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Liquid crystals are a type of soft matter that is intermediate between crystalline solids
and isotropic fluids. The study of liquid crystals has made tremendous progress over
the past four decades, which is of great importance for fundamental scientific research
and has widespread applications in industry. In this paper we review the mathematical
models and their connections to liquid crystals, and survey the developments of
numerical methods for finding rich configurations of liquid crystals.
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1. Introduction

Liquid crystals (LCs) are a classical example of partially ordered materials that
translate freely as liquids and exhibit some long-range order above a critical con-
centration or below a critical temperature. The anisotropic properties lead to
anisotropic mechanical, optical and rheological properties (de Gennes and Prost
1993, Stewart 2004), and make LCs suitable for a wide range of commercial ap-
plications, among which the best-known is the LC display industry (Stephen and
Adrian 2002, Majumdar, Newton, Robbins and Zyskin 2007). LCs also have sub-
stantial applications in nanoscience, biophysics and materials design, for example.
Furthermore, an LC is a typical system of complex fluids, so the theoretical ap-
proaches or technical tools of LC systems can be applied beyond the specific field
of LCs, such as surface/interfacial phenomena, active matter, polymers, elastomers
and colloid science (Takashi and Yasumasa 2010, Muller ef al. 2012, Cai, Zhang
and Shi 2017b).

LCs are mesophases between anisotropic crystalline (Figure 1.1(a)) and isotropic
liquid (Figure 1.1(e)). There are three major classes of LCs: nematic, cholesteric
and smectic (Friedel 1922). The simplest phase is the nematic phase (Figure 1.1(d)),
where there is long-range orientational order, i.e. the molecules almost align par-
allel to each other, but no long-range correlation to the molecular centre of mass
positions. On a local scale the cholesteric (Figure 1.1(c)) and nematic orders are
similar, while on a larger scale the director of cholesteric molecules follows a helix
with a spatial period. A nematic liquid crystal is a special cholesteric liquid crystal
with no helix. Smectics (Figure 1.1(b)) have one degree of translational ordering,
resulting in a layered structure. As a consequence of this partial translational or-
dering, the smectic phases are much more viscous and closer to crystalline than
either the nematic or cholesteric phases.

The most widely studied system of LCs is a rod-like nematic liquid crystal
(NLC), whose molecules are rod-shaped and rigid. In such an NLC, the molecules
may move freely like a liquid, but the molecules in a local area may tend to align
along a certain direction, causing the liquid to be anisotropic. In order to describe
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(a) crystalline (b) smectic (c) cholesteric (d) nematic (e) isotropic

Figure 1.1. Schematic representation of (a) crystalline, (b) smectic, (c) cholesteric,
(d) nematic and (e) isotropic phases with rod-like molecules.
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the anisotropic behaviour of NLCs, one has to choose appropriate functions, called
order parameters in the physics community. There are various ways to choose
order parameters, leading to mathematical theories at different levels, ranging from
microscopic molecular theories to macroscopic continuum theories.

The first type of model is the vector model, including the Oseen—Frank theory
(Oseen 1933, Frank 1958) and Ericksen’s theory (Ericksen 1990). In these models
it is assumed that there exists a locally preferred direction n(x) € S? (the unit
sphere in three-dimensional space) for the alignment of LC molecules at each
material point x. This setting is rough but works very well in many situations, so
the vector theory has been widely used in the LC community for its simplicity.
However, vector theories have the drawback that they do not respect the head-to-
tail symmetry of rod-like molecules, in which —n should be equivalent to n (Ball
and Zarnescu 2008). This drawback may lead to an incorrect description of some
systems, especially when defects are present.

The second is the molecular model, which was proposed by Onsager (1949)
to characterize the nematic—isotropic phase transition, and then developed by Doi
(1981) to study LC flow. In this theory, the alignment behaviour is described by
an orientational distribution function f(x, m) which represents the number density
of molecules with orientation m € S? at a material point x. Since the distribution
function f contains much more information on molecular alignment, molecular
models can provide a more accurate description. However, the computational cost
is usually very high, as it often involves solving high-dimensional problems.

The third type of model is the Q-tensor model, including the Landau—de Gennes
(LdG) theory (de Gennes and Prost 1993), which uses a traceless symmetric 3 X 3
matrix Q(x) to describe the alignment of LC molecules at the position x. From a
physical viewpoint, the order parameter Q-tensor is related to the second moment
of the orientational distribution function f(x,m). It does not assume that the
molecular alignment has a preferred direction and it can thus describe biaxiality.

The vector theory and tensor theory are called macroscopic theories, and are
based on continuum mechanics, while the molecular theory is a microscopic one
that is derived from the viewpoint of statistical mechanics. Although they were pro-
posed from different physical viewpoints, all of them play important roles and have
been widely used in studies of LCs. Understanding these models and their rela-
tionships has become an important issue for LC studies. Moreover, the coefficients
in macroscopic theories are phenomenologically determined, and their interpret-
ations in terms of basic physical measurements remain unclear. By exploring
their relationships, one can determine these coefficients in terms of the molecular
parameters, which provide a clear physical interpretation rather than a phenomen-
ological determination. From the perspective of mathematical modelling, much
effort has been devoted to their relationship, especially microscopic foundations
of macroscopic theories. However, little work was done from the analytical side
until some progress in the past decade. New experimental works and theoretical
paradigms call for major modelling and analysis efforts.
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(a) (b) (©) (d)
Figure 1.2. (a—d) Schematic diagrams of +1 and +1/2 2D point defects.

A particularly intriguing feature of LCs is that of topologically induced defects
(Kléman 1989, Ball 2017). Defects are discontinuities in the alignment of LCs.
They are classified as point defects, disclination lines and surface defects, and are
further classified by the topological degree of defects, including two-dimensional
(2D) 1 and +1/2 point defects (Figure 1.2). Defects are energetically unfavourable
because the existence of defects will increase the elastic energy of nearby LCs.
However, defects are unavoidable due to the environment, such as external fields
(electric fields and magnetic fields: Oh-e and Kondo 1995), geometric constraints
(boundary conditions and the domain: de Luca and Rey 2007) and non-smooth
boundaries (polygon corners: Han, Majumdar and Zhang 2020a). NLCs are a
typical system for studying defects, rich static structures and dynamic processes
relevant to defects. Defects have the property of being isotropic and are surrounded
by NLC molecules, and hence are able to induce phase transitions between NLC
phases and isotropic phases (Mottram and Sluckin 2000, Mottram and Hogan 1997).
The multiplicity of defect patterns also guides the design of new multi-stable LC
display devices (Willman, Fernandez, James and Day 2008).

A topologically confined NLC system can admit multiple stable equilibria, which
usually correspond to different defect patterns (Kralj, Virga and Zumer 1999, Wang,
Zhang and Chen 2017, Robinson et al. 2017). The energy landscape of an NLC
system, in which the equilibrium states are located, is determined by the properties
of the LC material as well as the environment, such as temperature, size and
shape of the confining space, and the external field. Tremendous experimental
and theoretical studies have been undertaken to investigate defect patterns in NLCs
(MuseviC et al. 2006, Lubensky, Pettey, Currier and Stark 1998, Onsager 1949,
Bajc, Hecht and Zumer 2016).

From a numerical perspective, there are two approaches to computing stable
defect patterns. One is the energy-minimization-based approach (Cohen et al.
1987, Alouges 1997, Adler, Atherton, Emerson and MacLachlan 2015, Nochetto,
Walker and Zhang 2017, Majumdar and Wang 2018, Gartland Jr, Palffy-Muhoray
and Varga 1991), which is often numerically solved by Newton-type or quasi-
Newton methods. The other approach is to follow the gradient flow dynamics
driven by the free energy corresponding to specific models of LCs (Fukuda, Stark,
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Yoneya and Yokoyama 2004, Ravnik and Zumer 2009, Canevari, Majumdar and
Spicer 2017, Wang, Canevari and Majumdar 2019, MacDonald, Mackenzie and
Ramage 2020). Various efficient numerical methods have been developed to solve
the gradient flow equations, including energy-stable numerical schemes such as
convex splitting methods (Elliott and Stuart 1993), invariant energy quadratization
methods (Yang 2016) and scalar auxiliary variable methods (Shen, Xu and Yang
2018). Furthermore, machine learning has recently become an emerging approach
in the field of soft matter including LCs (Walters, Wei and Chen 2019).

There are also extensive numerical developments for LC hydrodynamics to
simulate LC flows, LC droplets and colloidal LC composites, for example (Badia,
Guillén-Gonzalez and Gutiérrez-Santacreu 20115, Foffano, Lintuvuori, Tiribocchi
and Marenduzzo 2014). Various numerical studies of NLC dynamics have been
performed by applying the Ericksen—Leslie equations (Liu and Walkington 2000,
Becker, Feng and Prohl 2008), the hydrodynamic Q-tensor models (Beris and
Edwards 1994, Zhao and Wang 2016) and the molecular models based on the
extended Doi kinetic theory (Doi and Edwards 1988, Ji, Yu and Zhang 2008).

With the existence of multiple stable or metastable states in LC systems, trans-
ition can occur from one stable equilibrium to another under thermal fluctuation or
external perturbations, causing the position and the topology of defects to change
drastically (Kusumaatmaja and Majumdar 2015, Gupta, Sivakumar, Caruso and
Abbott 2009). Thus it is important, both experimentally and theoretically, to de-
termine when and how such a phase transition occurs. In the zero-temperature limit,
the phase transition connecting two stable defects follows the so-called minimal
energy path (MEP), which has the lowest energy barrier among all possible paths.
The transition state corresponds to the state with the highest energy along the MEP,
i.e. the index-1 saddle point (Zhang, Du and Zheng 2016a). Finding accurate crit-
ical nuclei and transition pathways is a challenging problem due to the anisotropic
nature of the problems and the existence of a number of length scales. There are
two typical approaches to computing transition states and transition pathways. One
is the class of surface-walking methods, such as gentlest ascent dynamics (E and
Zhou 2011) and the dimer-type method (Henkelman and J6nsson 1999). The other
is path-finding methods, such as the string method (E, Ren and Vanden-Eijnden
2002) and the nudged elastic band method (J6nsson, Mills and Jacobsen 1998).

Besides local minimizers and transition states, there has been substantial recent
interest in high-index saddle points with multiple unstable directions on the LC
energy landscape, which are stationary solutions of the Euler-Lagrange equation
corresponding to the LC free energy, and the Morse index is the number of neg-
ative eigenvalues of the corresponding Hessian of the free energy (Milnor, Spivak
and Wells 1969). In recent years, a number of numerical algorithms have been
developed to find multiple solutions of nonlinear equations, including the mini-
max method (Li and Zhou 2001), the deflation technique (Farrell, Birkisson and
Funke 2015), the eigenvector-following method (Doye and Wales 2002) and the
homotopy method (Mehta 2011). Despite substantial progress in this direction, the

https://doi.org/10.1017/50962492921000088 Published online by Cambridge University Press


https://doi.org/10.1017/S0962492921000088

770 W. WANG, L. ZHANG AND P. ZHANG

relationships between different solutions are unclear. In a recent work (Yin, Zhang
and Zhang 2019), high-index saddle dynamics was proposed to efficiently compute
any-index saddle points. By applying the high-index optimization-based shrinking
dimer method, a solution landscape, which is a pathway map of all connected
solutions, can be constructed for NLCs confined on a square domain (Yin et al.
2020a).

The rest of the paper is organized as follows. The mathematical models of LCs,
including molecular models, vector models and tensor models, will be introduced
in Section 2. Mathematical analysis and connections between different LC models
will be discussed in Section 3. For the numerical computation of LCs, we will
review numerical methods for computing stable defects of LCs in Section 4 and LC
hydrodynamics in Section 5. In Section 6 we will introduce numerical algorithms
to compute transition pathways between different LCs and the solution landscapes
of LC systems. Section 7 will conclude with an outlook for trends and future
developments of LCs.

2. Mathematical models of liquid crystals

In this section we review the three typical theories of LCs: molecular models,
vector models and tensor models.

2.1. Molecular models

2.1.1. The static Onsager theory

Onsager (1949) proposed a classical model which can predict the isotropic—nematic
phase transition for rod-like LCs. The theory is based on an orientational distri-
bution function f(m) which represents the number density of molecules with
orientation m. The free energy can be written as

1
Alfl = /Sz{f(m) In f(m) + Ef(m)U(m)} dm. 2.1)

The first term comes from the Brownian motion of the rod-like molecules, and
the second term is the interaction term where U(m) is the mean-field interaction
potential

U(m) = (U[fD(m) := /S | Bam, m’) f(m’) dm’, (2.2)

where B(m, m’) is the interaction potential between two molecules with orientation
m and m’. Onsager introduced the potential B(m, m’) with the form

Bmm’) = a lmxm’|, (2.3)

which is calculated based on the excluded volume potential. Maier and Saupe
(1958) proposed a similar interaction potential, now known as the Maier—Saupe
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potential:
B(m,m’) = a jm x m’|*. (2.4)

The parameter « represents the density (for lyotropic LCs) or the inverse of absolute
temperature (for thermotropic LCs).

The energy functionals (2.1)—(2.2) with (2.3) or (2.4) are called the Onsager
energy or the Maier—Saupe energy respectively. Both of them characterize the
competition between the entropy and interaction energy and can effectively describe
the nematic—isotropic phase transition. If the temperature is high or the density
is dilute, the entropy term dominates the energy and the minimizer is the constant
distribution f(m) = 1/(4x), which describes the isotropic phase. In contrast, if the
temperature is low or the density is large, the energy is dominated by the interaction
term and will be minimized by an axially symmetric distribution f(m) = fo(m-n).
This case corresponds to the nematic phase in which molecules prefer a uniform
alignment. A rigorous proof for the Maier—Saupe energy was given independently
by Liu, Zhang and Zhang (2005) and Fatkullin and Slastikov (2005). Another
proof was given by Zhou, Wang, Forest and Wang (2005). More precisely, in these
papers the following theorem was proved.

Theorem 2.1.  All the critical points of the Maier—Saupe energy ((2.1)—(2.2) with
(2.4)) are given by
(mm)?
hyn(m) = T

e enm’ n)? gy’

where n is an arbitrary unit vector, and 7 is equal to O or satisfies

[ren dz
— = 2.5)
/0 Z*(1 — z%)e=" dz

Furthermore, there exists

1 2
. Jy €7 dz
" = min ; ;
neR/O ZZ(I_ZZ)enz dz

such that the following hold.

~ 6.731393

(1) Fora < a*, (2.5) has no solution. For @ = «*, it has a unique solution = n*.
(2) For a > a*, (2.5) has exactly two solutions n = (@), (@) satisfying
o (@) > 1" > m(a), limg—e+ ni(@) = limg—e- m2(@) =707,
e 771(@) is an increasing function of @, while n>(@) is a decreasing function,
e m(7.5)=0.

The above theorem gives a complete classification of all critical points of the
Maier—Saupe energy functional. The three kinds of solutions for n = 71,72,0
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are referred to as prolate, oblate and isotropic solutions. Their stabilities are
summarized in the following proposition. The proof can be found in Zhang and
Zhang (2007) and Wang, Zhang and Zhang (20155).

Proposition 2.2. & = 1/(4n) (n = 0) is a stable critical point of A[ f] if and only
ifa <75 Ifa > a" forany n € s2, hy,.n is stable, while h,,, , is unstable.
Therefore, for @ > 7.5, hy;, y are the only minimizers.

Theorem 2.1 and Proposition 2.2 inform us that:

o the oblate solution is always unstable,

e if @ > 7.5, the prolate solution is the only stable solution, which corresponds
to the nematic phase,

e if @ < @, the isotropic solution is the only solution,

e for a € (a,7.5), the prolate and isotropic solutions are both stable, which in-
dicates that the isotropic phase and nematic phase can coexist in this parameter
region.

Classification of minimizers of the Onsager energy functional is much more diffi-
cult, since the interaction potential is irregular and all even-order moments of the
orientation distribution function are involved in the interaction part of the energy.
The axial symmetry of all solutions to the 2D problem is proved by Chen, Li and
Wang (2010). We refer to Vollmer (2017) and Ball (2020) for recent progress on
the 3D problem.

2.1.2. Dynamic Doi theory and its inhomogeneous extension

The molecular theory was developed by Doi (1981) to study homogeneous LC
flow. Under a given velocity gradient Vv, the evolution of the distribution function
is given by the following equation:

af(”m)ZLR.(RerfRU)_R-(mXK-mf). (2.6)
ot De

Here De is the Deborah number, which characterizes the average time tending to
local equilibrium state, R = m X Vg2 is the rotational gradient operator on the unit
sphere, and x = (Vv)' is the transpose of the velocity gradient. The molecular
alignment field in turn induces an extra stress tensor to the bulk fluids, which is
given by

1 1
oPe = ED: (mmmm), — D—e<mm X R, (2.7)

where D = (Vv + (Vv)")/2 is the strain rate tensor, ((-))s = fSZ(') f dm denotes the
average under the distribution f, and p is the chemical potential:

_ 0Alf]

= 7 = 1Ilf+ U(m).
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Equation (2.6) has been very successful in describing the properties of LC poly-
mers in a solvent. This model takes into account the effects of hydrodynamic flow,
Brownian motion and intermolecular forces on the molecular orientation distribu-
tion. However, it does not include effects such as distortional elasticity and is thus
valid only in the limit of spatially homogeneous flows.

Marrucci and Greco (1991) extended Doi’s theory to the inhomogeneous case by
incorporating long-range interaction into the theory. By using a truncated Taylor
series expansion to approximate the non-local potential, the elastic energy is then
described by gradients of the second moments of the distribution function. This
method was subsequently developed by many people (Feng, Sgalari and Leal 2000,
Wang 2002) to study inhomogeneous LC flow. However, instead of using the
distribution as the sole order parameter, these works used a combination of the
tensorial order parameter and the distribution function, and spatial variations were
described by the spatial gradients of the tensorial order parameter, departing from
the original motivation of the kinetic formulation.

Wang, E, Liu and Zhang (2002) used a more direct way to treat the intermolecular
interaction by using the distribution function. They introduced an interaction
potential to include the non-local interaction effects and extended the free energy
(2.1) as follows:

A:lf] = / / fx,m,t)(In f(x,m,¢)— 1)+ lUg(x,m, 1) f(x,m,t)dmdx,

QJs 2 (2.8)

Us(x,m,t) =U.f := // Be(x,m;x’, m’) f(x’,m’, r) dm’ dx’,
QJs?

where B.(x,m;x’,m’) is the interaction potential between two molecules in the
configurations (x,m) and (x’, m’), which depends on the non-dimensional small
parameter & = L2/ L(Z) (here L is the length of the rods and Ly is the typical size of
the flow region). There are two typical choices.

(1) Hard-core excluded volume potential:

, 1 molecule (x,m) is joint with molecule (x’, m’),
Be(x, m;x’,m’) =

0 disjoint with each other.

