. Then we can verify that Δh
∞w = C

in Ω. Since limx→z u(x) = ∞ for all z ∈ ∂Ω, we have w ≤ u in Ω by the comparison
principle (see [25]). Letting L→ ∞, we get u ≡ ∞ which is a contradiction. �

To obtain the nonexistence of a large solution for the case 0 < q ≤ h, we need
the following maximum/minimum principle which can be derived from Harnack’s
inequality [3, 10].

LEMMA 5.2. Let u ∈ C(Ω) satisfy Δ∞u ≥ 0 (≤ 0) in the viscosity sense. Then

sup
Ω

u = sup
∂Ω

u (inf
Ω

u = inf
∂Ω

u).

Moreover, the supremum (infimum) occurs only on the set ∂Ω unless u is a constant.

THEOREM 5.3. Let Ω ⊂ Rn be a bounded domain and 0 < q ≤ h. Then problem (1-1)
has no positive viscosity solution.
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PROOF. We argue it by contradiction. Assume that there is a viscosity solution u
to (1-1) in Ω. For x0 ∈ ∂Ω, there exist r > 0 and c > 1 such that u > c in Ω0 :=
B(x0, r) ∩Ω.

Denote

U(x) = log u(x), x ∈ Ω0.

By direct calculation, we have

DU(x) =
1

u(x)
Du(x),

D2U(x) = − 1
u2(x)

Du(x) ⊗ Du(x) +
1

u(x)
D2u(x),

where ⊗ denotes the tensor product. Then one can verify that

Δh
∞U(x) = −

( 1
u(x)

)h+1
|Du(x)|h+1 +

( 1
u(x)

)h
Δh
∞u(x) ≤

( 1
u(x)

)h
(u(x))q ≤ 1 in Ω0

in the viscosity sense, where we use 0 < q ≤ h. Since u = ∞ on ∂Ω, we have that
U = ∞ on B(x0, r) ∩ ∂Ω.

Let g be a continuous function supported on ∂Ω0 and

g(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, x ∈ B

(
x0,

r
3

z
)
∩ ∂Ω,

0, x ∈ ∂Ω0 \
(
B
(
x0,

r
2

)
∩ ∂Ω

)
.

The existence and uniqueness of a viscosity solution v of the following problem:⎧⎪⎪⎨⎪⎪⎩Δ
h
∞v = 1 in Ω0,

v = g on ∂Ω0,

were obtained in [22, 25]. Due to the h-homogeneity of the operator Δh
∞, for any

constant k ≥ 1, the function vk(x) := kv(x) satisfies⎧⎪⎪⎨⎪⎪⎩Δ
h
∞vk = kh ≥ 1 in Ω0,

vk = kg on ∂Ω0,

in the viscosity sense. By the comparison principle in [25], there holds vk ≤ U in Ω0
for any k ≥ 1. Since Δh

∞v = |Dv|h−3Δ∞v = 1 > 0, by Lemma 5.2, there exists x1 ∈ Ω0
such that v(x1) > 0. Then we have vk(x1) = kv(x1) ≤ U(x1) for all k ≥ 1 which leads to
a contradiction. �
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