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Fluttering motion of a confined cylinder falling
freely in fluid at rest
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We investigate experimentally the planar paths displayed by cylinders falling freely in a
thin-gap cell containing liquid at rest, by varying the elongation ratio and the Archimedes
number of the cylinders, and the solid-to-fluid density ratio. In the investigated conditions,
the oscillatory falling motion features two main characteristics: the mean fall velocity uv

does not scale with the gravitational velocity, which overestimates uv and is unable to
capture the influence of the density ratio on it; and high-amplitude oscillations of the
order of uv are observed for both translational and rotational velocities. To model the
body behaviour, we propose a force balance, including proper and added inertia terms,
the buoyancy force and vortical contributions accounting for the production of vorticity
at the body surface and its interaction with the cell walls. Averaging the equations over
a temporal period provides a mean force balance that governs the mean fall velocity of
the cylinder, revealing that the coupling between the translational and rotational velocity
components induces a mean upward inertial force responsible for the decrease of uv .
This mean force balance also provides a normalization for the frequency of oscillation
of the cylinder in agreement with experimental measurements. We then consider the
instantaneous force balance experienced by the body, and propose three contributions for
the modelling of the vortical force. These can be interpreted as drag, lift and history forces,
and their dependence on the control parameters is adjusted on the basis of the experimental
measurements.

Key words: flow-structure interactions

1. Introduction

Isolated bodies with widely different sizes, weights and shapes may describe complex
paths, in many instances oscillatory paths, when rising or falling under the effect of
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buoyancy in fluid otherwise at rest. Familiar examples of non-straight paths are provided
by paper cards or autumn leaves falling in quiescent air, or by bubbles rising in still water.
In this problem, the geometrical anisotropy of the body strongly influences the coupling
between the motion of the body and the hydrodynamical loads that it experiences due to
the motion generated in the surrounding fluid (Ern et al. 2012). A better knowledge of the
kinematics and dynamics of a freely moving body is, in particular, desirable for fibres,
rods or finite-length cylinders (having diameter d and length L > d), as this geometry is
present in industrial and environmental situations spanning a large range of solid-to-fluid
density ratios, elongation ratios L/d and Archimedes numbers.

The variety of different modes of path instability of fluid–solid systems involving
non-isotropic bodies comes to the fore in theoretical investigations using global stability
analysis in the case of short-length cylinders (Tchoufag, Fabre & Magnaudet 2014) and
numerical simulations regarding oblate spheroids (Zhou, Chrust & Dušek 2017; Moriche,
Uhlmann & Dušek 2021). The consideration of faceted objects (Gai & Wachs 2024) and
of two-dimensional non-homogeneous cylinders involving centre-of-mass offsets (Assen
et al. 2024) also recently enlarged the understanding of the role of rotational effects on
the dynamical behaviour of complex bodies. Concerning elongated bodies freely falling
or rising at moderate Reynolds numbers in three- or two-dimensional configurations,
experimental investigations also revealed the diversity of paths displayed by these bodies
when the control parameters are varied (see D’Angelo et al. 2017; Toupoint, Ern & Roig
2019; Will et al. 2021, and references therein). Different types of periodic motion emerge
in association with specific unsteady wakes, sharing specific symmetry properties. The
elongation ratio of finite-length cylinders has in particular been shown to have a noticeable
influence on the wake structure, its stability and symmetry properties, when the body
is free to move (Lorite-Diez et al. 2022) as well as when it is fixed in an incident flow
perpendicular to its revolution axis (Inoue & Sakuragi 2008; Yang, Feng & Zhang 2022).

In experiments, attention is focused principally on the characterization of paths
presenting displacement deviations from the rectilinear motion that are comparable with
the largest dimension of the body, typically L for the finite-length cylinder investigated
here. For densities close to that of the fluid, and close enough to the transition from
rectilinear to periodic motions, scaling laws characterizing the cylinder kinematics have
been found (Toupoint et al. 2019). For a larger range of density ratios, in particular heavier
bodies, the description of the body kinematics resorts to correlations presenting complex
dependences on the control parameters, associated with the drag force experienced by
the finite-length cylinder (see e.g. Clift, Grace & Weber 1978; Chow & Adams 2011;
D’Angelo et al. 2017, and references therein). As discussed in the present paper, the
difficulty arises from the significant oscillation amplitudes reached by the translational
and rotational velocities of the body, which make the simple balance between drag and
buoyancy forces along the vertical incomplete. Consequently, the gravitational velocity
scale, commonly relevant for oscillating paths displaying velocity fluctuations one order of
magnitude smaller than the mean vertical velocity (yet with centre-of-gravity displacement
oscillations of the order of the body dimension L), no longer provides the order of
magnitude of the mean fall velocity. Here, we investigate a representative case of such
paths, featuring translational and rotational velocity fluctuations comparable in magnitude
to the mean fall velocity experienced by the body. As will be shown, nonlinear forces
coupling the fluctuating degrees of freedom of the body then have to be considered in the
force balance governing the body behaviour.