(2.9)
(2) Long-range Maier—Saupe interaction potential:
’ " o_ 1 x — X’ 72
Bg(x,m,x,m)_mg< N >a|m><m|, (2.10)

where g(x) is a smooth function on R3 with fR3 g(x)dx = 1, and the small
parameter /e represents the typical interaction distance.

Both potentials are able to capture the non-local interaction between molecules
and can thus describe distortion effects of the molecular alignment. The hard-core
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potential indeed coincides with Onsager’s choice adopted in Onsager (1949). Note
that different geometric shapes of molecules will lead to different energy forms.
For NLCs, the molecules are commonly assumed to be prolate ellipsoids or sphero-
cylinders. The long-range Maier—Saupe interaction potential (2.10), proposed in
Yu and Zhang (2007), can be viewed as a smooth approximation for the hard-core
potential, which is easier to analyse and simulate.

Based on the non-local energy, Wang et al. (2002) presented an inhomogeneous
model for the LC flow. Define the chemical potential as

Ue =1In f(x,m, 1) + Ug(X,m, 7).
Then the inhomogeneous (non-dimensional) system reads as

0
Uy Vf = 2V gy (- mm) - Vg

+$R-(f72,ug)—72-(m></<-mf), (2.11)

0 1 ‘
a—:+v-Vv:—Vp+R—e{V-(T°+Te)+F§}.

Here v is the fluid velocity, p is the pressure and 7y, y. are, respectively, the
translational diffusion coefficients parallel to and normal to the orientation of the
liquid crystal polymer (LCP) molecule. Re is the Reynolds number. The viscous
stress 7°, the elastic stress 7¢ and the body force F¢ are given by

1 -
™ =2yD + TYD: (mmmm)y,
e 1 -

0% ’ 1—-y
= —— F == V .
T Do (mm X Rug)r, De (Vue)s

System (2.11) has the following energy-dissipation relation:

d Re ) 1
5( /Q il dx+D—eA8[f])

Y 2 1 2 1 2
= - ——|D - D — °
A(l_y| [+ 5 (mm: D))p o+ (R )

E
+ m(vﬂe “(yymm + y, (I - mm)) - V,us>f> dx, (2.12)

We refer to Yu and Zhang (2007) for the numerical study and Zhang and Zhang
(2008) for the well-posedness of the system (2.11).

2.2. Vector theories

2.2.1. Static vector models: the Oseen—Frank theory

The molecular theories provide a detailed description of LCs, but they are not
convenient to use. The simplest model for studying the equilibrium configuration
for NLCs is the Oseen—Frank model, proposed by Oseen (1933) and Frank (1958).
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T RI=
\x /e Z2

bhoeel]

(a) splay (b) twist (c) bend

Figure 2.1. Three kinds of distortion: (a) splay, (b) twist and (c) bend.

It neglects the molecular details and uses a unit vector n(x) to describe the average
orientation of LC molecules at position x. Then the distortion energy, which is
called the Oseen—Frank energy, takes the form

Eor(n, Vn) = %(v -n)® + %m A(Vxm)? + %m x (V xn)|?

L (k2 J2r k) (tr(Vm)? — (V - n)?). (2.13)

The constants ki, k, k3 represent moduli for three different kinds of pure deform-
ation respectively, splay, twist and bend, which are illustrated in Figure 2.1. For
prolate nematics, one often has

k3>k1>k2>0.

The last term is actually a null Lagrangian which can be reduced to boundary
terms. The simplest reduction for the Oseen—Frank energy is the case k; = ky =
k3 = k and k4 = 0, referred to as one-constant approximation, which leads to the
Dirichlet energy

E(Vn) = §|Vn|2.

For given boundary data on a bounded domain, the observed configuration
usually corresponds to a minimizer of the Oseen—Frank energy. Applying the
calculus of variations, a minimizer should satisfy, at least formally, the following
Euler-Lagrange equations:

0 0
n X div <mE0F(n, Vn) — %Eop(n, Vn)) =

or equivalently

div <%E0F(n, Vn) - iEOF(n, Vn)) (2.14)

Note that n needs to satisfy the unit-norm condition [n| = 1, which gives a nonlinear
constraint and induces a Lagrange multiplier 4 € R, in the above equation. In
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the one-constant approximation case, the equation reduces to the harmonic map
equation

An = —|Vn|’n.

Defects in vector theories are described by singularities in Vn. For instance,
the configuration n(x) = x/|x| (x € R?) is a solution to (2.14), which is called the
hedgehog solution. It is a typical and important example of point defects. In a 2D
region, n(x) = x/|x| is formally a solution to (2.14). However, the energy blows up
near the singular point x = 0. That is, the energy of a 2D point defect in vectorial
description is infinite. Moreover, the following theorem has been proved by Hardt,
Kinderlehrer and Lin (1986).

Theorem 2.3. If n € H'(Q, S?) is a minimizer of the Oseen—Frank energy EoF,
then n is analytic on Q \ Z, where Z is a relatively closed subset of Q which has
one-dimensional Hausdorff measure zero.

This fundamental result excludes the possibility of line defects, which have
dimension one, under the framework of the Oseen—Frank theory. To resolve this
problem, Ericksen (1990) proposed a vector model with an extra scalar order
parameter s € (—1/2,1), which represents the degree of orientation. Under the
one-constant approximation, the Ericksen free energy takes the form

E(s,n) :/w(s)+k|Vs|2+s2|Vn|2dx, (2.15)
Q

where k > 0 is a parameter and ¢ (s) is the potential function satisfying

o limg_ 1 ¥(s) = 1ims—>—1/z Y(s) = +oo,
e there exists s* € (0, 1) such ¢/(0) > ¥(s*) = minge—1/2, 1Y (5),
e y'(0)=0.
In Ericksen’s theory, the defects are defined as zero sets of s, which permits the

line defect or a 2D point defect (Lin 1991, Ambrosio 1990). We refer to Ericksen
(1990) for details.

2.2.2. Dynamical vector models: the Ericksen—Leslie theory
The dynamic continuum theory for LC flows was established by Leslie (1968) and
Ericksen (1961). The full system, which is called the Ericksen—Leslie system, takes
the form
v, +v-Vv=-Vp+ V.o,
V-v=0, (2.16)
nXxth-y N-—yD-n)=0.

Here v is the fluid velocity, p is the pressure, and the stress o is given by the
phenomenological constitutive relation

O'ZO'L+O'E,
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where oL is the viscous (Leslie) stress,
ol = aj(mn: D)nn + aonN + a3Nn + @4D + asnn - D + gD - nn, .17
with

1 1
DZE(KT+K),K=(VV)T and N=n,+v-Vn+Q-n, QZE(KT—K).

The constants a1, . . ., @ in (2.17) are called the Leslie coefficients, while oF is
the elastic (Ericksen) stress given by
E_ _% L (Vn)", (2.18)
and the molecular field h is given by
b= _6Eor v, OEoF B OEoF
on d(Vn) on
The Leslie coefficients and 7y, v, satisfy the following relations:
a + a3 = ag — as, (2.19)
YI=a3—@, Y2=as—as, (2.20)

where (2.19) is called Parodi’s relation, derived from the Onsager reciprocal relation
(Parodi 1970). These two relations ensure a basic energy dissipation law of the
system:

d L. 73 2 2
T —|v[*dx + Egr | = — a1+ —= |(D: nn)~ + ay|D|
t R3 2 R3 Y1

% 1
+ <a5 + g — —2> ID-n>+ —|n ><h|2> dx.
Y1 Y1
2.21)

Besides the inability to describe line defects, vector models have some other
drawbacks. For example, from the physical viewpoint, n(x) is not distinguishable
from —n(x). This is referred to as the head-to-tail symmetry of LCs, which
cannot be inherently revealed by the vectorial description. Indeed, there are some
configurations that cannot be described by a vector field. For example, consider the
point defect in 2D with degree 1/2 (see Figure 1.2(c)) and a circle near the defect
point. The alignment on the circle is a smooth line field. However, one cannot
define a continuous vector field n € S' on this circle. This problem is carefully
discussed in Ball and Zarnescu (2011) for more general domains.

In addition, in vector theories it is assumed that the orientation of the LC mo-
lecules has a preferred alignment at a material point. In most cases this assumption
is reasonable. However, there are some situations in which a preferred alignment
cannot be defined, for example near the core of a defect. So vector models fail to
give accurate descriptions for molecular alignments near the core of defects.

https://doi.org/10.1017/50962492921000088 Published online by Cambridge University Press


https://doi.org/10.1017/S0962492921000088

778 W. WANG, L. ZHANG AND P. ZHANG

2.3. Tensor theories

Despite its success in predicting the phase transition and rheological parameters
for LCs, the molecular theory is not convenient in practice since it always leads
to a high-dimensional problem with high costs. Therefore it is natural to explore
alternative models to simulate LC flow or complex patterns. A common method
to reduce the molecular theory is to consider the second-order moment of the
probability distribution function f(x, m):

Qx) = / (mm - %I)f(x, m)dm e Q = {Q e M*3,Q=Q",rQ = 0},
SZ

(2.22)

which is called the Q-tensor. Thus Q has five independent components. Let
A1, A2, A3 be the three eigenvalues of Q; then we can write

Q = Ainn; + Aomomy + A3n3ns,

where nj, np, n3 are unit norm vectors with m; - n; = 0 (1 <i < j < 3). The
definition (2.22) gives a constraint for the eigenvalues of Q:

12
Q € Qphy = {Q € Q: /115/12’/13 € <_§’ g)}'

One can classify Q into three classes.

e [f Q has three equal eigenvalues, i.e. Q = 0, we say Q is isotropic.

o [f the eigenvalues have two distinct values, then there exist s € R, n € s2,

such that
1
= -=-I).
Q s<nn 3 >

In this case we say Q is uniaxial.

o [f the three eigenvalues are distinct, we say Q is biaxial. In this case we can
find 5,1 € R, n,m € S, such that s # 4, mLn and

st(nn—%l) +/l<mm—§l).

If the LC material remains in the liquid state, i.e. the alignments are disordered, then
the distribution function f(x, m) is the uniform distribution on S2, which implies
Q = 0, or equivalently Q is isotropic. If the material remains in the LC state,
that is, f(x,m) is an axially symmetric function on S?, ie. fx,m) = f(n(x) - m),

then
1 -m)> -1
Q=s(nn--I Withs:/ mom -l m)dm,
3 S2 2

which means that Q is uniaxial.

https://doi.org/10.1017/50962492921000088 Published online by Cambridge University Press


https://doi.org/10.1017/S0962492921000088

MODELLING AND COMPUTATION OF LIQUID CRYSTALS 779

2.3.1. Static Q-tensor models

For LC materials, the total energy F-C(Q, VQ) consists of two parts: the bulk
energy F,(Q), which dictates the preferred state of the material, and the elastic
energy F.(Q, VQ), which comes from the distortion of LCs, that is,

Ff9(Q.VQ) = Fp(Q) + F(Q. Q.
The energy should be frame-indifferent, that is, for any P € O(3),

F(Q,¥) = F(Q, ),

where ¥ = VQ with \Ilijk = Qij,k and Q = PQPT, ‘i!ijk = Pii’ij’Pkk’lPijk-

The bulk energy is a function of the tensor Q which should predict the isotropic—
nematic phase transition for LCs. Therefore, at high temperatures the bulk energy
should arrive at its minimum at the isotropic state, while at low temperatures its
minimizers should be uniaxial, which represents the nematic phase. In addition, due
to the frame indifference, the bulk energy should depend only on the eigenvalues

of Q.
The simplest form that meets these requirements takes the following polynomial
form:
a b c
Fp(Q) = 51Q - S rQ* + 71QF*, (2.23)
2 3 4
where

3
QP =) 0 Q=) 0,0:0u Q= QP

ij=1 ij.k

Here a, b, ¢ are constants depending on materials and temperature in general with
b,c > 0. In particular, the parameter a plays a key role in the isotropic—nematic
phase transition, which is usually assumed by a = A(T — T.), where T is the
temperature and 7 is the critical temperature at which the isotropic phase loses
stability.

All the (possible) critical points of the bulk energy f, are given by

1 —b + Vb? - 24ac
Q== nn—gl, sE€Ss)=0,5, = .

4c

Stability or instability of the critical points are shown in Table 2.1, where the three
critical temperatures are given by

b? b?
- +T. Ty =
“ 7 27Ac = 24Ac

The proof of these assertions is straightforward. When the temperature satisfies
T < T,, the isotropic state loses stability and the bulk energy is minimized by

+ T.. (2.24)
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Table 2.1. Stability/instability of critical points for LdG energy.

Critical points
Temperature P

S0 S— Sy

T <T, unstable unstable global minimizer
T.<T < T, local minimizer unstable global minimizer
T. <T < Ty global minimizer wunstable local minimizer

Ty <T global minimizer none none

tensors in the minimal manifold

1 —b + Vb2 - 24ac
M={s,(nn-=1T]):s, = 1
c

ne SZ}. (2.25)

One should note that the polynomial energy is phenomenological, that is, the
precise physical meaning of coefficients a, b, ¢ is not very clear and cannot easily
be determined a priori. Moreover, there is no term forcing the tensor to be in the
physical space Q,y, and thus Q may have eigenvalues greater than 2/3 or less than
—1/3. Another point that should be taken into account is that the polynomial bulk
energy is a finitely truncated Taylor expansion of the real bulk energy around Q = 0.
Therefore it is only valid near the isotropic—nematic transition temperature 7.

To obtain a reliable tensorial model for low-temperature materials (far from the
transition point), a natural method is to take the minimal entropy approximation
from the molecular energy, which has been applied by Ball and Majumdar (2010).
More precisely, for given Q € Q,,, one can define the energy as

Fy(Q) = min / Fm)In f(m) - a|QP, (2.26)
fG.AQ S2

fEAQZ{fﬁfZO’/SZf=1,/SZ<mm—%I)f:Q},

The above energy can also be obtained by replacing the orientation distribution
function with the Bingham distribution of given second moment Q. In other
words, for given Q € Q,y,y, let Bg be the unique trace-free symmetric matrix (see
Li, Wang and Zhang (2015) for a proof) satisfying

where

Je(mm — sDexp(Bo: mm)dm Q. (2.27)
Jz2 exp(Bq: mm)dm
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and let the Bingham distribution fg be given by

exp(Bg: mm)

fo(m) = Zo

s ZQ:/ exp(Bg: mm). (2.28)
SZ

Then the minimum in (2.26) is attained by fq, that is,

Fu@ = | fotm)n fo(m) ~ alQF = Bo: @ ~InZg ~ alQF

Indeed, note that for a fixed second moment Q, the minimum is achieved by the
distribution satisfying

Inf-B: mm=c,
for some constant ¢ and trace-free symmetric matrix B, which implies that f must

take the form (2.28) with B given by (2.27).
On the other hand, for any B € Q, let

w(B) = ln/ exp(B: mm)dm
S2

be a convex function for B; then the entropy part Bg: Q — In Zg is equal to
B: Q-w@B)},
max{B: Q - w(B)}

which is the Legendre transform of the function w(B). We refer to Li et al. (2015)
for detailed discussions.

To capture the inhomogeneity of the alignment of LC molecules, one has to
take into consideration the elastic energy. The formulation of the elastic energy
should be frame-indifferent and usually it is assumed to be quadratic in VQ. Some
examples are V; = V;(Q, VQ):

Vi = QijkQijks V2= 0Qij,jQikks V3 = QijkQik,j»  Va = QijQir1Qjk,1-

The difference V> — V3 can be written as 9 (QixQ;j,j — QijQix,;j)» which is a null
Lagrangian. The following energy form is commonly used as the elastic part energy
for NLCs:

FO[Q,VQ] = Li|VQI? + L0 Qikk + L3Qix,jQijx + L1QukQijx Qijt- (2.29)

The L,—L4 terms correspond to the anisotropic elasticity of LC materials.
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Formally, if we force VQ(x) to minimize the bulk energy in the LdG energy at
each point x, then Q(x) = s(n(x)n(x) — I/3), and the full energy reduces to the
Oseen—Frank energy (2.13) with the coefficients given by

ki =252(2QL1 + Ly + L3 — 2sLy), ko = 4s*(Ly — sLy),

a2 a2 ~ (2.30)
k3 =25“QL1 + Ly + L3 + 4sLy), ky =25°(2L1 + Ly — sLy).

When Ly = 0, the energy (2.29) is coercive (Longa, Monselesan and Trebin
1987), that is,

FOIVQ] > ¢o|VQ|* for some ¢ > 0,

provided that
5 1
L > 0, L1 <Il3< 2L1, L+ §L2 + 6L3 > 0.

On the other hand, if Ly # 0, the energy is not bounded from below (Ball and
Majumdar 2010). However, if the L4 term is neglected, due to the form (2.30), we
can only recover the Oseen—Frank energy with k| = k3.

Defects in the Q-tensor theory are not characterized by singularities of Q. In-
deed, for minimizers of the LdG energy with suitable boundary conditions, it is
usually smooth everywhere, since the corresponding Euler—Lagrange equation is
a semilinear elliptic system. To observe defects, one has to look at the uniaxial
limit of the solution. This is reasonable, since the elastic constants are usually
small, which means that the bulk energy will force the Q-tensor to be in the min-
imal manifolds M defined in (2.25). Singularities of the limit Q-tensor should be
regarded as the set of defects. There are a number of results studying the uniaxial
limit of minimizers to the LdG energy with certain boundary conditions. We skip
to Section 3.1 for further discussions.

2.3.2. Dynamic Q-tensor models

The dynamical Q-tensor theories for LCs can be classified into two types. The first
are derived directly from physical considerations such as the variational principle.
The Beris—Edwards model (Beris and Edwards 1994) and the Qian—Sheng model
(Qian and Sheng 1998) belong to this class. Given the free energy F(Q, VQ), the
variation is denoted by

_0FQVQ)
Then the Beris—Edwards model and Qian—Sheng model can be written in the form
0
a—?+v-VQ:D(,uQ)+S(Q,D)+Q-Q—Q-Q, 2.31)
0 .
a—: FV-VV = —Vp 4V (0% 4 05 + 09 4 o), (2.32)
V.-v=0,
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where D(uq) is the diffusion term, S(Q, D) is the velocity-induced term, o4 is
the distortion stress, o is the anti-symmetric part of orientational-induced stress,
o® = yS(Q, ug) is the symmetric stress induced by the molecular alignments,
which conjugates to S(Q, D) (y is a constant), and o%* is the additional dissipation

stress.
In both systems, modulo some constants, o and o¢ are the same:
IdEQ,VQ)
d > a
ol = 2200, o =Q - ug - - Q.
Yoo 0Qk,) l Qe re

In the Beris—Edwards system the other terms are given by
Dpr = -Tuq, o4 =pD, o5 = See(Q, 1o),
1 1 1
Spe(Q, A) = §<<Q + §Id> A+ A <Q + §Id) - Z(Q + gld)(A: Q)),

while in the Qian—Sheng system they are given by

1,‘12 |73
Dwrﬂ@<@=3ﬁm Sos(@ D) =~ =D,

ol = B1Q(Q: D) + B2D + 3(Q-D+D - Q).

