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Mixture theory for diffuse interface models
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Diffuse interface models are an important class of models used to describe multi-phase
flows. In the case of incompressible viscous fluids there are a number of different diffuse
interface models which have been known for many years. Nevertheless, a model based
on mixture theory with a full set of conservation laws for the conservation of linear
momentum of each constituent was not yet available. This gap was filled by ten Eikelder
et al. (J. Fluid Mech., in press) recently and a first comparison with known models
of Navier–Stokes/Cahn–Hilliard type is given. A detailed understanding of the relations
between these models remains an important question.

Key words: capillary flows, Navier–Stokes equations, multiphase flow

1. Diffuse interface models for two-phase flows

In recent years diffuse interface models for two- or multi-phase flows have generated
an increasing interest because of theoretical developments as well as for their use in
computations. In these models, macroscopically immiscible fluids are considered to be
partly miscible and the Helmholtz free energy consists of a part which penalizes mixing,
and gradient terms of the concentrations which enforce smooth transition regions between
the fluids. This has the advantage that the interface does not need to be described explicitly
in numerical simulations and one can describe flows beyond the occurrence of singularities
in the interface due to the collision or pinch-off of droplets. A first diffuse interface
model for two incompressible Newtonian fluids with same density ρ > 0 was given by
Hohenberg & Halperin (1977). It is often called the ‘model H’ and leads to the following
Navier–Stokes/Cahn–Hilliard system:

ρ∂tv + ρ(v · ∇)v − div(2νD) + ∇p = μ∇c, (1.1)

div v = 0, (1.2)

∂tc + v · ∇c = div(m∇μ), (1.3)
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≈ ε

Figure 1. Schematic picture of a sharp interface resolved by a diffuse interface on small length scale ε in a
two-phase flow.

μ = σ̂ ε−1f ′(c) − σ̂ ε�c, (1.4)

where we neglected exterior forces for simplicity. Here, v is a mean velocity of the
fluid mixture, D = 1

2 (∇v + ∇vT), p is the pressure of the mixture and c is difference
of concentrations of the fluids. Moreover, ν = ν(c) > 0 is the dynamic viscosity of
the mixture, σ̂ is a constant related to the surface energy density, ε > 0 is a (small)
parameter, which is related to the ‘thickness’ of the interfacial region (cf. figure 1), f is a
homogeneous free energy density, which has two strict minima at the values ±1 (or close to
them), μ is the chemical potential of the mixture and m > 0 is a mobility coefficient. A first
derivation of this model in the framework of rational continuum mechanics was given by
Gurtin, Polignone & Viñals (1996). Thermodynamically consistent extensions for fluids
with different densities were given by Lowengrub & Truskinovsky (1998), Abels, Garcke
& Grün (2012) and Aki et al. (2014). We note that these models differ in the choice of
the mean velocity of the mixture, which is used for the conservation of linear momentum
and the resulting constitutive assumptions. A unified approach to these kinds of diffuse
interface models and comparison of these and other models were presented by ten Eikelder
et al. (2023), where further references can be found. We remark that these models can be
extended to diffuse interface models for more than two fluids. All these models lead to a
system, where a Navier–Stokes-type equation for the chosen mean velocity of the mixture
(similar to (1.1)–(1.2)) is coupled to a Cahn–Hilliard-type system (similar to (1.1)–(1.2)).
The modelling is based on conservation laws for the conservation of mass of the individual
components and the conservation of linear momentum for the mean velocity, while the
momentum due relative motions of the fluids is neglected (cf. e.g. Gurtin et al. 1996).
Although terms and some basic ansatzes of mixture theories are used in the derivation,
these models differ significantly from models derived by mixture theories, where a full
set of conservation laws for each constituent is taken into account. Therefore these kinds
of models are also called reduced mixture models (or class-I models in Bothe & Dreyer
2015). In (full) mixture models the conservation of linear momentum for each fluid of the
mixture is considered. A derivation of diffuse interface models based on mixture theory
for two- or multi-phase flow was missing for a long time. This gap was filled recently by
ten Eikelder, van der Zee & Schillinger (2024). Some aspects of this will be summarized
in the following.