Determining the hydrodynamical loads acting on finite-length cylinders (diameter d
and length L) is a demanding task, even for isolated bodies fixed in an incident flow.
As the problem depends on three dimensionless parameters – the Reynolds number Re,
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the cylinder’s elongation ratio L/d, and the orientation of the incident flow relative to the
cylinder’s revolution axis – the exploration domain is vast, and only a few inertia flow
configurations have been presently investigated for fixed finite-length cylinders (Pierson
et al. 2019; Kharrouba, Pierson & Magnaudet 2021; Pierson, Kharrouba & Magnaudet
2021; Cabrera et al. 2022). For freely moving cylinders, a dynamical model embodying
their complex paths is still to be devised and adjusted, but can be searched on the basis
of the investigations performed for the related case of the paths displayed by freely falling
plates. Empirical models for these paths have been proposed in specific cases based on
aerodynamic force models. Most often, the forces considered take the form of drag and lift
contributions related to the instantaneous degrees of freedom of the body, for instance, as
performed by Belmonte, Eisenberg & Moses (1998) for confined falling plates. Andersen,
Pesavento & Wang (2005) also elaborated a dynamical model involving a quasi-stationary
drag force and a circulation-related lift force to reproduce the fluttering and tumbling
motions of thin two-dimensional plates falling freely in a three-dimensional (3-D) tank.
The model successfully describes the different trajectory types observed experimentally,
but focuses on one density ratio, and proposes separate coefficient adjustments for the four
different elongation ratios considered. Extensions for this model have further been sought
for heaving and pitching aerofoils following a prescribed motion (Moriche, Flores &
García-Villalba 2017) and also, recently, for freely falling plates with appendages allowing
for variable centre-of-mass offsets (Li et al. 2022). Along the same lines, the purpose of
the present paper is to investigate experimentally the oscillatory motions of confined freely
falling cylinders, and to propose a model for these paths that is able to take into account
their dependence on the three control parameters, the elongation ratio, the density ratio
and the Reynolds number.

2. Experimental results

The experimental set-up consists of a thin vertical cell, having height h = 80 cm,
width l = 40 cm, and thickness w = 1 mm. We investigate the free fall of finite-length
cylinders (diameter d, length L) in liquid at rest. The cylinders are released from the
upper part of the cell, initially positioned with their axis of revolution horizontal.
The diameter of the cylinders is constant and equal to d = 0.8 mm, comparable to
the gap size w. Conversely, the dimensions of the cell, l and h, are large relative
to the length L of the cylinders. We considered cylinders with elongation ratios
ξ = L/d ∈ {3, 5, 7, 10, 12, 20} made of different materials (density ρc) and released
in water (density ρf , kinematic viscosity νf ), corresponding to body-to-fluid density
ratios ρc/ρf ∈ {1.12, 1.4, 2.7, 4.5}. These density ratios were obtained with the following
materials: 3-D printing plastic from the Visijet brand (M2R-CL resin), polyacetal
plastic POMC, aluminium, and titanium, respectively. In the present configuration,
each value of the density ratio corresponds to a constant value of the Archimedes
number Ar = √

(|ρc − ρf |/ρf )gd (d/νf ) ∈ {25, 60, 100, 155}. Note that it might also be
interesting to introduce the Archimedes number Ar3-D = √

(|ρc − ρf |/ρf )gd3-D (d3-D/νf ),
based on the diameter of the sphere having a volume identical to that of the cylinder,
d3-D = (3

2 d2L)1/3. Cylinders with different ξ and ρc/ρf but equal Ar3-D falling in the same
liquid experience the same buoyancy force, which is the driving force for their motion.
The explored range of Ar3-D is large, varying from 75 to 720. The cylinder motion was
tracked using a high-speed camera (Photron RS-3000 APX) with acquisition frequency
250 Hz. The dimensions of the field of view were 10.8 cm × 10.8 cm, the size of one pixel
corresponding to 105 μm.
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Figure 1. Paths of aluminium cylinders falling in liquid at rest. The elongation ratios of the cylinders are,
respectively from (a) to ( f ), ξ = 3, 5, 7, 10, 12 and 20. The centre of gravity evolutions are shown in blue. The
cylinders are displayed in black at constant time intervals of 40 ms.