We remark that in Qian and Sheng’s original formulation, the inertial effect is also
considered.

Another kind of dynamical Q-tensor model is obtained by various closure ap-
proximations from Doi’s kinetic theory. The main idea is to derive the evolution
equation for the second moment Q from the evolution equation for the orienta-
tion distribution function f. This is a natural form of model reduction, and the
parameters can be calculated from the kinetic equations rather than being phe-
nomenologically determined. However, by a direct calculation, one can find that
the evolution of Q depends on the fourth moment of f, which cannot be determined
by Q. In order to ‘close’ the equation at the level of the second moment tensor,
one needs to represent the fourth moment by Q approximately. Doi introduced the
simplest approximation:

(mmmm); = (mm);(mm);.

Various other closure methods have been presented, such as the HL1/HL2 closure
(Hinch and Leal 1976) and the Bingham closure (Chaubal and Leal 1998). We refer
to Feng, Chaubal and Leal (1998) for a summary and a comparison between these
closure methods. All of these models can capture many qualitative features of the
LC dynamics effectively. However, they do not obey the energy dissipation law.

2.3.3. A systematic way to derive new Q-tensor models
Han et al. (2015) proposed a systematic way to derive a Q-tensor model from the
molecular theory. The main idea can be explained as follows. We start from the
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non-local Onsager molecular energy functional (2.8) with suitable given interaction
kernel B, and then approximate the orientation distribution function by a suitable
function of its second moment. Then the energy can be entirely determined by the
second moment and is thus reduced to a Q-tensor type model. This procedure can
be used not only for the nematics but also other phases for rod-like molecules and
even other shapes (Xu and Zhang 2014, Xu, Ye and Zhang 2018, Xu and Zhang
2018).

For NLCs, we choose Onsager’s energy functional (2.8), with 5, being the
excluded volume potential (2.9). Note that B, is translation-invariant, so we let
B(x —x’,m,m’) = B.(x, m;x’,m’), which is even in x — x’.

Make the Taylor expansion for the orientational distribution function f(x’,m’)
with respect to x” at X (r = X’ — x):

fx’,m’) = f(x+r,m’)

= fxm) +Vfx,m’)-r+ %sz(x, m):rr+---. (2.33)

Then the energy can be expanded as

at) = [ [ {roman soem -
+%/ MO @m, m’) f(x, m’) f(x, m) dm’} dm dx
S2
+l// FxmMPm,m’) - Vf(x,m’)dm’ dm dx
2 QJS2 JS2

1 / / MP(m,m’): Vf(x,m")Vf(x,m)dm’' dmdx + - -,
4 Q S2 Sz
(2.34)

where, for a given kernel function B(r;m, m’), the moments M ®m,m’) (k =
0,1,2,...) are defined by

M(O)(m,m’):/B(r,m,m’)dr,
M®P(m,m’) = /B(r, mm)r®---rdr (k>1).
N————
k times

These moments depend on the geometric shape of LC molecules. For nematic
molecules, they are commonly treated as ellipsoids or spherocylinders. Han et al.
(2015) explicitly calculated the first three moments by considering the molecules
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as spherocylinders with length L and diameter D:
2
MOmm’) =2L° <r]|m xm'| + mn® + 571773),

MP(m,m’) =0,
MPm,m’) = B + Bo(mm + m’m’) + B;(mm’ + m’m)(m - m’),

where n = D/L and B; are functions of m - m’ (for details see Han er al. 2015,

Appendix):
2imxm’ln>  #an® 4yt
B .m’) = LAp( 22— —"" 77 7
1(m-m’) < 3 + > + 5 )
’ 3 2
By(m-m’) = LD mxm’| ap(d+m) an° 2y ’
6 3 4 3lm X m’|
2 arcsin(m - m”) 2
By(m-m’) = L*Dn? - .
3(m - m) 7 < 3(m - m’) 3|m><m’|>

The first line in (2.34) is independent of space variation of the probability
distribution function f, which gives the bulk energy part. The other terms, which
depend on space variation of f, provide the elastic part of the free energy.

To derive tensor models from molecular models, we need to use Q(x) to express
the total energy. Since it is unrealistic to recover f by a finite number of moments,
we need to make closure approximation. We choose the Bingham closure here
because it keeps physical constraints on the eigenvalues and preserves the energy
structure for dynamics. We also take the density variation into consideration,
that is,

f(x,m) = c(x)fo(m), with fg given by (2.28). (2.35)
The bulk energy is then approximated by

Foat = [ {c<x> ine()+ ) [ otk min fo(x.m) ~ 1)) dm

+ €O [ O / dm’ dmd 2.36
— . (m, m’) fo(x, m’) fo(x, m) dm’ dm ; dx. (2.36)

Note that the above energy can be viewed as a functional of ¢(x) and Q(x). If
the singular term |m x m’| in M©(m, m’) is replaced by its smooth alternative
lm x m’|?, we may arrive at

Fputk = /Q c(x)(Inc(x) + Q(x): Bo(x) — In Zg(x) — L’ c(x)|Q(x)|})dx,

where « is a dimensionless constant.

To derive an elastic energy convenient to use, we consider only finite terms in
(2.34). For the nematic phase, it is natural to neglect terms whose derivatives are of
order greater than one since the first-order derivatives dominate the elastic energy
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part. If one would like to consider the smectic phase, it seems enough to keep only
the terms whose derivatives are of order no greater than two.
Now we need to express

/ / Jox, m)M? (m, m’) fo(x, m’) dm’ dm’ (2.37)
S2 JS§2?

in terms of the tensor Q. Thus we have to separate the variables of m and m’ in
M¥D(m, m’). This cannot be done precisely in general, since there are some terms
like |m X m’|. One has to treat them as functions of m - m” and use polynomial
expansions, such as Taylor expansions or Legendre polynomial expansions, up to a
finite order, to approximate them. We skip the details and just present the reduced
elastic energy after approximating:

1
Fusic = 5 [ {5196l + BIVCQP + ITCQP + Si(cQi)iye
Q

+ J5(0;(cQix)0;(cQjix) + 0i(cQ;x)0;(cQix))
+ J6(0;(cQ4ikim)0;(cQajkim) + 0i(cQ4jkim)0;(cQaikim))
+ J70i(cQuijr)0;(cQri) } dX. (2.38)

Here Q4 = Q4 fo] is defined in (A.1). The coefficients J;(1 < i < 7) depend only
on parameters L, n and can be explicitly calculated. Combining (2.36) and (2.38),
we obtain an energy in tensorial form derived from Onsager’s molecular theory:

FMOZ(Ca Q, Ve, VQ) = Fpuik + Felasic-

The density variation can be neglected in most cases, especially when defects are
absent. Then the energy can be further simplified into a form that depends only on
Q and VQ.

If we further assume the uniaxiality of the Q-tensor, then we obtain a vector
model with elastic coefficients given by molecular parameters. We refer to Han ez al.
(2015) for details. The procedure of reduction from microscopic molecular theories
to macroscopic continuum theories is illustrated in Figure 2.2. The microscopic
interpretation of elastic coefficients in the Oseen—Frank theory has also been studied
in Gelbart and Ben-Shaul (1982) and many other related works.

A similar procedure can be applied to derive the dynamical equation based on
the dynamical Doi—Onsager equation. The main step is to calculate the evolution
of Q from the evolution equation for f. For simplicity of presentation, we assume
the density is constant and assume the energy takes the simplest form:

F(Q) = / Q(x): Bo(x) —In Zg(x) — %Q(X)i Q*(x) dx, (2.39)
with

Q= /R3 gs(x —x)Q(x") dx".
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[ Onsager model: f(x, m) ]

Bingham closure ﬂ €)= fo £ m) dm
g oK) = ﬁx)fgz(mtxm—%l)f(x,m)dm

[ Q-tensor model: c(x), Q(x) J

Uniaxial limit ﬂ 0(x) = s(x) (n(x)n(x) - 11)

[ Oseen—Frank model: c¢(x), s(x), n(x) ]

Figure 2.2. Reduction from microscopic molecular theories to macroscopic con-
tinuum theories.

This energy can be derived directly from the Onsager energy functional (2.8) with
non-local Maier—Saupe potential (2.10).

As higher-order moments will be involved, we also replace them with the corres-
ponding moments of the approximated Bingham distribution. Namely, we denote

Mg )= [ mmmm fo dm, Mg = | mmmmmm fo dm,
s? s2
and
1
Mo(A) = ZA+Q- A-A: MD,
)
No(A)ap = 3;’{ Y1 <M((;)lﬁkl(5ij - %ﬁle(Sij)
0
(6) ap 5 /(4
- Vi)<MQaﬁkuj - TMleij)}‘?fAkl }
We also let
oF(Q)
'= ——— = Bg — aQ?®.
Q= 50 Q~aQ
Noting that

3Q = ZCYMQ(BQ),

we can obtain a closed Q-tensor system from the Doi—Onsager equation (2.11):

0Q e 2
S FVVQ = T-No(uo) — -(Ma + MQ)uo) + (Mo + Mk,
o Wy vyt L “Yv.D: M®
VIV = —Vpt AV + V(D M) (2.40)
—y .
* Dok 2V Mq(ug) +Q: Vugq).
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The system (2.40) obeys the following energy dissipation law:

d
a{/m' Fdxs 2

1
- {|D|2 5 M(“’ D eD)
R3

F(Q)}

Re

el —y) 44 -
~ o Q: Nug + S—HQ: Mquq( dx.
e

We can also replace the energy (2.39) in (2.40) with a general local energy F(Q, VQ)
to obtain a dynamical system in local form. The energy law is kept regardless of
the particular choice of F(Q, VQ).

Since the system (2.40) is derived from the Doi—Onsager equation by the Bing-
ham closure, it keeps many important physical properties. First, the system pre-
serves the energy structure, which is violated by other closure models. Second,
the parameters have definite physical meaning as opposed to being phenomeno-
logically determined. Third, the eigenvalues of Q satisfy the physical constraint:
A; € {=1/3, 2/3} (i = 1,2, 3) if they are satisfied initially. Moreover, both transla-
tional and rotational diffusion can be kept in the formulation, and the translational
diffusion can be anisotropic.

Finally, we make some comparisons between the system (2.40) with the Beris—
Edward and Qian—Sheng models. The system (2.40) can be written similarly to
(2.31)-(2.32):

(Z—?+V'VQ=D(,UQ)+S(Q,D)+Q'Q—Q'Q,
%+V'VV=_Vp+V‘(O'diS+O'S+O'a+O_d), (241)

V.v=0.
Here
2
D(kq) = 5-N(ug) + 1-(Ma + My)(kq)

where the first and second terms account for the translational and rotational diffusion
respectively. In the Beris—Edwards and Qian—Sheng models, the diffusion term is
simply taken as Au ¢, which is different to the choice here. We remark that ug: VQ

is equivalent to
oF
9; Ok, )
(5(Qk D
modulo a pressure term, and
(Mq = M) = Q- o — 1o - Q.

so the stress terms o= and o-¢ in our model, modulo some constants, are the same
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as in those two models:

0F(Q.VQ)
d a
ol =220, 0 =Q pg - o - Q. (2.42)
5T 0y remHe
The dissipation stress is given by
s = 2—)/D + 1~y —p. m®.
Re 2Re Q
The two conjugated terms S(Q, D) and
-y
s _ S(Q,
o zeDe Q1)

are given by

S(Q, A) = (Mg + Ma)(A).

Note that if we apply Doi’s closure (mmmm); ~ (mm);(mm) in Mg' ), then

(Mg + M(T))(A) ~ <Q + %Id) A+ A- <Q + %Id) - 2<Q + %Id) (A: Q),

which is indeed the corresponding term Spr(Q, A) in the Beris—Edwards system
with & = 1.

3. Mathematical analysis for different liquid crystal models

In this section we review some analysis results for various LC models. Since
there has been great progress in this active area, we do not intend to cover all
topics but instead concentrate on the analysis of defects, the well-posedness theory
of dynamical theories, and the connections between them. Some of them were
introduced in Section 2 and will not be presented again.

3.1. Analysis of defects

The LdG model and Oseen—Frank model have been widely used to study the
properties of equilibrium configurations under various conditions.
In vector theories, the simplest configuration containing a defect is
nx) = —, 3.1)
x|

known as the hedgehog. It is not hard to verify that the hedgehog is always a weak
solution of the Euler-Lagrange equation for any choice of k;. For the stability, it
has been proved that the hedgehog is stable if 8(k; — k1) + k3 > 0 (Cohen and Taylor
1990) and not stable if 8(ky — k1) + k3 < O (Hélein 1987). One can construct other
typical configurations of point defects. For example, in the one-constant case, for
any R € 0(3),

nx) = R—
x|
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is always a solution of the Euler—Lagrange equation. Moreover, it is always stable
(Brezis, Coron and Lieb 1986). For the general case, the choice of R is limited.
If k1 = k3, R has to be +I or any 180° rotation. When the k; are distinct, R must
be +I. The corresponding stability has been analysed by Kinderlehrer, Walkington
and Ou (1993).

Moreover, by considering a suitable surface energy, the free boundary problems
have also been analytically studied to explore optimal shapes of LC droplets (Lin
and Poon 1996, Shen, Liu and Calderer 2002). For more results on the analysis of
the Oseen—Frank and related models, we refer to the survey paper by Lin and Liu
(2001).

The vector theory can provide macroscopic information on the alignment for
the defect configuration, whereas in order to study the fine structure of defect
cores we need to use Q-tensor models. Given the boundary condition Q(x) =
sy(mx)n(x) — %I) with n(x) given by (3.1), three kinds of equilibrium solution
are found numerically (Mkaddem and Gartland Jr 2000), which are called radial
hedgehog, ring disclination and split core respectively. These solutions are illus-
trated in Figure 4.1(a—c). Recently, in the low-temperature limit, Yu (2020) proved
the existence of axially symmetric solutions describing ring disclination and split
core.

The radial hedgehog solution in the ball Bg(0) can be represented in the form

1
Q) = h(|x]) (n(x)n(x) - §I>, n(x) = |—§| (3.2)
where h satisfies the ODE
) + 2R () - %h(r) = ah(r) - 2w+ 2, (3.3)
r r 3 3
h0)=0, h(R)=s,. (3.4)

Gartland Jr and Mkaddem (1999) proved the instability of the radial hedgehog
solution (3.2) when the temperature a is very low and the radius R of the ball is
large. Majumdar (2012) proved that if a is closed to zero or R is small, the radial
hedgehog solution is locally stable. For the whole space case, i.e. R = oo, Ignat,
Nguyen, Slastikov and Zarnescu (2015) showed that the radial hedgehog solution
is locally stable for a closed to zero and unstable for large |a|. The monotonicity
and uniqueness of the solution # to (3.3) is studied in Lamy (2013).

As defects in Q-tensor theory are not the singularities of order tensor Q but the
regions with rapid changes of Q, one may study the uniaxial limit of LdG model to
analyse the properties of defect sets. Most of these results concentrate on the case
Ly=13=Ly=0,L; = L.

Consider the strong anchoring boundary condition

1
Qloq = s+ (nb(X)nb(X) - §I>, n, € C*(0Q, 7). (3.5)
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Let Q be the global minimizers of the Landau—de Gennes energy
L a b c
FLQ Q) = [ FITQR + §I0P - T’ + {IQl*ax
0?2 2 3 4

with boundary condition (3.5). Majumdar and Zarnescu (2010) proved the follow-
ing results.

Theorem 3.1. For a sequence Ly — 0, the minimizers Q% — Q, in the Sobolev
space H 1(Q), where Q, € H!'(Q, M) is the minimizer of

/ |IVQ|*>dx, with Q € M and satisfying (3.5).
o)

In addition, the convergence is uniform away from the (possible) singularities of Q..

Moreover, away from the singular points of Q., the convergence was further
refined by Nguyen and Zarnescu (2013). Note that the fact that the limit map
Q. € H'(Q) implies the line defects is excluded in this case.

Bauman, Park and Phillips (2012) investigated the uniaxial limit of the Landau—
de Gennes energy with Ly, L3 # 0 on a 2D bounded domain. By assuming that
e3 is always an eigenvector of Q, they proved that if the boundary data have non-
zero degree, then there will be a finite number of defects of degree +1/2. This
problem models the behaviour of a thin LC material with its top and bottom surfaces
constrained to having a principal axis e3, and the limiting defects correspond to
vertical disclination lines at those locations. The line defects in the full three-
dimensional domain have been investigated by Canevari (2017), who proved that
the minimizers Q') converge to a limit map with straight line segment singularities,
by assuming the logarithmic bound of the energy:

F<CL|InL|.

Some related results are also given in Golovaty and Montero (2014) and Canevari
(2015).

3.2. Relation between the non-local Onsager energy and the Oseen—Frank energy

The orientation distribution function f contains detailed configurational informa-
tion on molecules. However, it is difficult to apply, especially when studying the
macroscopic behaviour of configurations, as it often leads to very high computa-
tional costs. Thus the Q-tensor theory and the Ericksen—Leslie theory are used
more often in analysis and computational simulations. Then it raises a natural
question: Are these models consistent with each other? This issue is fundamental
but highly non-trivial from the analysis perspective.

We briefly show how to derive it formally. We expand the mean-field potential as

Usf = Uplf] + eUi[f] + EUa[f] + - -, (3.6)
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where Up[f] =Uf and for k > 1

1
Ul flxm, 1) = —— / / almx m’[*g(y)(y - V)** f(x,m’, £) dm’ dy.
(2]()‘ R3 JS§2

Direct computation shows that
U1 -0U1 = [ [ almomPeux - X)) = e m o) d o
R3 Js

=//a|m><m’|2g(y)(f(x+\/Ey,m’,t)—f(x,m’,t))dm’dy

/ / oz|m><m|g<y><z —(y V) Fxm’, r)) dm’ dy

k>1

-/ / almx P (Y Eto- 97 sty am ay

k>1
We let (Ug[f] = U[f

Uk[f](X,m,f)=—/ / alm xm'[*g(y)(y - V)* f(x, m’, 1) dm’ dy.
(Zk)‘ R3 SZ
Denote

M[f]=/Sz m;m; f(x, m) dm, le:/g(Y)kaIdY-

Then
Uil f](x, m) = —%lemm: B AML]. (3.7)

The energy can then be expanded as

= /Q‘/SZ Sxm)(n f(x,m) — 1) + %f(x, m)Uo[ £](x, m) dm dx

+ % /Q GudMIf]: GM[f]dx + O(&?). (3.8)
The leading-order term is a local energy which can be written as
/QAo[f(X, )] dx, (3.9)
with
= [ rman fm) = 1) + 3 7m0l dm. (3.10)

Theorem 2.1 informs us that the global minimizers of the above energy are given
by

1
m) = nm:=—e'2, = e'zm, .
0(m) = /iy n(m) := = 4 nmn” g (3.11)
Sz
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where n € S? is an arbitrary unit vector, and 7 satisfies the relation
1 2
nz
fo e'% dz ~
- =
Ji 221 - 22)ens dz

Substituting (3.11) into (3.8), we can derive that for minimizers, the energy can be
written as

n=0 or

1
A, = const. + siGaS§|Vn(x)|2 +0(&?) (3.12)
with
32— Der dz
2 /01 e"%’ dz

1
: and G- [ awiviay

in which the leading non-trivial term is the one-constant form of the Oseen—Frank
energy. One may also derive the general Oseen—Frank energy for more complicated
(and realistic) interaction kernel B.(x; m, m’). We refer to E and Zhang (2006) for
details. Liu and Wang (2018b) proved that the minimizers or critical points of the
Onsager functional converge to minimizers or critical points of the one-constant
Oseen—Frank energy. Taylor (2018) proved the I'-convergence from the Onsager
functional to a two-constant Oseen—Frank energy.