2. Link to mixture theory

ten Eikelder et al. (2024) give a rigorous derivation of a class of diffuse interface models
for multi-phase flows of partly miscible incompressible fluids taking possible sources
of mass for the individual fluids into account. In the following, we restrict ourselves
for simplicity to the case of two fluids without mass sources. For a specific choice of
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a volume-measure-based Helmholtz free energy (denoted by ‘model I’) one obtains the
following system of two coupled Navier–Stokes type equations:

∂t(ρ̃1v1) + div(ρ̃1v1 ⊗ v1) − div(ν̃1D1 + λ1 div v1) + φ1∇( p + μ1) = R12(v2 − v1),
(2.1)

∂t(ρ̃2v2) + div(ρ̃2v2 ⊗ v2) − div(ν̃2D2 + λ2 div v2) + φ2∇( p + μ2) = R21(v1 − v2),
(2.2)

∂t(ρ̃α) + div(ρ̃αvα) = 0, for α = 1, 2, (2.3)

μα = σα

εα

f ′
α(φα) − 2σαεα�φα, for α = 1, 2. (2.4)

Here, ρ̃α = ραφα is the partial mass density of fluid α, ρα > 0 is the specific density of
fluid α, φα its volume fraction and μα its chemical potential. Also, Dα is the symmetrized
gradient of vα , ν̃α and λα are the dynamic viscosity coefficient and second viscosity
coefficient of fluid α, R12 = R21 > 0 is a coefficient for the rate of exchange of linear
momentum between the fluids. One possible choice for the linear momentum exchange
coefficient is given by the Stefan–Maxwell model

R12 = R21 = Rθφ1φ2

D
, (2.5)

for some diffusion coefficient D. Here, R > 0 is the gas constant (ten Eikelder et al. 2024,
Remark 3.10). Here, we neglected exterior forces for simplicity of the presentation. It is
assumed that there is no excess volume due to mixing, i.e.

φ1 + φ2 = 1. (2.6)

Finally, p is a pressure allows to enforce the constraint (2.6). Dividing (2.3) by ρα and
summation the equations for α = 1, 2 yields

div(φ1v1 + φ2v2) = 0. (2.7)

Here, φ1v1 + φ2v2 is the volume-averaged mean velocity used e.g. by Ding, Spelt & Shu
(2007) and Abels et al. (2012). In the case of the same specific densities, ρ1 = ρ2, the
volume-averaged mean velocity coincides with the mass-averaged velocity used e.g. by
Lowengrub & Truskinovsky (1998) and the mean velocity v in the model H (1.1)–(1.4).

For the following, let v be the mass average (or barycentric) mean velocity defined by
ρv = ρ1v1 + ρ2v2. Because of (2.6), the conservation of masses (2.3) is equivalent to
(2.7) and

∂tφ + div(φv) = − div h, (2.8)

where φ = φ1 − φ2 and h = φ1v1 − φ2v2 − φv is a diffusive flux for φ, i.e. it is the
flux of φ relative to the mean velocity v of the mixture. Here, the diffusive flux is
related to a difference of velocities of the fluid, which are determined by solutions of
two Navier–Stokes-type systems. In the case of the Navier–Stokes/Cahn–Hilliard system
(1.1)–(1.4) one can divide (1.3) by the density ρ and obtains for φ = c/ρ

∂tφ + div(φv) = div
(

m
ρ

∇μ

)
, (2.9)

due to (1.2). Hence, the diffuse flux is given by h = −(m/ρ)∇μ, where μ is the chemical
potential of the concentration difference. Similar relations also hold true for the diffuse
interface models for different densities by Abels et al. (2012), Lowengrub & Truskinovsky
(1998) and Aki et al. (2014) with the only difference that the pressure enters the definition
of the chemical potential or flux in the latter two.
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3. Remaining challenges

It remains an important task to understand to what extent solutions of the mixture
model and the known diffuse interface model differ in practically relevant situations
in numerical simulation. To this end suitable numerical methods have to be developed
first. After that, a comparison of the efficiency of the numerical methods based on
different models and a comparison with experiments are of great interest. Moreover,
from the theoretical side it would be interesting to see how one could obtain a
Navier–Stokes/Cahn–Hilliard model from the mixture theory model if one approximates
(2.1)–(2.2) by a Navier–Stokes/Cahn–Hilliard model for the mean velocity v (ten Eikelder
et al. 2024, (5.66)) and a kind of Darcy law for φ1v1 − φ2v2 − φv for example based on a
dimensional analysis. Finally, let us note that solutions of the Navier–Stokes/Cahn–Hilliard
system (1.1)–(1.4) converge to a classical sharp interface model for the two-phase flow of
incompressible fluids with a pure transport of the interface by the normal component of
the fluid velocity only if m → 0 as ε → 0 (Abels et al. 2012, § 4), see also Abels, Fei
& Moser (2024) for a recent mathematical result on that topic and further references. It
might well be that, in situations where the mobility coefficient and the diffuse fluxes are
small, the differences of the solutions of the different models (mixture model and the
different Navier–Stokes/Cahn–Hilliard models) are negligible if applied with comparable
parameters. Finally, the mathematical analysis of these new models concerning existence
and properties of the solutions as well as the analysis of the sharp interface limit (formal
and rigorous) are challenging open problems.
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