2.1. The different types of paths
The strong confinement of the cylinders in the gap of the cell, d/w = 0.8, was chosen to
reduce the degrees of freedom of the cylinder to two translations in the plane of the cell
and a rotation about the perpendicular direction. In fact, Gianorio et al. (2014) showed that
this confinement ratio prevents the rotation of the cylinder about its revolution axis, while
a displacement of the cylinder within the gap in association with this rotation can occur
for confinement values d/w ≤ 0.6, as also observed for fixed confined cylinders allowed
to move only within the thickness of the cell (Semin et al. 2012). Our study is therefore
carried out in a configuration where such specific unsteady motions related to confinement
have not been reported, so that, in the following, the cylinder motion is assumed to reduce
to three degrees of freedom.

In the studied range of parameters, we observe two main types of planar trajectories, i.e.
the rectilinear path and the oscillatory path, also referred to as fluttering. The rectilinear
path corresponds to a constant fall velocity of the cylinder with its revolution axis
horizontal, perpendicular to the velocity direction. The fluttering motion is illustrated in
figure 1, showing, for various elongation ratios, in blue the trajectories of the centres
of gravity of aluminium cylinders (ρc/ρf = 2.7) and in black the cylinders at several
instants. This motion is also observed for several elongation ratios of titanium cylinders
(ρc/ρf = 4.5), as can be seen in figure 2. It features a displacement oscillation of the centre
of gravity of the cylinder in the vertical plane of the cell, coupled with a rotation of the
cylinder axis about a horizontal direction perpendicular to the cell plane. These trajectories
were observed previously in thin-gap cells by Gianorio et al. (2014) and D’Angelo et al.
(2017) for stronger lateral confinement of the cylinders (0.055 ≤ L/l ≤ 0.94), and by
Toupoint (2018) for experimental conditions comparable to ours. In our case, the cell width
is considerably wider than the length of a cylinder, and 0.009 ≤ L/l ≤ 0.057.

A third type of trajectory was identified and will be termed here ‘apparently chaotic’,
as it is characterized by a non-reproducible and irregular behaviour. We observed this
phenomenon in the case of titanium cylinders having intermediate elongation ratios ξ = 5
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Figure 2. Paths of titanium cylinders falling in liquid at rest. The elongation ratios of the cylinders are,
respectively from (a) to ( f ), ξ = 3, 5, 7, 10, 12 and 20. The centre of gravity evolutions are shown in orange.
The cylinders are displayed in black at constant time intervals of 28 ms. Chaotic paths for ξ = 5 and 7 are
extracted from the data of Toupoint (2018) and displayed with a different scale.

and 7 (figure 2). These findings are in line with those reported by Toupoint (2018). In this
regime, the inclination of the body axis becomes from time to time so significant that the
cylinder flips over (it tumbles). However, the ‘apparently chaotic’ trajectory is different
from the tumbling motion observed by Belmonte et al. (1998) for thin plates confined
similarly, as the tumbling motion is a predictable path associated with a periodic flipping
over of the body, which drifts laterally in association with the constant-sign rotation.
In addition to the fluttering and tumbling behaviours, similar ‘apparently chaotic’ motions
were observed by Andersen et al. (2005) for two-dimensional plates falling in a 3-D
tank (the length of the plates being close to the dimensions of the tank, with the other
dimensions of the plates, width and thickness, being much smaller).