3.3. Dynamics: analysis of various models

The analysis of models for LC flow has been a hot topic in the analysis and PDE
community during the past few decades, not only because these dynamical models
provide typical and concrete examples of the hydrodynamical model for general
complex fluids, but also because of the beautiful and complicated structures in
these models and the corresponding deep challenges. As the results for the well-
posedness and long-time behaviour of dynamical LC models are numerous, we
only mention some of them here, and these are far from complete.

The long-time behaviour of the Smoluchowski equations without the hydro-
dynamics was studied by Vukadinovic (2009). For the full Doi—Onsager hydro-
dynamical model, the local well-posedness of strong solutions was established by
Zhang and Zhang (2008). However, the global existence of weak solutions remains
open. For recent work on the existence and properties of solutions to the dynam-
ical Q-tensor models, we refer to papers by Paicu and Zarnescu (2012), Abels,
Dolzmann and Liu (2014), Huang and Ding (2015), Wilkinson (2015), Liu and
Wang (2018a) and the references therein.

The analysis of the Ericksen—Leslie model was initiated by Lin (1991), who
presented a simplified Ericksen—Leslie system (without Leslie’s stress). Moreover,
Lin and Liu (1995, 1996) proposed a regularized model based on the Ginzburg—
Landau approximation and proved the long-time asymptotic, existence and partial
regularity. We refer to Section 5.1 for the explicit formulation of these simplified
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or regularized systems. There are many studies devoted to the existence of global
weak solutions to the simplified or more general Ericksen—Leslie system in both R>
(Lin, Lin and Wang 2010, Hong 2011, Hong and Xin 2012, Huang, Lin and Wang
2014) and R? (Lin and Wang 2016). The local well-posedness of strong solutions
for the general Ericksen—Leslie system was proved by Wang, Zhang and Zhang
(2013) for the whole space case and by Hieber, Nesensohn, Priiss and Schade
(2016) on bounded domains with the Neumann boundary condition. Recently,
the well-posedness for the Ericksen—Leslie system including the inertial term was
considered (Jiang and Luo 2019, Cai and Wang 2020).

Another important issue in the analysis part is the generation or movement of
singularities of solutions to the Ericksen—Leslie equation, which characterizes the
dynamical behaviour of defects in LC flow. For the simplified equation, Huang,
Lin, Liu and Wang (2016) constructed solutions in a 3D bounded domain with
Dirichlet boundary data where the direction field blows up at finite time while the
velocity field remains smooth. Lai et al. (2019) proves that for any given set of
points in R?, one can construct solutions with smooth initial data which blow up
exactly at these points in a short time.

The above list of analysis results for the Ericksen—Leslie system is far from
complete. For more analysis results on the Ericksen—Leslie system or its variants,
we refer to the survey papers by Lin and Wang (2014), Hieber and Priiss (2016)
and the references therein.

3.4. Dynamics: from Doi—Onsager to Ericksen—Leslie

The formal derivation of the Ericksen—Leslie equation from Doi’s kinetic theory
was first studied by Kuzuu and Doi (1983). However, the Ericksen stress is omitted
since only the homogeneous case is considered. This derivation was extended to
the inhomogeneous case by E and Zhang (2006), who found that the Ericksen stress
can be recovered from the body force which comes from the inhomogeneity of the
chemical potential; see (2.11).

The derivations in Kuzuu and Doi (1983) and E and Zhang (2006) are based on
the Hilbert expansion (also called the Chapman—Enskog expansion) of solutions
with respect to the small parameter &:

f(L X, m) = fb(t, X, m) + Sﬁ(t, X,m) + 82f2(l’, X, m) +ee, (3 13)
V(£,X) = Vo(£,X) + &V1(t,X) + &2Va(6,X) + - - . :

Substituting the above expansion into the system (2.11) and collecting the terms
with the same order of &, we can obtain a series of equations for ( fy, vo; f1, Vi;- -+ ).
The O(¢~") equation gives that f; satisfies

R - (Rfo + foRUfo) = 0,
which means fj is a critical point of Ao[f]. So by Theorem 2.1 we can let

So(t,m, X) = hy) . xy(m) for some n(z,x) € s2.
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For the terms of order O(&°), it holds that

o Voo =Gpfi + R (BRU fp) - R mx (Two)T -mfy), (.14)
0vo 1—
8_Vt 4 Vo - Vv = —Vpo + R—AV() + 2R3V - (Do: (mmmm) ) (3.15)
1 -
- R—j{v - <mm XRfi+ D, U fk)> + <VU1fO>ﬁ)}

Although the above system involves the next order term f;, which is unknown as
yet, it is a closed evolution system for the direction field n(#,x) and the velocity
vo(t,x). Indeed, it is equivalent to the Ericksen—Leslie system for (n(t, x), vo(?, X))
with coeflicients determined by the parameters in the Doi—-Onsager equation, which
will be shown in Theorem 3.3 and 3.4 in the next subsections.

3.4.1. Analysis of the linearized operator
Analysis of the linearized operator

Guf SR (RS + WRUF + FRUR) (3.16)

around a critical point A plays an important role in the reduction of the system
(3.14)—(3.15). Kuzuu and Doi (1983) assumed or presented some properties of the
null space and spectra. With the help of complete classifications of critical points
of the Maier—Saupe energy, these properties can be rigorously proved (Wang et al.
2015b).

We introduce two operators A and Hj,, which are defined by

def f iy

Anf C-R-RA + UL, Haf E f.

We have the following important relation:
Gnf =—-Antnf. (3.17)

Then the null spaces of G, Hj, and QZ (the conjugate of Gp,) can be characterized
by the following theorem.

Proposition 3.2. Let h; = hy), y,i = 1,2. For @ > o, the following hold.

(1) Gpn, and Gp, with >, = 0 have no positive eigenvalues, whereas Gy, has at
least one positive eigenvalue for 17, # 0.

(2) If ¢ € Ker Gy, , then Hjp, ¢ = 0.
(3) KerGy, ={®@-Rh;;0 € R3} is a 2D space.
4) Kerg;, = {Aill(@ -Rhy);© € R}
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3.4.2. Derivation of the angular momentum equation
From (3.14) we have

0
<6—J:0 +vo -V +R-mx (Vvy)' 'me)_R'(fORUlfo),lﬁ> —0 (3.18)
L2(S?)

for any ¢ € KerG *O This equation provides the evolution equation for the vector
field n(#,x). In fact the following result tells us that n(z, x) satisfies the evolution
equation in the Ericksen—Leslie equation with some constants Ay, A5.

As Ker G, = A, Ker Gy, we have y( € Ker G;; if and only if there is a vector @
such that

R - (haRipg) = O - Rhy,. (3.19)
Theorem 3.3. Equation (3.18) holds if and only if n(x, ¢) is a solution of
nXx(yi(0m+v-Vn+Q-n)+y,D-n—-kprAn) =0, (3.20)

with v = vy and some vy, y, depending on @ and kr depending on « and the
interaction kernel function g.

Proof. Let W be a matrix with components given by W;; = /52 AR, JoOR; fo.
Then we have the following.

e W is symmetric.
e W.-n=0.
e For any unit vector p satisfyingp-n =0, p" - W - p is independent of p.

Therefore W is a constant multiple of I — nn, or W = y;(I — nn), say, and we have

/SZA_l(V-Rfo)w-ijo:ylv-(I—nn)-w. (3.21)
Now assume that ¢ = A~1(® - R fy) with ® € R>. First we have
% =m-nf) = (M@ xn)-Rfy.
Hence
<%, ;_//> =(mxn)-Rfp, A O -Rfp)) =—y10 - (n x n). (3.22)

Next we have
(R-(mX«-mfp),y) =(R-(mx(D-Q) -mfp),y)
= —<%A(mm: D)+mx(Q-n)-Rf, A 'O 7?,f0>

=(mx (D -m),0f) —(nx(Q-n) Rfp, A'O - Rfy)
=SnxD-n)—ynx(Q- -n)-06. (3.23)
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From (3.7) we have
(R - (HRULfo),¥) = (U1 fo,© - R fo)
= /2 aS,Gm x (A(nn) - m) - O dm
= S§a/G® - (n X An).
Let h = SZaGAn. Then
—~(R-(JoRU1fo),¢) = © - (nx h). (3.24)

Let y» = —8;. Then, combining (3.22), (3.23) and (3.24), we obtain that for any
® e R3,

O - mX(yOn+vy-Vn+Q-n)+y,D-n-h)) =0,
which completes our proof. Note that the induced Oseen—Frank energy is
k
Eor = 7F|Vn|2, with kr = S2aG. (3.25)

which agrees with the O(¢) part of (3.12). L]

3.4.3. Derivation of the momentum equation
Now we calculate the stress tensor in (3.15):

T = ‘/Sz mm X <Rf1 + Z flRUJ[fk]> dm,

i+j+k=1

= /S VULl dm,

g :/ Jomm(mm: D) dm.
SZ
From (3.7) we have

T = ‘/SZ —OZTSZGfO(m -n)V(mm: A(nn))dm

S
= / %GV Jo(m - n)mm: A(nn)dm + gradient term
S2
as?

TZGV(nn): A(nn) + gradient term

—a/SzzGVnkAnk + gradient term

—aS%GV -(Vn © Vn) + gradient term,

which is actually the Ericksen tensor o up to a pressure term with the Oseen—Frank
energy given by (3.25).
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For the stress of 71, we can write
71 = (mm X R(H fi + Ui[fo]) -

It can be decomposed into two parts, 79 and 7{*, which are symmetric and anti-
symmetric respectively. By the identity (A.5), the symmetric part satisfies

Tf=%/Sz<mm-§1>{%+vO-Vﬁ)+R-<m><(VvO>T-mfo)}dm

= %((@ +vo - V)(mm); +2D: (mmmm)y
- (D - Q) - (mm)y; — (mm)g; - (D + Q)),

where we used equation (A.7) in the last equality.
For any antisymmetric matrix A we have

(mm X foR(Hfi + Ur[fo])s: A
= ([mx (A-m)]- R(HA + Uil foD)s
= —([mx (A-m)]- RHfi + Ui[foD)s
= ~([nxA-m] - RMHfi + Uil foD)s
= —~((nx (A -m)]-RU[fo])s
=—-[nXx(A-n)-mxh)

1
= —(nh —hn): A,
2(ll n)
which implies
4 1
7, = z(nh — hn).
2
From (A.4) we have
T3 = / fomm(mm: D)dm
§2

= Sn(D: nn) + M(nD -n+D-nn) +2(§—; - % + %)D
Combining the above equations and noting that
h=vyN+7yD-n,
we can obtain the following theorem.

Theorem 3.4. Equation (3.15) is equivalent to

Avo+vo-Vvg=-Vp+V-(cf +oh), (3.26)
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where the stress terms are defined by

of = —kpV - (Vno Vn),
L_7 -y )
" = =D+ —=(a;(nn: D)nn + a,nN + a3Nn
Re Re
+ a4D + asnn - D + agD - nn),

with coefficients ;(i = 1,2, ..., 6) given by

S 1 1
a; = -4, ®=—zS-y) a=-5(S2+7y1),
2 2 2 (3.27)
_A 5 1 _ 1y, 6 _ L1 '
AR TR TRCRNET S A A A R At

3.4.4. Higher-order terms and the control of the remainder terms
We can also perform the higher-order expansion in a similar way up to any order of
e. Then we arrive at a series of equations for (f;(z, x, m), v;(¢,x)) i = 0,1,2,...). In
principle, these high-order terms provide more accurate corrections for approximate
solutions. However, it is not known so far whether the expansion in the right-hand
side of (3.13) is convergent. Moreover, even the existence of corrector solutions
(fi(z,x, m), v;(¢,x)) is not clear, although the equations can be derived explicitly.
Rigorous confirmation of the validity of expansion (3.13) requires the following:

e existence of smooth solutions to (f;(¢,x,m), v;(¢,x)) for all i > 0,

e bounding the difference between the true solution (f¢, v.) and the approximate
solutions

FO@ x,m) = fi(t, X, m),

(3.28)

V(k)(l‘, X) = v;(t, X).

k
2.
i=1

k
2.
i=1

Indeed, we need the bound to tend to 0 as € — 0.
The proof of the first part relies on the local existence of smooth solutions to the
Ericksen—Leslie equations, which is proved in Wang ef al. (2013). Indeed, let
(n(z, x), vo(z, X)) be a solution on time interval [0, T'] satisfying the Ericksen—Leslie
system with parameters suitably given; then we can construct a corresponding solu-
tion (fo(z, X, m), vo(t, X)) = (h(m-n(z, X)), v(z, X)) to (3.14)—(3.15). The construction
of (f1(¢,x, m), v|(z, x)) is rather subtle, since the system is nonlinear and this implies
that the existing time may be smaller than 7" in general. However, by carefully ex-
amining the inherent structure of the system, one may find that ( f;(z, x, m), v (¢, X))
could be constructed by solving a linear system, and thus the existing time can be

extended to [0, T']. The system for ( fi (¢, X, m), vi (¢, X)) (k > 2) is straightforwardly
linear and can be solved directly.
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[ Doi—Onsager model ]

Bingham
closure

[Molecular-based ] [Landau—de Gennes]

Hilbert expansion

Q-tensor model model

@ Hilbert expansion @

[ Ericksen—-Leslie model ]

Figure 3.1. Reduction to the Ericksen—Leslie theory from the Doi—Onsager theory
or the dynamic Q-tensor theory.

The second part, i.e. estimates for the difference, is much more difficult. The
key ingredients are the spectral analysis for the linearized operator Gj, and a lower
bound estimate for a bilinear functional related to a modified non-local version of
Gn. We refer to Wang et al. (2015b) for details.

3.5. Dynamics: other relations

The connection between the dynamic Q-tensor model and the Ericksen—Leslie
model can be directly derived. One may refer to Beris and Edwards (1994) or
Qian and Sheng (1998) for the derivation from the Beris—Edward model or Qian—
Sheng model to the Ericksen—Leslie theory respectively. The correspondence of
parameters can also be found. For rigorous justifications, one may apply the similar
procedure discussed in Section 3.4. We refer to Wang, Zhang and Zhang (2015a)
and Li er al. (2015) for the uniaxial limit of the dynamic Q-tensor models such
as the Beris—Edwards model, the molecular-based dynamic Q-tensor model and
the inertial Qian—Sheng model, respectively. These results are summarized in
Figure 3.1.

The above discussions build a solid correspondence between the Ericksen—Leslie
theory and the Doi—Onsager theory or the dynamic Q-tensor theory. However, they
are based on the framework of smooth solutions, which relies on the existence of
a smooth solution of the Ericksen—Leslie system. Thus it excludes the possibility
of defects. To resolve this problem, one needs to study the relations between weak
solutions. Liu and Wang (2018c¢) tackled this issue, and proved that the solutions to
the Doi—Onsager equation without hydrodynamics converge to the weak solution
of the harmonic map heat flow — the gradient flow of the one-constant Oseen—Frank
energy.

https://doi.org/10.1017/50962492921000088 Published online by Cambridge University Press


https://doi.org/10.1017/S0962492921000088

MODELLING AND COMPUTATION OF LIQUID CRYSTALS 801

4. Numerical methods for computing stable defects of liquid crystals

In this section we review recent developments in numerical methods for computing
stable defect patterns of LCs. We will focus on NLC systems again and apply the
LdG theory as the model system to provide a sample of relatively new progress
on the development of numerical algorithms that are applicable to general LC
problems. Two numerical approaches will be reviewed in order to obtain a local
minimum for a given energy functional. One is the energy-minimization-based
approach, which follows the idea of ‘discretize-then-minimize’, and the other is to
solve the gradient flow dynamics.

4.1. Energy-minimization-based approach

The energy-minimization-based approach first discretizes the free energy by intro-
ducing a suitable spatial discretization to the order parameter of system, and then
adopts some optimization methods to compute local minimizers of the discrete
free energy. From an optimization point of view, solving the gradient flow equa-
tion corresponds to the gradient descent method on the discrete free energy. An
energy-minimization-based approach enables us to apply some advanced optim-
ization methods, such as Newton-type methods or quasi-Newton methods, which
may be able to find local minimizers of the discrete free energy more efficiently.

The idea of computing defect structures in LCs by an energy-minimization-
based approach can be traced back to some early work on the Oseen—Frank model
in the late 1980s. Cohen et al. (1987) obtained several LC configurations by
numerically minimizing the Oseen—Frank energy. However, due to the lack of
convexity of the unit-length constraint, the convergence of their algorithms is
difficult to establish. A significant improvement was made by Alouges (1997),
who proposed an energy-decreasing algorithm for the one-constant Oseen—Frank
model. The convergence of this algorithm is proved in a continuous setting. Later,
Adler et al. (2015) proposed an energy-minimization finite-element approach to
the Oseen—Frank model by using Lagrangian multipliers and the penalty method,
which can be applied to the cases with elastic anisotropy and electric/flexoelectric
effects (Adler et al. 2015, Adler, Emerson, MacLachlan and Manteuffel 2016). A
surface finite element method was developed for the surface Oseen—Frank problem
to study the orientational ordering of NLCs on curved surfaces (Nitschke et al.
2018, Nestler, Nitschke, Praetorius and Voigt 2018). For the Ericksen model,
Nochetto er al. (2017) proposed a structure-preserving discretization of the LC
energy with piecewise linear finite elements, and developed a quasi-gradient flow
scheme for computing discrete equilibrium solutions that have the property of
strictly monotone decreasing energy. They also proved I'-convergence of discrete
global minimizers to continuous ones as the mesh size goes to zero. A similar idea
has been applied to the generalized Ericksen model with eight independent ‘elastic’
constants (Walker 2020) and a uniaxially constrained Q-tensor model (Borthagaray,
Nochetto and Walker 2020).
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For the full Q-tensor model, Gartland Jr er al. (1991) constructed a numer-
ical procedure that minimizes the LdG free-energy model, which is based on a
finite-element discretization to the tensor order parameter, and a direct minim-
ization scheme based on Newton’s method and successive over-relaxation. The
corresponding analytical and numerical issues of this numerical procedure were
addressed by Davis and Gartland Jr (1998), who proved the well-posedness of the
discrete problem. As well as being more physically realistic, the full Q-tensor
model has the advantage that the corresponding optimization problem is almost
unconstrained (as the eigenvalue constraint is normally satisfied due to the bound-
ary condition in a certain parameter region), although it might require higher
computational cost since Q has five degrees of freedom.

In recent years we have incorporated the spectral method with energy-minimiza-
tion techniques and successfully applied our approach to different confined LC
systems, including three-dimensional spherical droplets (Hu, Qu and Zhang 2016),
three-dimensional cylinders (Hu ef al. 2016, Han, Hu, Zhang and Zhang 2019),
nematic shells (Qu, Wei and Zhang 2017), nematic wells (Yin et al. 2020a) and
LC colloids (Wang et al. 2017, Tong, Wang and Zhang 2017, Wang, Zhang and
Chen 2018). From a computational perspective, as an efficient numerical method
with high accuracy, the spectral method makes an accurate free-energy calculation
for 3D problems possible and enables us to determine the phase diagram of some
complicated LC systems (Wang ez al. 2017).

To apply the spectral method to different confined LC systems, one can either
identify an appropriate coordinate system, i.e. map the physical domain to a regular
computational domain (Hu ef al. 2016, Wang et al. 2017), or use a phase-field-type
method (Wang et al. 2018) to deal with the underlying geometry and the boundary
conditions. Then the free energy can be discretized by introducing a spectral
discretization to the order parameter Q. Since the order parameter Q is a traceless
symmetric tensor, it can be written as

q1 92 q3
Q=2 q qs . 4.1)
q3 45 —4q1 — 44

We can introduce a spectral approximation to g; separately. The local minimizers
of the resulting discrete free energy F,(E) can be computed by some optimization
methods, such as the Broyden—Fletcher—Goldfarb—Shanno (BFGS) method. Here
Z € R>K consists of all expansion coefficients and K is the number of basis
functions.

The key step in the above numerical procedure is to compute the gradient of the
discrete free energy Fj(E) with respect to =. To illustrate the idea, we consider a
simple system with a scalar order parameter ¢ and a free energy

Flo] = /W((p, Vo) dx. 4.2)
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We can discretize the free energy F(¢) by introducing a spectral approximation to

K
o= &di 43)
i=1

where ¢; are the basis functions and &; are the expansion coefficients that must
be determined during the optimization procedure. The derivative of F,(Z) with
respect to &; can be computed directly as

0 ow ow
ZFn® = | =—¢;i + — - Vo dx, 4.4
56 7@ /a¢¢+w¢ 01 dx (44)

which is easy to compute via numerical integration. Note that the weak form of
the Euler-Lagrange equation of the free energy (4.2) is given by

ow ow
CONCADR )

where i is a test function and (., .) is the standard L2-inner production. Hence
the stationary points of the discrete free energy J,(Z) are exactly the numerical
solutions of the Euler—Lagrange equation (6.F)/(d¢) = 0 obtained by a Galerkin
method. The idea of discretization first can be extended to dynamics cases with
variational structure; we refer the interested reader to Doi, Zhou, Di and Xu
(2019) and Liu and Wang (2020a) for some recent developments. In particular, by
using the strategy of ‘discretize-then-variation’, Liu and Wang (2020b) proposed
a variational Lagrangian scheme for a phase field model, which has an advantage
in capturing the thin diffuse interface with a small number of mesh points. Such a
numerical methodology can certainly be applied to a liquid crystal system and will
have potential advantages in computing the defect structures.

Next we discuss the choice of basis function. For three-dimensional unit spheres,
Hu et al. (2016) choose the basis functions to be Zernike polynomials Z,,;,,, (Zernike
1934, Mahajan and Dai 2007), defined by

Zuim(r, 0, 8) = R (r)Yim 6, 6), (4.6)
where
(n=D)/2 .
Rg) _ ; ansrn—Zs 0< T €7,
0 otherwise,
n—I l n—1 2l—n
Nys = (—1)S\/m1_—1[(n+l—2s+ 1 +i)l:[<7 —s+i>m,
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Yim (0, ¢) = Pllml(cos 0) X (¢) are the spherical harmonic functions with

l cosmp m =0,
Xm(@) =17

—sin|m|l¢ m <O,

Vg
and P/"(x) (m > 0) are the normalized associated Legendre polynomials. The
Zernike polynomials Z,;,, are orthogonal in the three-dimensional unit sphere,
which can simplify the computation in (4.5). Similarly, for the 2D disk and
cylindrical domain (Hu et al. 2016, Han et al. 2019), the authors choose 2D
Zernike polynomials Z,;; as the basis functions.

The orthogonality of the basis functions is not required in the above numerical
procedure. A disadvantage of using Zernike polynomials is that the value of
Rff)(r) for given r is not easy to compute with high accuracy. Standard basis
functions, such as Legendre and Chebyshev polynomials, might be better choices
in numerical calculation for more general problems. For example, for spherical
shells and unbounded domains outside one or two spheres (Wang et al. 2017,
Tong et al. 2017, Noh et al. 2020), we can first map the physical domain to a
computational domain,

Q={{l,me)| -1 <{<1L0<pu<nm0< o< 2n},

and choose real spherical harmonics of (y, ¢) and Legendre polynomials of ¢ as
the basis functions.

To validate the algorithm, Hu ef al. (2016) compared the numerical results of the
radial hedgehog solution with its analytic form (Gartland Jr and Mkaddem 1999,
Majumdar 2012). The radial hedgehog solution is a radial symmetric solution, in
which the Q is given by
r

Qru(r) = h(|l‘|)<L ® — — 11) 0<|rl <1,
|r| 3

||
where h(r) satisfies the second-order ODE (3.3), which can be solved accurately.
By increasing the number of the basis in the Zernike polynomials using N = 4k,
L =16, M = 4, the numerical error in the total free energy decreases to as low as
10719 (Hu et al. 2016). For more complicated solutions (without radial symmetry),
Wang et al. (2017) exhibited the numerical error in free-energy calculations for
the dipole and Saturn ring defect around a spherical particle immersed in an NLC.
These numerical tests suggest that such numerical methods are adequate for an
accurate free-energy calculation to determine the phase diagram of the system.
Finding minimizers of the LdG free energy is an unconstrained nonlinear optim-
ization problem. The minimizers can be obtained by optimization methods such
as the gradient descent method and quasi-Newton methods. A commonly used
optimization method for such problems is the limit-memory Broyden—Fletcher—
Goldfarb—Shanno (L-BFGS) method (Knyazev 2001). The energy-minimization-
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based numerical approach with L-BFGS usually converges to a local minimizer
with a proper initial guess, but that is not necessarily guaranteed. To check whether
the solution is a local minimizer, we need to justify the stability of the solution
on the energy landscape F' by computing the smallest eigenvalue A; of its Hessian
H(x) = V2F(x), the associated second variation of the reduced energy correspond-
ing to x (Yin et al. 2019, Canevari, Harris, Majumdar and Wang 2020):

A1 = min M, “4.7)

veR"  (V,V)

where (-, -) is the standard inner product in R". The solution is locally stable or
metastable if 4; > 0. In practice, 4| can be computed by solving the gradient flow
equation of v:

2 H
W _ 2 (g Hwm) 4.8)
ot (V, V) (V, V)
where v is a relaxation parameter and H(x)v can be approximated by
VF(x+1Iv)-VF(x -1
H(oy ~ — L+ V)~ VFa - v (4.9)

21

for some small constant /. We can choose y(¢) to accelerate the convergence of the
dynamic system (4.8) (Yin et al. 2019).

The first example of minimizing the LdG free energy is to calculate the possible
equilibria of NLCs confined in a three-dimensional ball with different kinds of
anchoring conditions (Hu ef al. 2016). For the strong radial anchoring condition,
three different configurations are obtained: the radial hedgehog, ring disclination
and split core solutions (Figure 4.1(a—c)). In the radial hedgehog solution Q is
uniaxial everywhere with a central point defect, which is a rare example of a pure
uniaxial solution for the Landau—de Gennes model (Lamy 2015, Majumdar and
Wang 2018). For low temperature and large domain size, the point defect broadens
into a disclination ring. The disclination ring solution is a symmetry-breaking
configuration. The split core solution contains a +1 disclination line in the centre
with two isotropic points at both ends, the existence of which is proved in Yu (2020)
under the rotational symmetric assumption. The authors also consider the relaxed
radial anchoring condition, which allows s = s(x) to be a free scalar function on 9Q.
Besides the radial hedgehog, disclination ring and split core configurations, one
more solution is obtained for this boundary condition, as shown in Figure 4.1(d).
Two rings of isotropic points form on the sphere. Between the two rings, on the
surface Q is uniaxial and oblate (s < 0). Inside the ball, there is a strong biaxial
region close to the surface. For a planar boundary condition, the authors find three
stable solutions (Figure 4.1(e—f)). In Figure 4.1(e), two +1 point defects form at
two poles. As the temperature decreases, the point defect on the surface splits into
two +1/2 point defects. In Figure 4.1(f), the four +1/2 point defects on the sphere
form the vertices of a tetrahedron. Inside the ball, there are disclination lines which
intersect with the spherical surface on the above-mentioned point defects. The
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Figure 4.1. (Credit: Hu et al. 2016.) Possible equilibria under various anchoring
conditions. (a—c) Three equilibria under the strong radial anchoring condition on
the x—z plane: radial hedgehog (a), ring disclination (b) and split core (close-up
view) (c). (d) Equilibrium under the relaxed radial anchoring condition. (e—f) Two
equilibria for the planar anchoring condition. (g) A uniaxial solution for the planar
anchoring condition. Here 8 = 0 and Q is oblate everywhere. The colour bar
indicates 8 = 1 — 6((tr Q3)2/(tr Q%)?), with red for biaxial and blue for uniaxial.
The values of g (represented by colour) and the Q-tensor (represented by ellipsoid
glyphs) arise from numerical simulation. The cyan tubes inside the ball in (e—f)
are the isosurfaces of ¢; = A; — Ay, the difference between two largest eigenvalues

of Q.

configuration in Figure 4.1(e) has two segments of +1 disclination lines with one
isotropic end buried inside the ball and the other end connecting the surface. As the
temperature decreases, the +1 disclination splits into a +1/2 disclination with both
ends open at the surface. Another metastable solution is shown in Figure 4.1(g). In
this configuration Q is uniaxial everywhere and has radial symmetry. But unlike
the radial hedgehog solution, Q is oblate (s < 0) everywhere rather than prolate.

For the 2D disk and 3D cylinder, Hu ef al. (2016) obtained minimizers on the
unit disk with boundary condition Q(cos ¢, sin ¢) = s,(n ® n — I/3), where

k k
n= (cos Eaﬁ,sinng,()), k==+1,%£2,...,

is kept in the x—y plane at the boundary. They found that the solutions are pre-
dictable. For large temperature and large domain, there is a semi-radial solution in
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(a) planar radial (PR) (b) planar polar (PP) (c) escape radial (ER)
2
planar radial
‘I |
O |
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—1r
—2r 4
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radial
0 5 10 15 20

1/e
(d) phase diagram

Figure 4.2. (Credit: Hu et al. 2016.) Three equilibria: (a) planar radial, (b) planar
polar and (c) escape radial for the radial anchoring condition on a 2D disk. S is
shown in colour in (a—b) with red indicating biaxial and blue uniaxial. Ellipsoids
represent the Q-tensor. Golden solid bars in (c) represent the eigendirection cor-
responding to the largest eigenvalue. (d) Phase diagram of the planar radial, planar
polar and escape radial configurations. The partition is based on the lowest energy
of the three.

which all the eigenvalues are rotational symmetric and the eigenvectors are invari-
ant along the r-direction determined by the boundary condition. The semi-radial
solution has a central defect with winding number determined by the boundary
constraint. As the temperature decreases and the domain size increases, the semi-
radial solution becomes unstable and the central defect quantizes to defect points
with +1/2 or —1/2 winding number. The number of 1/2 defects is determined by
the conservation of the total winding number. When k of the boundary condition
is even, there is a non-singular harmonic map solution, a phenomenon that Sonnet,
Kilian and Hess (1995) referred to as ‘escape into the third dimension’. Both the
escape solution and the quantized +1/2 solutions are stable for low temperature.
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(b) planar polar (PP)

(c) escape radial (ER) (d) escape radial with
ring defect (ERRD)

Figure 4.3. (Credit: Han ef al. 2019.) Four equilibria of NLCs confined in a
cylinder with the homeotropic anchoring condition: (a) planar radial, (b) planar
polar, (c) escape radial and (d) escape radial with ring defect. Disclination lines
are represented by the red isosurface of ¢;. The disk in the upper-right corner is
the transversal view of the structure in (a—c). The ellipsoid on the disk represents
the Q-tensor on the disk and the colour corresponds to S, ranging from 0 (blue) to
1 (red).

As the temperature decreases further, the free energy of the escape solution will
be lower. When k = 2 or with planar boundary conditions, there are three known
configurations: planar radial (PR), planar polar (PP) and escape radial (ER), as
shown in Figure 4.2. The planar radial has one +1 point defect at the centre; the
planar polar solution has two +1/2 point defects that form on opposite locations on
the disk; the escape radial has no defect in which Q is uniaxial everywhere with s
being constant and n being a harmonic map for the given boundary condition. A
phase diagram for these three configurations is shown in Figure 4.2(d).

With z-axial invariance, the PR, PP and ER configurations (Figure 4.3(a—c)) are
still stable equilibria of NLCs confined in a cylinder with homeotropic boundary
conditions. Without axial invariance, the escape radial with ring defect (ERRD)
configuration (Figure 4.3(d)) is also a stable equilibrium, which has two disclination
rings lying on a plane parallel to the axial direction of the cylinder. Two disclination
rings can be considered as the broadening of two point defects with topological
charge +1 and —1 (Brada, Kralj, Svetec and Zumer 2003). The ERRD solution can
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be considered as a quenched metastable state formed by joining ER configurations
with opposite pointing directions, which means the free energy of ERRD is always
higher than ER.

For the liquid crystal colloid (LCC) system, Wang et al. (2017) presented a de-
tailed numerical investigation of the LdG free-energy model under the one-constant
approximation for systems of single and double spherical colloidal particles im-
mersed in an otherwise uniformly aligned NLC. For strong homeotropic anchoring
with one spherical particle, two types of configuration are obtained, namely quad-
rupolar (also known as Saturn-ring structure) and dipolar states, as illustrated in
Figure 4.4. In the quadrupolar state, a —1/2 disclination line forms a ring located
at the equator and the entire Q-tensor has an axisymmetry about the z-axis and
reflection symmetry with respect to the x—y plane through the centre of the sphere.
The dipolar solution is an axisymmetric configuration and contains no reflection
symmetry with respect to the x—y plane. The defect ring in the dipolar state is
near the top of the sphere. The phase diagram for the single-particle problem is
shown in Figure 4.4(g). Below the critical temperature of isotropic—nematic phase
transition, the dipolar state is stable for large particle systems and can only be
found to the right of the dashed curve, which represents its stability limit. The
quadrupolar pattern can be found as the stable or metastable state over the entire
parameter space below the critical temperature.

To study the case with two spherical particles of equal radii placed in a nematic
fluid, Wang et al. (2017) introduced the bispherical coordinates (&, i, ¢) (=& <
£ <&,0< u<mand 0 < ¢ < 2r) (Fukuda ef al. 2004), and chose real spherical
harmonics of (u, ¢) and Legendre polynomials of £ (£ = £/&p) as basis functions.
The relation between bispherical coordinates (&, i, ¢) and Cartesian coordinates

(x,y,z7)is
sin sin , sinh &
— ————————— COS O, =aq——SIn Q, =ad———— )
* acoshf—cos,u %y acoshf—cosy % 2 acoshf—cos,u
where a = /(D/2)? — R%, R is the ball’s radius, and D is the distance between

the centres of the two spherical particles. At a fixed ¢, & = u = 0 corresponds to
infinity, and the surface of constant & represents the sphere given by

a2

sinh? & '
So the surfaces of the two spherical particles are represented by ¢ = +&) and
& = cosh™'(D/2R). Inspired by the configuration of single particles in an NLC,
Wang et al. (2017) considered the dimer complex composed of a dipole—dipole pair,
a quadrupole—quadrupole pair and a dipole—quadrupole pair; see Figure 4.5. They
found three stable state configurations in the dimer system, namely an entangled
hyperbolic defect (H), unentangled defect rings (U,) and parallel dipoles (Do),
after the free energy is minimized with respect to both the far-field nematic director
(represented by y € [0, 7/2]) and inter-particle distance D/R. Both the H and U,

x* +y? +(z—acoth¢)? = (4.10)
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Figure 4.4. (Credit: Wang er al. 2017.) Two equilibria of NLCs surrounding
a spherical particle: (a—c) quadrupolar state and (d-f) dipolar state, with the
corresponding regimes in the phase diagram (g), where these states have the lowest
free energies and the dashed line represents the stability limit of the dipolar state.
Each state is illustrated by using three views: side views of the Q-tensor element
011 (a,d), the same side views of the biaxiality coefficient 3 (b, e), and top views
of the defect location (c, f), indicated by the black circles produced by plotting the
isosurface of ¢; = 0.1. (e) An enlarged version of the defect area on top of the
sphere, where the tensor field (white ellipsoids) indicates a —1/2 defect line.
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states are variations of the quadrupolar structure in Figure 4.4. The H state, in
which y = 7/2, is only stable in systems with extremely small particle size. Due to
the two defect rings both having the same winding number —1/2, in U, the portions
of the defect rings near the sphere—sphere centre locally repel each other. As these
portions are twisted upwards and downwards, the original spherical axes tilt in
order to accommodate a larger distance between these two repelling portions. The
value of the optimal y deviates from y = 7/2 starting from the isotropic—nematic
transition line and increases as the system moves to a smaller particle size state. In
Dy, the far-field tilt angle is given by ¥ = 0. Beyond the three free-energy ground
states, six metastable states can be computed. We refer the interested reader to
Wang et al. (2017) for more detailed discussions.

For more complex geometries, phase field approaches or diffuse interface meth-
ods (Yue, Feng, Liu and Shen 2004) can be incorporated into the above numerical
framework. For example, combining the phase field method with the Fourier spec-
tral method, Wang er al. (2018) investigated the formation of three-dimensional
colloidal crystals in a nematic liquid crystal dispersed with a large number of
spherical particles. They computed the corresponding defect structures in the
space-filler nematic liquid crystal induced by the presence of the spherical surface
of the colloids, and found multiple configurations for each given particle size and
that the most stable state is determined by a comparison of the free energies. Their
numerical studies show that from large to small colloidal particles, a sequence of
3D colloidal structures, which range from quasi-one-dimensional (columnar), to
quasi-two-dimensional (planar) and truly three-dimensional, are found to exist.