In figures 1 and 2, the representation at constant time intervals of the position and
orientation of the body along its path indicates that for given ρc/ρf or Ar, shorter cylinders
fall more rapidly than longer ones. We can also observe that for given ρc/ρf or Ar, the
elongation ratio of the cylinders significantly impacts their dynamics and kinematics.
For the fluttering motions displayed by aluminium cylinders, as L increases (d being
kept constant here), the displacement of the centre of gravity of the cylinder presents an
increasing oscillation amplitude, of the order of L. For titanium cylinders, the amplitudes
of oscillation in translation and rotation depend on ξ in a complex way, as the regime
of ‘apparently chaotic’ motions emerges (for intermediate elongation ratios ξ = 5 and 7).
A strong link between the instantaneous orientation of the body and its vertical velocity is
also clearly visible, for instance for titanium cylinders with ξ = 10, where faster vertical
displacements are related to higher inclination angles of the body revolution axis relative
to the horizontal direction. After reaching a maximum inclination angle, the cylinder
plunges more rapidly into the cell than during the uprighting phase where its revolution
axis recovers a horizontal alignment.
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Figure 3. Types of paths observed in the map of parameters Ar3-D and ξ . Colours correspond to different
values of the density ratio: red for ρc/ρf = 4.5, blue for ρc/ρf = 2.7, green for ρc/ρf = 1.4, and violet for
ρc/ρf = 1.12 and 1.16. The plastic cylinders used by Toupoint (2018) are in fact marginally heavier than those
of the present study, but are presented with the same colour code for simplicity. Filled symbols indicate present
study; open symbols indicate data from Toupoint (2018).

The different types of paths observed are summarized in figure 3 as a function of the
Archimedes number Ar3-D and the elongation ratio of the cylinders, ξ . Symbols in figure 3
indicate the type of path, and colours indicate the density ratio. The same colour code will
be used throughout the paper: red for titanium cylinders (ρc/ρf = 4.5), blue for aluminium
ones (ρc/ρf = 2.7), green for POMC ones (ρc/ρf = 1.4), and violet for plastic cylinders
obtained by 3-D printing (ρc/ρf = 1.12 and 1.16).

2.2. The mean fall velocity
In this subsection, we investigate the dependence on the governing parameters of the mean
fall velocity of the cylinders, denoted uvev , where ev is the vertical ascending unit vector
(see also figure 9). Figure 4 presents the evolution of uv as a function of the elongation
ratio of the cylinder, for the different density ratios investigated (materialized with different
colours as specified previously). The present set of experiments is presented in comparison
to that of Toupoint (2018), which covers a complementary range of parameters. The
slightly different gap sizes, fluid viscosities, cylinder geometries (which are more precise
in the present study due to a different manufacturing process) and densities may explain
the slightly different falling velocities recorded in the two studies. Despite the variability
observed from one run to another, the strong effects on the mean fall velocity of both
density ratio and elongation ratio are conspicuous, in line with the observations by
D’Angelo et al. (2017) for different ranges of parameters.

In order to obtain a predictive model for the mean fall velocity, the classical approach
consists in considering the mean balance in the vertical direction between buoyancy and
drag forces. This balance can be written using the inertial drag expression that introduces
a drag coefficient Cd and a reference frontal area S = Ld, as

(ρc − ρf )gπL
d2

4
+ 1

2
ρf CdLd |uv| uv = 0. (2.1)
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Figure 4. Mean vertical velocities of the cylinders as functions of their elongation ratio ξ for various density
ratios. Dashed lines correspond to (3.15) and (3.14). Filled symbols indicate present study; square empty
symbols indicate data from Toupoint (2018).

This equation provides an expression for the drag coefficient

Cd = π

2
|ρc − ρf |

ρf

gd

uv
2 = π

2

(
ug

uv

)2

, (2.2)

and brings forth the gravitational velocity

ug = −sgn(ρc − ρf )

( |ρc − ρf |
ρf

gd
)1/2

. (2.3)

For a constant Cd, as observed, for instance, in the case of cylinders falling freely in
a large tank at comparable Reynolds numbers, the gravitational velocity scale yields a
good estimate of the mean fall velocity (Toupoint et al. 2019). The values of the drag
coefficient obtained in the present configuration are shown in figure 5(a) as a function of
the Reynolds number Rev = |uv| d/νf , for various density ratios and elongation ratios. The
strong dependence of Cd on the different parameters ρc/ρf , ξ and Rev is clearly visible.
As a consequence, the gravitational velocity ug fails to scale the mean fall velocity uv in
the present configuration. This can also be seen in figure 5(b), where the normalization
by ug fails to capture the dependences of uv on both ξ and ρc/ρf . The dependence on the
elongation ratio ξ = L/d is not surprising, as Cd can be expected to depend on the body
shape, this dependence being also related to the choice for the reference frontal area S. It is
worth pointing out here that we tried different choices for the reference area, such as the
average of the area projected by the cylinder on a horizontal plane during a period (which
is a function of the maximal inclination angle attained by the cylinder), suggested by Chow
& Adams (2011), without succeeding in removing the dependence on ξ . The dependence
on the density ratio ρc/ρf , especially for cylinders exhibiting the same type of path, also
deserves further attention, as it is not captured by the dependence of Cd on the Reynolds
number (figure 5a) or on the Archimedes number.