Besides NLCs, similar numerical techniques can be applied to cholesteric LCs.
Tong et al. (2017) investigated the defect structures around a spherical colloidal
particle in a cholesteric LC, i.e. Q = R3*\B(0,1). In order to deal with the in-
homogeneity of the cholesteric LC at infinity, they first identified the ground state
Qo and used spectral methods to approximate Q — Qq. Instead of using classical
orthogonal systems on the unbounded domain, such as Laguerre polynomials, they
combined the exponential mapping and the truncation techniques to capture the
property of Q — Qp. The mapping between the computational domain (p, 6, ¢) and
the physical domain (r, 6, ¢) is given by

|
r:sinh(%L), pel-1,1], 4.11)

where r is the radial distance in the spherical coordinates. Figure 4.6 shows two
types of defect configurations obtained in a cholesteric LC by their numerical simu-
lation for strong homeotropic anchoring: the twisted Saturn ring (Figures 4.6(a—c))
and the cholesteric dipole (Figures 4.6(d—f)). Similar numerical methods can be
used to study defect structures in the cholesteric LC and the blue phase under
different geometric constraints (Fukuda et al. 2010, Guo et al. 2016, Darmon et al.
2016).
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Figure 4.5. (Credit: Wang et al. 2017.) (a) Sketch of the coordinate system
for a dimer problem. (b) Entangled hyperbolic defect (H) state where y = x/2.
(c) Unentangled defect rings (U,) where y = /2. (d) Parallel dipole-dipole
state (Do) where ¥ = 0. (e) Phase diagram describing the regimes where these
defect states have free-energy minima in terms of a reduced temperature 7 and
reduced spherical radius 1/ég. The phase diagram was determined based on the
ground-state calculation, after consideration of all other possibilities including
minimization with respect to the particle distance D and tilt angle y. Parts (b) and
(c) are illustrations of the defect lines determined from isosurface of the largest
eigenvalue of Q, 4; = 0.25; (d) is the cross-section view of Q1.
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(b)

(d) (e 9]

Figure 4.6. (Credit: Tong et al. 2017.) Two possible configurations around a
spherical particle: (a—c) defect structures in the twisted Saturn ring, (d—f) defect
structures in the cholesteric dipole.

4.2. Gradient flow approach

Gradient flow is a dynamics driven by a free energy. There are quite a number
of works devoted to obtaining the defect patterns by solving the gradient flow
equation corresponding to different LC systems (Fukuda et al. 2004, Ravnik and
Zumer 2009, Canevari ez al. 2017, Wang et al. 2019, MacDonald et al. 2020). For
the LdG theory, the corresponding L2-gradient flow equation can be written as

0Q oF

o yéQ, (4.12)
where y > 0 is the dissipative coefficient. An advantage of the gradient flow
approach is that it also provides partial information on the dynamical evolution of
the defect structure.

From the numerical perspective, the main challenge in developing numerical
schemes for gradient flow systems is to maintain the energy dissipation property at
the discrete level. During the past few decades, energy-stable numerical schemes
for gradient flow systems have been studied extensively; examples include fully
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implicit schemes (Xu, Li, Wu and Bousquet 2019, Du and Feng 2020), convex
splitting methods (Elliott and Stuart 1993, Eyre 1998), stabilization methods (Shen
and Yang 2010, Cai, Shen and Xu 2017a), invariant energy quadratization (Yang
2016, Zhao, Yang, Gong and Wang 2017) and the scalar auxiliary variable (SAV)
approach (Shen et al. 2018, Shen, Xu and Yang 2019).

In a recent work, Shen et al. (2019) developed a second-order unconditionally
energy-stable scheme based on SAV and Crank—Nicolson for the LdG theory, in
which the LdG free energy is given by

F1QI = F[Q] + FulQ. VQI, (4.13)

where
Fom [#@= [Je@-ZuQ s Sl
Fe = / %lVQ|2 + %Qik,ink,j + %ij,iQij,k dx.
Here C > 0, Ly > O and L; + L, + L3 > 0, so the total energy is bounded

from below. Due to the quartic term C(tr Q?)?, there exists aj, Cy > 0 such that
1»(Q) —a; trQ?/2 + Cy > 0. Let r be the scalar auxiliary variable defined by

r(l‘) = \/fl = \/Fb - / %H'Qz + C() (414)
Q

and
]:
4.15
50 (4.15)
Then the gradient flow equation can be rewritten as
Q _
ar 1
r(t) oF
= ‘CQ + _’
5]: 1
T, —: Q, dx.
t 2 '_fl o t

The corresponding numerical scheme is given by

Qn+l Qn ’un+ 12
At ’

1 rn+l + 1 SF -
Mn+l/2 — E(Qn+l + Qn) + _ l[Qn+1/2], (4]7)

2VFIQ T

n+l _ n _ 1 (6f1 'n+1/2> n+l _ o1y g
= [ e a0 @) @ - e
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For the LdG free energy with cubic term (L4Q;Q;j,xQij,1), although the total
free energy is not bounded below (Ball and Majumdar 2010), Cai et al. (2017a)
constructed an unconditionally stable numerical scheme for the 2D Q-tensor by
a stabilizing technique. They also established uniqueness, solvability and conver-
gence for such a scheme. The convergence analysis leads to the well-posedness
of the original PDE system for the 2D Q-tensor model. They presented several
numerical examples to validate and demonstrate the effectiveness of their scheme.

4.3. Machine learning approach

Over the past decade, machine learning has made a huge impact on the research
areas of materials and soft matter, showing the highly powerful and effective
performance attained by using the techniques of deep learning. Here we just
take a recent work by Walters ef al. (2019) as an example of the LC system to
demonstrate this trend. Walters et al. (2019) investigated a problem for identifying
the topological defects of rod-like molecules confined in a square box from ‘images’.
Unlike conventional images with correlated physical features, where supervised
machine learning has been successful, these images are coordinated files generated
from an off-lattice sampling. A single-line structure [/, x;, y;, 6;] is given for each
rod-like molecule, where [x;, y;, 0;] specifies the location coordinates and angular
orientation of the molecule labelled [/, and the labels are not related. The task is to
identify the four defect patterns from the off-lattice data, and two types of machine-
learning procedure are considered: the feedforward neural network (FNN) and the
recurrent neural network (RNN). It is shown that FNN is not readily appropriate
for studying defect types in this off-lattice model. However, with a coarse-grained
position sorting in the initial data input, referred to as presorting, effective learning
can be realized by FNN. In contrast, RNN performs exceptionally well at identifying
defect states in the absence of presorting. Most importantly, Walters et al. (2019)
pointed out that by dividing the whole image into small cells, an RNN approach
with the data in each cell as an input can detect the types and positions of nematic
defects in each image instead of the naked eye.

5. Numerical methods for computing liquid crystal hydrodynamics

In this section we review some progress on numerical methods for studying LC
hydrodynamics, including vector models, tensor models and molecular models.

5.1. Vector models

An NLC flow behaves like a regular liquid with molecules of similar size, and also
displays anisotropic properties due to the molecule alignment, which is usually
described by the local director field. The Ericksen—Leslie equations have been used
to describe the flow of NLCs, and have attracted much theoretical and numerical
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research. According to the macroscopic hydrodynamic theory of NLCs established
by Ericksen (1961) and Leslie (1979), Lin (1989) proposed simplified Ericksen—
Leslie equations for an NLC flow:

du+(u-Vu—vAu+Vp+ AV - ((Vd)"Vd) = 0,
V-u=0, (5.1)
dd + (u-V)d — yAd — y|Vd|*d = 0.

Here u denotes the solenoidal velocity field, p denotes the pressure, and d denotes
the molecular alignment satisfying a sphere constraint almost everywhere. The
positive parameters v, A,y are a fluid viscosity constant, an elastic constant and a
relaxation time constant, respectively. The system (5.1) consists of the Navier—
Stokes equations coupled with an extra anisotropic stress tensor and a convective
harmonic map equation. Although simple, this system retains the core of the
mathematical structure, such as strong nonlinearities and constraints, as well as the
physical structure, such as the anisotropic effect of elasticity on the velocity vector
field u, of the original Ericksen—Leslie system. The first energy equality, which is
established under certain boundary conditions, expresses the balance of energy in
the system between the kinetic and elastic energies.

Badia et al. (20110) provided an excellent overview of the numerical methods
for (5.1). Since an almost-everywhere satisfaction of the sphere constraint re-
striction is not appropriate at a numerical level, two alternative approaches have
been introduced: a penalty method and a saddle point method. With a Ginzburg—
Landau penalty function F,.(d) = (|d|?> — 1)?/(4&?) to enforce the sphere constraint,
a penalty formulation is obtained by weakening the constraint as

du+(u-Vyu—-vAu+Vp + AV - ((Vd)"Vd) = 0,
V-u=0,

Od+ (u-V)d + y(fe(d) — Ad) = 0,

ld <1,

(5.2)

where fo(d) = VqF.(d), and the energy estimate for (5.2) was established by Lin
and Liu (1995). Finite element methods of mixed types play an important role
when designing numerical approximations for the penalty formulation in order to
preserve the intrinsic energy estimate. Alternatively, with a Lagrange multiplier ¢
to enforce the sphere constraint, a saddle point formulation reads as

du+u-Vyu—vAu+Vp+ AV - (Vd)"Vd) = 0,

V-u=0,

Od+ (u-V)d+y(gd — Ad) =0,

ld| =1,

(5.3)
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and the energy estimate for (5.3) was derived by Badia, Guillén-Gonzélez and
Gutiérrez-Santacreu (2011a). These approaches are suitable for their numerical
approximation by finite elements, since a discrete version of the restriction is
enough to prove the desired energy estimate. The penalized Ginzburg—Landau
problem (5.2) can be stated in a saddle point framework as well,

du+ (u-Vyu—vAu+ Vp+ AV - ((Vd)'Vd) = 0,

V-u=0,

5.4)
dd + (u-V)d + y(gd — Ad) = 0,
d]* -1 =&,

which establishes a connection between (5.2) and (5.3).

The numerical approximation of the Ericksen—Leslie equations is difficult and
computationally expensive because of the coupling between the nonlinear terms and
the constraint conditions. Liu and Walkington (2000) dealt with the approximation
of (5.2) for 2D domains, and established convergence of finite element approx-
imations under appropriate regularity hypotheses with dependence on the penalty
parameter €. Du, Guo and Shen (2001) studied a Fourier-spectral method for (5.2)
by proving its convergence in a suitable sense and establishing the existence of a
global weak solution of the original problem and its uniqueness in the 2D case. The
error estimates exhibit the spectral accuracy of the Fourier-spectral method, and a
fully discrete scheme is constructed with a complete stability and error analysis.
Feng and Prohl (2004) proved a convergence result for a Ginzburg—Landau-type
equation where the dependence of ¢ is of polynomial order. Lin and Liu (2006)
presented one of the simplest time-stepping schemes for the 2D Ginzburg—Landau
problem (5.2), where the space is discretized by H'-conforming finite elements and
time is discretized implicitly with respect to the linear terms and semi-implicitly
with respect to the nonlinear terms, while the anisotropic stress tensor is fully
explicit. This scheme reduces the computational cost significantly, and larger-scale
numerical simulations are allowed because only a sequence of two decoupled lin-
ear problems for the velocity—pressure pair and the director field need to be solved
separately at each time step. Liu, Shen and Yang (2007) presented an efficient and
accurate numerical scheme for (5.2) in a cylinder domain. The time discretization
is based on a semi-implicit second-order rotational pressure-correction scheme
and the Legendre—Galerkin method is used for the space variable. Annihilation
of a hedgehog—antihedgehog pair with different types of transport is simulated
numerically.

By introducing an auxiliary variable w = Vd, Liu and Walkington (2002) avoided
using Hermite finite elements for the approximation of the director equation in (5.2)
and formulated the director equation in the framework of mixed methods. They
showed how a mixed method may be used to eliminate the need for Hermite finite
elements and establish convergence of the method. Girault and Guillén-Gonzilez
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(2011) considered another auxiliary variable w = —Ad to avoid the large number
of extra degrees of freedom and the nonlinearity of the numerical schemes, and
constructed a fully discrete mixed scheme that is linear, unconditionally stable and
convergent towards (5.2). With an auxiliary variable w = —Ad + fz(d), two finite-
element Euler time-stepping schemes have been developed that are implicit for the
linear terms and semi-implicit for the nonlinear terms. Specifically, Becker et al.
(2008) proposed a fully implicit approximation to deal with the time integration
of fz, while Guillén-Gonzalez and Gutiérrez-Santacreu (2013) suggested a fully
explicit one. The time step of the explicit scheme must be quite small if the size
of & is proportional to the space parameter 4, but their numerical experiences have
been demonstrated to be optimal. Lin, Liu and Zhang (2007) used convenient
conformal C? finite elements in solving the problem in the weak form, and derived
a discrete energy law for a modified midpoint time discretization scheme. A fixed
iterative method is used to solve the resulting nonlinear system so that a matrix-free
time evolution may be achieved and velocity and director variables may be solved
separately.

Becker et al. (2008) presented a finite element scheme directly for the Ericksen—
Leslie equations (5.1), which is a more difficult task than for the Ginzburg—Landau
problem (5.2) because the sphere constraint |[d| = 1 is difficult to fulfil at the
discrete level. Badia et al. (2011a) developed a linear semi-implicit algorithm that
is unconditionally stable for both the Ginzburg—Landau problem and the Ericksen—
Leslie problem, and it does not involve nonlinear iterations. Guillén-Gonzdlez
and Koko (2015) proposed a two-substep viscosity-splitting time scheme for (5.3),
which is a fully decoupled linear scheme from the computational point of view.
The first substep couples diffusion and convection terms whereas the second one
is concerned with diffusion terms and constraints. Some numerical experiments in
2D domains are carried out by using only linear finite elements in space, confirming
numerically the viability and the convergence of this scheme.

Walkington (2011) considered numerical approximation of the flow of LCs
governed by the Ericksen—Leslie equations. Care should be taken to develop
numerical schemes that inherit the Hamiltonian structure of these equations and
associated stability properties. Zhao, Yang, Li and Wang (2016) developed first-
order and second-order coupled energy-stable numerical schemes for a modified
Ericksen—Leslie hydrodynamic model, which can reduce to (5.1) with the omission
of some terms. They presented two ways to develop decoupled schemes for the
model, and showed the energy stability as well. They made prediction comparisons
of the modified model with a reduced model, demonstrating quite different but
more realistic orientational dynamics in flows of NLCs. Chen, Bao and Zhang
(2016) investigated the kinematic transports of the defects in the NLC system
by numerical experiments with difference schemes and the semi-implicit scheme
which is more efficient although it does not preserve discrete energy relation. The
presented development and interaction of the defects are partially consistent with
the observation from the experiments.
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Simulating the rise of Newtonian drops in an NLC is a computational challenge
because of the numerical difficulties in handling moving and deforming interfaces
as well as the complex rheology of NLCs. The anisotropic rheology of the LC can
be represented by the Ericksen—Leslie theory, regularized to permit topological de-
fects. Zhou, Yue and Feng (2007) simulated the rise of Newtonian drops in an NLC
parallel to the far-field molecular orientation by computing the moving interface in
a diffuse interface framework. The numerical results revealed interesting coupling
between the flow field and the orientational field surrounding the drop, especially
the defect configuration. For example, drops with planar anchoring on the surface
rise faster than those with homeotropic anchoring due to the viscous anisotropy
of the nematic LC. With both types of anchoring, the drag coefficient of the drop
decreases with increasing Ericksen number as the flow-alignment of the nematic
orientation reduces the effective viscosity of the LC.

LC droplets immersed in another fluid matrix or another liquid droplet immersed
in LC matrices have many interesting technological applications (Yue et al. 2004).
Based on an energetic variational approach, Yue er al. (2004) derived a phase
field theory for immiscible mixtures of NLCs and viscous fluids. A novel phase
transition mechanism is implemented to couple the NLC phase with the viscous
fluid phase to arrive at the dissipative hydrodynamic model for incompressible fluid
mixtures. Zhou et al. (2007) developed a decoupled, linear scheme for a simplified
version of the phase field model, as well as a coupled, nonlinear scheme for the
full model, and showed them to be unconditionally energy-stable with consistent
discrete dissipative energy laws. The effectiveness of the presented numerical
examples shows the effectiveness of the new model and the numerical schemes.

A number of models for smectic phase LCs have been developed and studied
during the past two decades, and we will take one example of smectic LC hydro-
dynamics. Chen, Yang and Zhang (2017) considered the numerical approximations
for solving a particular hydrodynamics coupled smectic-A model developed by E
(1997). The model, which is derived from the variational approach of the modified
Oseen—Frank energy, is a highly nonlinear system that couples the incompressible
Navier—Stokes equations and a constitutive equation for the layer variable, but ap-
pears to be the minimal model of unknowns. The director field is assumed to be
strictly equal to the gradient of the layer, and thus the total free energy is reduced
to a simplified version with only one order parameter. Rather than imposing a
non-convex constraint directly on the gradient of the layer variable, the free energy
is modified by adding a Ginzburg—Landau-type penalization potential, which is a
commonly used technique in LC theory. Two linear second-order time-marching
schemes, which are unconditionally energy-stable, are developed with the invari-
ant energy quadratization method for nonlinear terms in the constitutive equation,
the projection method for the Navier—Stokes equations, and some subtle implicit—
explicit treatments for the convective and stress terms. Various numerical experi-
ments are presented to demonstrate the stability and the accuracy of the numerical
schemes in simulating the dynamics under shear flow and the magnetic field.
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5.2. Tensor models

In recent years, more complex problems of modelling the interaction of flow and
molecular orientation in LCs have been studied. The hydrodynamic Q-tensor
model has been applied to the flows of LCs and LC polymers. In particular, the
non-dimensionalized hydrodynamic Q-tensor model of NLCs,

0,Q+u-VQ-S(Vuy, Q) = MH,
V-u=0, (5.5)
Jdu+u-Vu=-Vp+nAu+V. X -HVQ,

can be derived from a variational approach together with the generalized Onsager
principle. The molecular field H, which provides the driving motion, is related to
the derivative of the free energy. For more details see Beris and Edwards (1994)
and Wang (2002). Zhao and Wang (2016) developed first-order and second-order
coupled energy-stable numerical schemes for the Q-tensor-based hydrodynamic
model of NLC flows. They extended the first-order coupled scheme to a decoupled
scheme, which is energy-stable as well. With the fully coupled schemes imple-
mented in 2D space and time, they studied the defect dynamics for flow of NLCs
in a channel. The methodology developed also provides a paradigm for developing
energy-stable schemes for general hydrodynamic models of complex fluids with an
energy dissipation law. Furthermore, Zhao et al. (2017) developed a second-order
semi-discrete scheme in time, which is linear and unconditionally energy-stable at
the semi-discrete level, to solve the governing system of equations by following
the novel ‘energy quadratization’ strategy. Several numerical examples have been
presented to demonstrate the usefulness of the model and the effectiveness of the
numerical scheme in simulating defect dynamics in flows of LCs. Denniston, Or-
landini and Yeomans (2001) described a lattice Boltzmann algorithm to simulate
LC hydrodynamics in terms of a tensor order parameter, including a molecular field
that provides the driving motion. They described a lattice Boltzmann algorithm in
detail to simulate LC hydrodynamics. Backflow effects and the hydrodynamics of
topological defects are naturally included in the simulations, as are non-Newtonian
flow properties such as shear thinning and shear banding.

Ramage and Sonnet (2016) considered the NLC in a spatially inhomogen-
eous flow with a second-rank alignment tensor, whose evolution is determined
by two coupled equations: a generalized Navier—Stokes equation for the flow, and
a convection—diffusion-type equation for the alignments. A specific model with
three viscosity coefficients allows the contribution of the orientation to the viscous
stress to be cast in the form of an orientation-dependent force, which effectively
decouples the flow and orientation to circumvent the fully coupled problem. They
illustrated a time-discretized strategy for solving the flow-orientation problem using
the Stokes flow in a lid-driven cavity.
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Dispersing colloidal particles into LCs provides an approach to building a novel
class of composite materials with potential applications. Much research has been
devoted to the hydrodynamic equations governing their dynamical evolution to
understand the physics and dynamical properties of such colloidal LC composites.
Foffano et al. (2014) provided an overview of the theoretical understanding of the
hydrodynamic properties of such materials from computer simulations, including a
single particle and two particles forming a dimer and dispersion. They also raised
a number of open questions in the dynamics of colloidal LC composites.

5.3. Molecular models

For the liquid crystalline polymer (LCP) model, the Doi—Hess theory by Doi and
Edwards (1988) and Hess (1976) is the simplest and the most studied model. Many
interesting dynamics have been found in rod-like nematic LCPs in a shear flow. Li
et al. (2004) considered the stochastic model of concentrated LCPs in plane Couette
flow, where the flow is one-dimensional while the configuration variable of the rod
is restricted to the circle, and presented the local existence and uniqueness theorem
for the solution to the coupled fluid—polymer system. Ji ef al. (2008) considered
the extended Doi model for nematic LCPs in the planar shear flow and studied
the formation of microstructure and the dynamics of defects. They discretized the
Fokker—Planck equation with the spherical harmonic spectral method and replicated
multiple flow modes in the simulations. Ji et al. (2008) also gave a comparison
between complete closure models, Bingham closure models and kinetic models.
Yu and Zhang (2007) presented a new kinetic hydrodynamic coupled model for
the dilute LCP solution for inhomogeneous flow, which accounts for translational
diffusion and density variation. The coupled kinetic hydrodynamic model is a
combination of an extended Doi kinetic theory for rigid rod-like molecules and the
Navier—Stokes equation for incompressible flow. They studied the microstructure
formation and defect dynamics arising in LCPs in plane shear flow with mass
conservation of LCPs in the whole flow region. The LCP molecular director is
restricted in the shear plane, and LCP molecules are ensured anchoring at the
boundary by an additional boundary potential. Plane Couette flow and Poiseuille
flow were studied with a second-order difference scheme and the fourth-order
Runge—Kutta method for time-stepping. Their numerical results in plane Couette
flow predicted seven in-plane flow modes, four of which were reported by Rey
and Tsuji (1998). In plane Poiseuille flow, the micro-morph is quasi-periodic
in time when flow viscosity and molecular elasticity are comparable. Different
local states, such as flow-alignment, tumbling or wagging, arise in different flow
regions. To describe the microstructures and defect dynamics of LCP solutions,
Yu, Ji and Zhang (2010) later proposed a general non-homogeneous extension of
Doi’s kinetic theory with translational diffusion and non-local potential. A reduced
second-order moment model for isotropic long-range elasticity was obtained as an
effective tool for numerical simulations of defect dynamics and texture evolution.
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Their numerical results of in-plane rotational case show that this model qualitatively
predicts complicated non-homogeneous director dynamics under moderate nematic
potential strength, and the translational diffusion plays an important role in defect
dynamics.

6. Numerical methods for computing transition pathways and the
solution landscape of liquid crystals

NLC:s often exhibit a number of ordered phases. When an ordered phase is meta-
stable, phase transition proceeds via nucleation and growth under thermal fluctu-
ations or external perturbations. Such a transition is often called a rare event, and
can be characterized by a long waiting period around one local metastable state and
followed by a sudden jump over the transition state to another stable state (Hanggi,
Talkner and Borkovec 1990). Because the transition state is an unstable critical
point of the LC free energy, i.e. an index-1 saddle point with a single unstable dir-
ection that connects two local minima, it is a great challenge to accurately compute
the transition states and the transition pathways.

In this section we will first review the numerical methods to compute the trans-
ition states and transition pathways. Then we will introduce a novel solution
landscape, which describes a pathway map consisting of all stationary points (i.e.
extrema and saddle points) and their connections.

6.1. Transition pathways

There are two popular approaches to finding the saddle points and transition path-
ways. One is the class of surface-walking methods for finding saddle points starting
from a single state, such as gentlest ascent dynamics (E and Zhou 2011) and the
dimer-type method (Henkelman and J6nsson 1999, Zhang and Du 2012). The other
approach is categorized as path-finding methods for computing a minimal energy
path (MEP) that involves two end-states, including the nudged elastic band method
(Jonsson et al. 1998) and the string method (E et al. 2002).

In the case when the object of interest is the most probable transition path
between metastable/stable states of the smooth potential energy, it is known that
for overdamped Langevin dynamics the most probable path for the transition is the
MEP. This purpose is well served by the string method, which was first proposed
by E, Ren and Vanden-Eijnden (2002) and has some variants (E, Ren and Vanden-
Eijnden 2007, Du and Zhang 2009, Ren and Vanden-Eijnden 2013, Samanta and
E 2013). The string method proceeds by evolving a string ¢ with intrinsic para-
metrization in the configuration space by using steepest descent dynamics for the
MEP:

¢, = -VF*(¢) + ar, 6.1)

where VF*(¢) is the component of VF normal to ¢, 7 denotes the unit tangent
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vector to ¢, and A is the Lagrange multiplier to impose the equal arc length

constraint.
In the numerical algorithm, the string ¢ is discretized to N nodes {Q, i =
1,..., N}, where n represents the iteration step. The string method adopts a time-

splitting scheme via the following two-step procedure.

Step 1: string evolution. The current path {QY, i = 1,...,N} is updated by
following the gradient descent direction:

Q' =Qf —~a;VFH[Q]], i=12...,N, (62)
where @; is a step size that is chosen as a constant or determined by the line search.

Step 2: string reparametrization. The nodes Q;’“ are redistributed to obtain a new
path Q?+1 by enforcing the equal arc length parametrization. One can calculate the
arc length corresponding to the current nodes Ql’.’“ and then use a linear or cubic
spline interpolation to find Ql’.‘” by the equal arc length.

Parametrization by equal arc length gives good accuracy for the MEP, but not
for the transition state. To achieve better estimation of the transition state and
the energy barrier, one way is to use the energy-weighted arc length so that finer
resolution can be achieved around the transition state (E er al. 2007). If the final
minima are far from the transition state and too many nodes are needed for the
whole MEDP, the free-end nudged elastic band method can be used to obtain subtle
detail around the transition state by allowing the last node not to be a minimum
(Zhu et al. 2007).

To improve the accuracy of both the MEP and the transition state without using
too many nodes, Han et al. (2019) proposed a multiscale scheme of the string
method by applying a global coarse string and a local fine string. The global coarse
string is used to obtain the whole MEP by connecting two minima, and then the
local fine string is utilized to compute the local MEP by choosing two nodes with the
highest energies on the global coarse string as the two ends for the case of a single
energy barrier. Both strings follow the same two-step procedure described above
to make the implementation straightforward, and better estimation of the transition
state can be achieved by the local fine string. They implement the multiscale string
method on numerical simulations of the transition pathway in a three-dimensional
cylinder between PR and PP, with and without axial invariance, between ER and
PP or ERRD for different values of temperature and cylinder radius.

For example, the transition pathway between ER and PP for fixed temperature
and cylinder radius is shown in Figure 6.1. A pair of +1/2 disclination lines starts
to form in the middle of the cylinder. These two disclination lines appear to join
both their ends, hence forming a disclination ring (Figure 6.1(b)). The width of the
ring is increasing when it is less than the distance between defects of a stable 2D
PP layer (Figure 6.1(c)). Finally, the ring is broken by the top and bottom boundary
and the line defect straightens to the PP line defect configuration (Figure 6.1(d)).
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Figure 6.1. (Credit: Han et al. 2019.) Transition pathway from ER to PP. (a—d)
Four states along the MEP (e), corresponding to the ER (a), the transition state
(b), an intermediate state (the sixth node) (c) and the PP (d), respectively. In the
MEP (e), the red line with green beads is the global coarse string and the blue line
with blue beads is the local fine string.
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The local fine string in Figure 6.1 finds a more accurate transition state than the
global coarse string.

6.2. Saddle points

The classical transition state theory describes a sufficiently accurate transition
process for systems with smooth energy landscapes. On the energy landscape,
the transition state is a saddle point with the lowest energy that connects two
neighbouring local minima, i.e. the index-1 saddle point. As long as the transition
state is located, one can calculate the MEP using gradient flow from the transition
state perturbed along both sides of its unstable direction.

Extensive surface-walking methods have been proposed to search for saddle
points. A key character of such methods is to perform a systematic search for a
saddle point starting from a given initial state, without knowing the final states.
In this subsection we focus on a typical class of surface-walking methods, the
so-called minimum-mode-following methods, where only the lowest eigenvalue
and the corresponding eigenvector of the Hessian are needed and subsequently
used together with the energy gradient (often referred to as the force) to compute
transition states. Besides the eigenvector-following method of Cerjan and Miller
(1981), the trajectory-following algorithm of Vincent, Goh and Teo (1992), the
activation—-relaxation technique of Mousseau and Barkema (1998) and the step and
slide method of Miron and Fichthorn (2001), there are also examples of surface-
walking methods, and we refer to the excellent reviews by Vanden-Eijnden et al.
(2010) and Zhang, Ren, Samanta and Du (2016b).

E and Zhou (2011) proposed gentlest ascent dynamics, which is a dynamical
formulation of the gentlest ascent method of Crippen and Scheraga (1971). It
refers to the dynamical system

x=-VE®X) + ZWV,
(V,v)
(v, VZE(X)V) ©.3)
v=-VEXV+-——> -1y,
(v, v)

where E(-) represents the energy functional. Besides the position variable x,
another variable v represents the unstable direction. The dynamics (6.3) can drive
x to climb out of the basin of attraction by following the ascent direction v, which
is the eigenvector that corresponds to the smallest eigenvalue of its Hessian, to find
the saddle point. E and Zhou (2011) proved that the stable fixed points of this
dynamical system are precisely the index-1 saddle points.

To avoid the calculation of the Hessian, Henkelman and Jénsson (1999) de-
veloped a dimer method using only first derivatives. Specifically, a dimer with two
points is placed at the current position to compute the Hessian-vector multiplic-
ation with a finite difference scheme. The dimer method proceeds by alternately
performing the rotation step for finding the lowest eigenmode and the translation
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step by using the modified force with either the steepest descent algorithm or the
conjugate gradient method to search for the saddle point. Later, Zhang and Du
(2012) proposed a shrinking dimer dynamics by introducing a dynamic reduction
of the dimer length, and proved linear stability and convergence results for such
dynamics. To accelerate the convergence and further improve the efficiency of the
dimer-type methods, Zhang et al. (2016a) developed an optimization-based shrink-
ing dimer (OSD) method by establishing a minimax optimization for the saddle
searching problem and finding the unstable direction in an optimization framework.
All these methods can be applied to the LC models for identifying the transition
states accurately (Han et al. 2019).

Besides the investigations of the minima and index-1 saddle points on the energy
landscape of NLCs in confinement, there has been substantial recent interest in
the high-index saddle points of the LdG free energy, which are stationary points
of the NLC free energy. The Morse index of a saddle point is the maximal
dimension of a subspace on which its Hessian is negative definite, which is equal
to the number of negative eigenvalues of its Hessian (Milnor et al. 1969). For
example, a stable stationary point has index 0 and a transition state is an index-1
saddle point. In recent years, powerful numerical algorithms have been developed
to find multiple solutions of nonlinear equations, including the gradient-square-
minimization method (Angelani ef al. 2000), the minimax method (Li and Zhou
2001), the deflation technique (Farrell et al. 2015) and the homotopy method
(Mehta 2011, Hao, Hauenstein, Hu and Sommese 2014). Despite substantial
progress in this direction, it is still a numerical challenge to systematically find
saddle point solutions, especially those with high indices, of nonlinear systems of
partial differential equations such as the Euler—Lagrange equation. Yin ez al. (2019)
proposed a high-index saddle dynamics (HiSD) to efficiently compute the saddle
points of any index (including minima) for the LdG energy (Han et al. 20205b).

For a non-degenerate index-k saddle point X, the Hessian H(x) = V2E(x) at X has
exactly k negative eigenvalues A; < --- < i with corresponding unit eigenvectors
Vi, ..., Vi satisfying (V;, V;) = 6;;, 1 <i,j < k. Define a k-dimensional subspace
V = span{¥y,...,%}. Then % is a local maximum on a k-dimensional linear
manifold & + V and a local minimum on % + V*, where V' is the orthogonal
complement space of V.

The HiSD dynamics for a k-saddle (k-HiSD) is given as follows:

k
B 'x=- (I -2)" vjVJT>VE(x),
=1
i1
y ;= —(I —vv] - 22 vjVJT>H(x)V,-, i=1,...,k
=

(6.4)

where the state variable x and k direction variables v; are coupled, I is the identity
operator and S,y > O are relaxation parameters. The k-HiSD dynamics (6.4) is
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coupled with an initial condition:

x(0)=x"eR", v;0)=vWeR" i=1...,k (6.5)

where V(]), R Vg satisfy the orthonormal condition (vQ, VQ) =0;,6L,j=12,...,k.
i’ .

The first equation in (6.4) describes a transformed gradient flow, which allows x
to move along ascent directions on the subspace ¥ and descent directions on the
subspace VL. The second equation in (6.4) is used to search for an orthonormal
basis of V. Because the Hessian H(x) is self-adjoint in a gradient system, we can
simply take v; as a unit eigenvector corresponding to the ith smallest eigenvalue of
H(x), which can be obtained from a constrained optimization problem,

milél (H(x)v;,v;) subjectto(v;,v;) =0, j=12...,i (6.6)
v; ER"

Then we minimize the & Rayleigh quotients (6.6) simultaneously by solving the
second equation in (6.4). Furthermore, one can apply the locally optimal block
preconditioned conjugate gradient (LOBPCG) method (Knyazev 2001) to calculate
the smallest k eigenvalues and vy, .. ., vg.

6.3. Solution landscape of liquid crystals

The solution landscape is a novel concept, which is defined as a pathway map
consisting of all stationary points and their connections, presenting a hierarchy
structure to show how minima are connected with index-1 saddle points, and how
lower-index saddle points are connected to higher-index ones and finally to a parent
state, i.e. the highest-index saddle point (Yin ef al. 2020a). Solution landscapes
not only advance the understanding of the relationships between the minima and
the transition states on the energy landscape but also provide a full picture of the
entire family of stationary points in both gradient systems and dynamical systems
(Yin, Yu and Zhang 2020b).

To construct a solution landscape, one needs to apply HiSD and follow two
algorithms — downward search to find all connected low-index saddles from a high-
index saddle and upward search to find a connected high-index saddle — which
drive the entire search to navigate up and down on the energy landscape (Yin et al.
2020a).

Downward search algorithm. Given an index-m saddle point X and m unit eigen-
vectors Vi, . . ., V,, corresponding to the m negative eigenvalues A; < - -- < A, of
the Hessian H(X) respectively, we search for a lower index-k (k < m) saddle point
using HiSD dynamics (6.4). For the initial condition, we choose x(0) = X + eu for
X, where we perturb X along a direction u with a small &. The direction u can be
chosen as V¥; or a linear combination of (m — k) vectors in the set of unstable dir-
ections {Vi+1, ..., V;n}, whose negative eigenvalues have the smallest magnitudes.
The other k eigenvectors Vi, ...,V are the initial unstable directions v;(0). A
typical choice of initial conditions in a downward search is (X + Vg1, V1, ..., V¢).
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Normally a pair of index-k saddles can be found, corresponding to the + sign of
the initial searching direction.

Upward search algorithm. We can also search a high index-k saddle from a low
index-m saddle X (m < k) by using the HiSD method. Starting at an index-m saddle
X, to search for a high index-k saddle, (k — m) other unit eigenvectors V,,,41, ..., Vi
corresponding to the smallest kK — m positive eigenvalues of the Hessian H(X) are
needed. The initial state x(0) is set as X = eu, where u is a linear combination of
{Vm+1,---» Vi }, and a typical initial condition for k-HiSD in an upward search is
()A( + Sf’k, Vi, .. f/k).

Each downward or upward search represents a pseudodynamics between a pair
of saddle points, which presents valuable insights into transition pathways between
stable and unstable solutions and the corresponding energy barriers. By repeating
downward search and upward search, we are able to systematically find saddle points
of all indices and uncover the complex connectivity of the solution landscape.

Yin et al. (2020a) demonstrated the success of the solution landscape and applied
the LdG model to construct the pathway maps of 2D NLCs confined in a square
domain with tangent boundary conditions (see Figure 6.2). One of the technical
advantages of this method is to produce the entire family tree under a parent state.

For small nanoscale square domains, it is known that the well order reconstruction
solution (WORS) is the unique solution with isotropic diagonals and is the global
energy minimum in this asymptotic regime (Kralj and Majumdar 2014, Canevari
et al. 2017). Moreover, the existence of WORS can be proved in arbitrarily sized
nematic wells (Majumdar, Milewski and Spicer 2016). By studying the second
variation of LdG free energy numerically, Wang ef al. (2019) showed that the
WORS is a high-index saddle point in a large well. In Figure 6.3(a), the Morse index
of the WORS increases with the domain size and the WORS is always the parent
state in the solution landscapes on a square domain. Intuitively, this is because
the length of the diagonal defect lines increases as the domain size increases, and
thus the WORS has an increasing number of unstable directions and an increasing
Morse index with the increasing square edge length. Using WORS as the parent
state (the highest-index saddle) and the HiSD method (Yin et al. 2019), Yin et al.
(2020a) constructed a solution landscape on the square domain in Figure 6.2 and
reported novel saddle point solutions with multiple interior defects, such as N+,
M+, S+ and T+, that were not reported in the existing literature. Besides these new
solutions, a solution landscape provides rich information on dynamical pathways.
For example, two movies (a dynamic downward pathway sequence and an upward
pathway sequence: see Figure 6.2) are shown in Yin er al. (2020a) to demonstrate
the hidden physical processes and transitions on the complicated energy landscape
of NLCs.

The solution landscape of the NLC system can be affected by many factors,
such as material properties, external fields, temperature, boundary conditions and
domain size and shape. Compared to a square domain, a hexagon is a generic

https://doi.org/10.1017/50962492921000088 Published online by Cambridge University Press


https://doi.org/10.1017/S0962492921000088

MODELLING AND COMPUTATION OF LIQUID CRYSTALS 829

O index-6
. index-5
O index-4
O index-3
O index-2
O index-1
. minimum

1.0

0.0

Figure 6.2. (Credit: Yin et al. 2020a.) Solution landscape of NLCs confined on a
square for domain size 1> = 50.

regular polygon with an even number of sides. Han er al. (20200) investigated
the solution landscapes of NLCs confined in a hexagon with tangent boundary
conditions. The ring solution, which is the analogue of the WORS, is a minimizer
on a hexagon when the parameter of domain size 4 is small enough. However, the
ring solution becomes and remains an index-2 saddle point solution for large A,
i.e. the Morse index of the ring solution does not increase with 4. By using the
HiSD method, the parent states in the solution landscapes of NLCs on a hexagon
are found to be the ring solution, the index-3 T135 solution and the index-14 H*
solution, where A% = 70, 120 and 600 in Figure 6.3(b) respectively, and where
T135 and H* solutions emerge through saddle-node bifurcations.

In the NLC system confined on a hexagon, the solution landscape is very com-
plicated at 2> = 600 in Figure 6.4(a). There are three notable numerical findings,
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2=70 12 =120 12 = 600

WORS WORS WORS
(minimum) index-5 index-8 index-18

(a) parent state on a square

(minimum) index-2 index-3 index-14

(b) parent state on a hexagon

Figure 6.3. (Credit: Han er al. 2020b.) Comparison of the parent states of the

solution landscapes on the square (a) and the hexagon (b). The domain sizes are
A% =5, 70, 120 and 600, respectively.

including a new stable T solution with an interior —1/2 defect, new H and TD
classes of saddle point solutions with high symmetry and high indices, and new
saddle points with asymmetric defect locations. Novel H class solutions with in-
terior point defects have Morse indices ranging from 8 to 14, and the connectivity
of these solutions is shown in Figure 6.4(b), as well as the corresponding config-
urations and their defect profiles. The parent state is the index-14 H* saddle point
solution connecting to the lowest index-8 saddle point solution, labelled as H. The
H class solutions look very similar to each other at first glance and their subtle
differences are illustrated by plotting |Q — Q¥|, where Q is a critical point solution
in the H class and Q¥ is the index-8 H solution. The differences concentrate
on the vertices with conspicuous red or white points in the dark blue background
(Figure 6.4(b)). The vertex with a pinned +1/3 defect and a splay profile of dir-
ection is referred to as a splay-like vertex. The vertex with a —1/6 defect and a
bend profile of direction is referred to as a bend-like vertex. These conspicuous
points are localized near or at the bend-like vertices. The TD class solutions, in
which TD is an abbreviation for ‘triangle double’, appear to be a superposition of
two ring solutions on a regular triangle, with two interior —1/2 point defects and
an interior +1/2 point defect. All saddle points in this class have three defective
vertices, either bend-like or splay-like, and the connectivity of this class is shown
in Figure 6.4(c). The lowest-index saddle point solution in this class is the index-3
TD solution with no bend-like vertices.
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Figure 6.4. (Credit: Han er al. 2020b.) (a) Solution landscape on a hexagon at
A% = 600. The number in parentheses indicates the number of solutions without
taking symmetry into account. The height of a node approximately corresponds to
its energy. (b) Solution landscape of the H class, and the configurations of sample
solutions and the corresponding plots of |Q — Q |, where Q is the sample solution
in the H class and Q¥ is the index-8 H solution. (c) Solution landscape of the
TD class, and the configurations of sample solutions and the corresponding plots
of |P—PTP|, where P is the sample solution in the TD class and P ? is the index-3
TD solution.
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Figure 6.5. (Credit: Han et al. 2020b.) (a) Transition pathways between stable
states including two T, six M and three P solutions at A2 = 600. (b) Solution
landscape starting from the H solution. All local minima such as Ty, P36, Mag,
M3s, Pps and T, are connected by the index-8 H solution.
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A further innovative aspect of the solution landscape of NLCs is to provide
rich information on dynamical pathways, which include transition pathways with a
single transition state, multiple transition states, and dynamical pathways mediated
by high-index saddle points. For example, in Figure 6.5(a), the transition pathway
between T and Myg is connected by single transition state TO4. On the other
hand, one transition pathway between P;s and P3¢ can be

P25 d M135 d M35 — M153 d P36,

connected by two transition states M 135 and M153. The ‘longest’ transition pathway
appears to be the pathway between the two T solutions, Tj5 and T, even though
Tief; and Ty, are two symmetric solutions related by a 60° rotation. One switching
pathway between Tj.5; and T,;e,; can now be achieved by

Tiefr < TO4 & Mpe & Mlgy © Pos & M5 & Mis © TO03 < Tyigpn,

which indicates that the transition between two energetically close but configura-
tionally far T solutions has to overcome four energy barriers.

Figure 6.5(b) shows how the different P, M and T solutions are connected by high-
index saddle points. For example, the index-1 M1 connects stable M and P, and the
index-1 TO connects stable M and T. In contrast, two M or two P are connected by
the index-2 BD. Furthermore, Tj.s; and T4, which are configurationally far away
from each other, are connected by an index-8 H solution by the following HiSD:

Tleft — T13516ﬂ «—H-—> T135righz — Tright-

The index-8 H solution is the stationary point in the intersection of the smallest
closures on the energy landscape, which is able to connect every stable solution
(two T, three P and six M solutions) through dynamical pathways in Figure 6.5(b).
Han et al. (20200) deduce that index-1 saddle points are efficient for connecting
configurationally close stable solutions. For configurationally far stable states, they
are generally connected by multiple transition states, or connected by a high-index
saddle point.

7. Conclusion and future directions

LCs are fascinating examples of complex fluids that combine fluidity of fluids
with the directionality of solids. During the past few decades, the study of LCs
has grown tremendously due to widespread applications in the industry, such as
display devices, photonic devices and biological sensors. Modelling, analysis and
computation are indispensable tools for describing, understanding and predicting
the physical phenomena related to LCs. The topics of LCs touch on a number
of branches of physics, materials science and mathematics, creating problems of
fundamental importance.

Theoretical studies of LCs are primarily concerned with how topology and
geometry of the elements (macromolecules or anisotropic molecules) produce and
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affect the mesoscopic structure, and how the structure determines the properties of
the materials. It is crucial to understand LC phenomena by building appropriate
mathematical models and carrying out both theoretical analysis and numerical
simulation. Scientific values of LCs include two major aspects.

Raising new mathematical problems. The study of LCs involves calculus of vari-
ations, PDEs, harmonic analysis and computational methods. For example, the
Onsager model can be expressed as either a variation minimization problem, a
nonlinear non-local integral equation or a PDE problem. In general, it is im-
possible to find all analytical solutions for such problems. This is because of the
problem with special physical properties, which allows us to find all the solutions
and prove that all solutions have axial symmetry. LCs are prone to defects, which
correspond to mathematical singularities. The main reason is that the nature of
such problems is a vector field. Mathematicians often use LCs to study singu-
larities of harmonic maps. The Q-tensor theory is a regularization model for the
vector model, involving mathematical problems such as eigenvalue degradation
and multiscale analysis, which provides direction and guidance to relevant math-
ematical study. Furthermore, because of multiscale phenomena in complex fluids,
it is desirable to study modelling and numerical methods in computational and
applied mathematics.

Providing new methodologies. The choice of order parameter in the macroscopic
model of LCs is key to understanding the connections between macroscopic the-
ories and microscopic theories. For rod-like liquid crystals, the axially symmetric
assumption is generally accepted by chemists, physicists and scientists in materials
or mechanics. A strict mathematical proof can not only verify their intuition, but
also achieve deep understanding of the mechanism of axial symmetry. Continuum
NLC theories, which assume that macroscopic quantities of interest vary slowly
on the molecular length scale, are typically defined in terms of a macroscopic
order parameter and a free energy; the experimentally observable states correspond
to energy minimizers. Mathematically, this reduces to analysing and numeric-
ally computing solutions of the associated Euler—Lagrange equations, which are
a system of highly nonlinear and coupled partial differential equations. Recent
years have seen a boom in analytical and numerical efforts to compute the solution
landscapes of NLC systems.

Although tremendous progress has been achieved in both theoretical and nu-
merical study of LCs over the past four decades, there are still many challenges in
modelling and computation of LCs. Following the contents of this review, we list
some of the challenges below.

Symmetry of equilibrium configurations. Symmetry is the central theme of LC
studies. The axial symmetry of equilibrium solutions of Onsager’s molecular en-
ergy plays a fundamental role in molecular kinetic theory. However, it is only
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proved for the Maier—Saupe potential. Proving analogous results for the Onsager
potential — even for minimizers — is an important and difficult problem. For the
Landau—de Gennes energy with isotropic elasticity, it is believed that the min-
imizing solutions corresponding to the hedgehog boundary condition in a three-
dimensional ball are axially symmetric. Furthermore, all minimizers should be
one of three types: radial hedgehog, ring disclination and split core. However,
rigorous proofs are challenging. Similar problems can be raised for the 2D point
defects, which are closely related to the disclinations in three-dimensional space.
If the anisotropic elastic constants are not zero, the corresponding problems are
more complicated and difficult. These problems are related to fine structures of the
point defects and disclinations, which are of fundamental importance.

Analysis of the isotropic—nematic interface. The study of the profiles and structure
of the two-phase interface is physically important and mathematically challenging.
One of the simplest models is the energy functional with the order parameter being
a scalar function, which has been widely studied during the past two decades.
When the order parameter is a high-dimensional vector, the problem is much more
difficult. Lin, Pan and Wang (2012) studied the asymptotic behaviour of minimizers
for the high-dimensional problem. The phase transition interface between isotropic
and nematic phases is even harder because it is not only high-dimensional but also
involves anisotropic elasticity. The problem on the one-dimensional line has been
studied in some special cases (Park, Wang, Zhang and Zhang 2017, Chen, Zhang
and Zhang 2018). The general problem, such as properties of profiles, the boundary
condition on the interface and the limit behaviour of the equilibrium configuration,
needs further study.

Well-posedness, blow-up and long-time behaviour of solutions to different dynam-
ical models. Although there are many works on the well-posedness of solutions to
various dynamical models, some basic questions are still unsolved, for example the
global existence of weak solutions to the three-dimensional Ericksen—Leslie system
and the inhomogeneous Doi—Onsager equation. Constructing solutions that blow
up at finite time are also of interest. In addition, the long-time dynamics would be
complicated, even under a given flow field. For example, there are many periodic
solutions, called kayaking, wagging, logrolling, efc. It would be interesting to
rigorously prove existence of these solutions.

Dynamics of point defects, disclinations and two-phase interfaces. Inthe Ginzburg—
Landau theory for superconductors, dynamics of vortices and filaments have been
well understood. The method cannot be directly applied to similar problems in
LCs, such as the uniaxial limit of the dynamical Q-tensor system, due to some
essential differences. First, the elasticity is usually anisotropic, which will cause
complex phenomena such as backflows. Second, the Q-tensor can become biaxial,
and the minimizing manifold is isomorphic to the projective space RP? which has
topological properties different from S? and S'. Third, the hydrodynamics will
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play an important role. The singularity set of the limit system can be isolated
points, lines and surfaces, with co-dimension three, two and one respectively. The
evolution of the singularity set is an interesting and challenging problem which
may require deeper understanding of the profiles near the singularity set.

Relationship between different dynamical models. The rigorous derivation of the
Ericksen—Leslie theory from the Doi—Onsager theory is only established for smooth
solutions with isotropic elasticity (k; = ko = k3). To generalize it to the anisotropic
elasticity case would be an important problem. Moreover, as the defect solutions
can only be described by weak solutions in the vector theory, justification of
convergence for weak solutions is an important problem. However, analogous
results for weak solutions are very few.

Solution landscapes of confined liquid crystals. NLCs in confinement typically ex-
hibit multiple stable and unstable states, which correspond to stationary solutions
of a free energy. A solution landscape of confined NLCs, a hierarchy of connec-
ted solutions, is able to provide rich and insightful information on the physical
properties of these multisolution problems. The HiSD is an efficient numerical
algorithm for computing saddle point solutions for LC systems, and has been suc-
cessfully used to construct the solution landscapes of NLCs confined in a square
and a hexagon. Solution landscapes reveal not only transition pathways between
stable solutions connected by index-1 saddle points but also innovative dynamical
pathways mediated by high-index saddle points. Several challenging analytical
and numerical questions remain for the solution landscape, for instance the com-
pletion of the solution landscape. Can we obtain bounds for the Morse index of
the parent state in the solution landscape? How do we estimate the number of the
stationary solutions of a given free energy? Building a theoretical framework for
the solution landscape is a big challenge as well as a great opportunity for applied
mathematicians.

Finally, we would like to emphasize again that we only focus on the simplest NLC
systems in the context of this review, and have barely touched upon the other LC
systems. There is a crucial need for exhaustive theoretical and numerical studies
of complex and unconventional LC systems, to complement thriving experimental
work. Below we list a few examples in which the field is relatively open, the
energies are more complex, and the solutions are less regular with new analytical
and numerical challenges.

Phase transitions in multiphase liquid crystal systems. Recent experiments show
NLC-cholesteric (by adding chiral particles) and NLC-smectic (by lowering the
temperature) phase transitions in LC systems (Siavashpouri et al. 2017). Com-
pared with single-phase LCs, these heterogeneous systems are inherently more
complex with multiple competing NLCs, cholesteric/smectic and mixed solutions,
novel solutions with phase separation, and interactions between phases (Gottarelli
et al. 1983). Multiple phases in the heterogeneous system need to be analysed

https://doi.org/10.1017/50962492921000088 Published online by Cambridge University Press


https://doi.org/10.1017/S0962492921000088

MODELLING AND COMPUTATION OF LIQUID CRYSTALS 837

under the unified theory framework. For instance, the complex NLC-smectic
or NLC-cholesteric systems can be analysed in terms of LdG-type energies with
multiple-order parameters for coupled systems with smectic/cholesteric terms. The
heterogeneous systems can also be analysed by molecular models. On the other
hand, the accurate structures (e.g. interfaces between phases) and complex defects
have multiscale properties. The field is relatively open with new analytical and
numerical challenges.

Ferroelectric and ferromagnetic liquid crystals. 1LCs are sensitive to external fields
such as electric fields and magnetic fields (Mertelj, Lisjak, Drofenik and Copic¢
2013, Mertelj and Lisjak 2017, Chen et al. 2020, Bisht, Wang, Banerjee and
Majumdar 2020). Due to the photoelectric effect, LCs are applied in display
devices and have revolutionized the display industry. Besides normal LCs, a
new ferroelectric LC has attracted extensive attention. Ferroelectric LC materials
have the characteristics of high response speed, high contrast, high resolution and
large capacity information display. They have good application prospects in the
fields of display, optical interconnections and optical information processing. One
future direction would be to develop suitable LC models from molecular models to
macroscopic models to study the photoelectric effect of ferroelectric LCs and the
design of voltage waveforms.

Active liquid crystal systems. The non-equilibrium phenomena studied in active
matter systems are widespread in nature, playing an especially important role in
biological phenomena (Marchetti ef al. 2013, Keber et al. 2014, Prost, Jiilicher and
Joanny 2015). The active matter system is a typical non-equilibrium system, which
is composed of a large number of active particles. These particles obtain energy
for self-propulsion by converting other forms of energy into kinetic energy (Zhou,
Sokolov, Lavrentovich and Aranson 2014). Due to the interaction between particles
and particles, and particles and media, the entire system can exhibit extremely rich
dynamic phenomena macroscopically. The active LC system is a paradigm of active
systems for biologically inspired complex fluids with orientational alignment. In
active LCs, the rod-like constituents endow the fluid they are immersed in with
active stresses (e.g. in cells the motility arises from the interaction of myosin
and actin). Their dynamic properties, phase transition process and external field
responses are worthy of study and exploration.
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Appendix
A.l. Elementary identities for the high-order moments

Let
1
sl = (mm - 41 .
S
and define Q4[ f] as follows:
1
Qiaapyul f1= <mam/3m'ymﬂ - 7(’"0’"[357# + My My Oap + Moy, Oy + MMy Oay
1
+ mamﬂéﬁy + mﬁmydaﬂ) + E(éafﬁé)/,u + 5(1,75,3# + 6ay6ﬁy)> . (Al)
S

Let P (x) be the kth Legendre polynomial and
Sy = (Py(m-m))y,, S4=(Ps(m-n))y, (A2)
which only depend on «. First we have the following lemma.

Lemma A.1.
Qulin] = 5 (mn - 5 ).
Quapyulhn] = S <"(l”ﬁ‘ny”u - %(”lw”ﬁ‘sw + NyNudap + NaltyOpy
+ ngnuday + Nalyudpy + ngnyda,) + %(6(,,367,1 + 0oy Opu + 6a,,63y)> .
Corollary A.2. LetM = (mm), , M® = (mmmm);, . We have

1-S
M = Snn + 2

L (A.3)

So =S4

MY = Sqngngnyn, +

aByu (nangdyu + nynudap + NalyOpy + NEiyuday

Sy 25 1
+ NaNy oy + Ngny,day) + <§ T + E) (0apOyu + 0ayOpu + 0aulpy).

(A4)
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A.2. Some identities used in Section 3.4.3

For any constant vector u, w € R3, and a vector field v(m) defined on S2,

1
u- (/Sz<mm—§I>R-(fv)dm> - W

:/((m-u)(m-w)—%u~w>7€'(fv)dm
SZ
- - /S R(m-wm - w) - (/v)dm

=— mxu-vim-w)f+(m-u)(mXxw)-vfdm
SZ
=u-{(mXvm+mmxXV)-W.

Hence we have
1
/ (mm— §I>R-(fv)dm =(m X vm + mm X V),
SZ

Let v = 'Ru. We then have

/ (mm— %I)R-(fR,u)dm = (m X Rum + mm X Ru).
S2

Let v =m X « - m. We then have

/ (mm—ll>7?,-(fm></<-m)dm
S2 3

={(mXx (m X k- m)m +mm X (m X < - m))
= 2(m - x - m)mm — (x - m)m — m(x - m))
=2D: (mmmm) — D - (mm) + Q - (mm) — (mm) - (D + Q).
Lemma A.3. For any antisymmetric constant matrix £, we have
R-(mx(Q-m)fo) =mx(Q-n)- R,
1
R-mx D -m)fy) = ER - (foR(mm: D)).
Proof. The lemma is a direct consequence of the following identities:
R - (m x (Q-m)) = R;(e"*m;Qumy) = (I - 3mm): Q =0,
(m X (Q-m))-Rfp=mx(Q-m))-(mxn)fy
=mx(Q-n) - (mxn)fy=mx Q- n) Rf,
R(mm: D) =2m X (D - m).

This completes the proof.
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