When using the classical balance between buoyancy and drag forces in the
present configuration, we are therefore left with the result Cd = f (Rev, ρc/ρf , ξ) or
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Figure 5. (a) Drag coefficient Cd as a function of the Reynolds number Rev of the cylinder, for various
elongation ratios ξ ; same colour code for the density ratios as in (b). (b) Mean vertical velocity normalized
with the gravitational velocity scale ug. Filled symbols indicate present study; empty symbols indicate data
from Toupoint (2018).

Cd = f (Ar3-D, ρc/ρf , ξ), which is poorly satisfying. At this stage, a possibility is
to propose correlations for Cd, as those proposed for cylinders in free fall in 3-D
environments by Clift et al. (1978), Chow & Adams (2011), and references therein. These
correlations are useful to predict the mean fall velocity of the cylinders in various practical
situations, but lack of physical support regarding, in particular, the dependence of Cd on
the density ratio. To tackle this question, an alternative is to improve the modelling of
the loads governing the cylinder motion, poorly represented by (2.1). This is the approach
followed in this paper, by considering force contributions nonlinearly coupling the degrees
of freedom of the body, in particular fluctuating ones. Therefore, we now turn our attention
to the quantities characterizing the oscillatory motion of the body.

2.3. Characteristics of the oscillatory motion
We focus here on the oscillatory motion of the cylinders, called fluttering, occurring
over a large range of parameters for both aluminium and titanium cylinders, as shown
in figure 3. In this regime, the three degrees of freedom of the body – the vertical and
horizontal velocities, denoted respectively uv and uh, as well as the inclination angle of
the axis of revolution of the cylinder relative to the horizontal, θ (see figure 9) – evolve
in space and time in a periodic manner. Typical temporal evolutions of these quantities
are displayed in figure 6 for two cylinders having the same density ratio ρc/ρf = 2.7,
but different elongation ratios ξ = 3 (figure 6a) and ξ = 10 (figure 6b). As expected,
the vertical velocity (green line) presents a mean component, and evolves at twice the
frequency fθ of oscillation characterizing both the horizontal velocity component (yellow
line) and the inclination angle (dark red line). The comparison between the two cylinders
also reveals a ratio close to a factor 2 between their oscillation frequencies fθ , the quantities
for the cylinder with the smallest elongation ratio presenting oscillations with the shortest
time period. The amplitudes displayed by the orientations of both cylinders are, however,
similar, with values of θ exceeding 30◦. In both cases, it is also conspicuous that the
horizontal velocity oscillates with an amplitude larger than that of the vertical velocity,
which is nonetheless large. The most important observation, however, is that the amplitude
of oscillation of the horizontal velocity even exceeds the mean vertical velocity for the
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Figure 6. Temporal evolutions of the vertical velocity uv (green), the horizontal velocity uh (yellow), and the
inclination angle θ (dark red dashed line) for two aluminium cylinders falling freely in water at rest: (a) ξ = 3,
Ar3-D = 193; (b) ξ = 10, Ar3-D = 352.

highest elongation ratio, despite the body falling with a significant velocity. This property
is at variance with most cases investigated in the literature, where the mean vertical
velocity is usually an order of magnitude larger than the fluctuation amplitudes, even for
oscillatory displacements of the order of the body size (Ern et al. 2012).

The strong amplitudes involved in the fluttering motion observed in the present
configuration can be expected to induce nonlinear effects, which will be investigated
in the next section. The nonlinearity in the body path is already visible in the time
signals of figure 6, where the signals depart from purely sinusoidal functions. This is
confirmed by the spectral analysis of the signals, which provides a strong predominant
frequency fθ for uh and θ , and 2fθ for uv , along with higher-order frequencies of
weaker amplitude, in particular harmonics induced by the nonlinear coupling between
translational and rotational motions. To proceed with the analysis, we focus our attention
on the main-frequency component of the fluttering motion defined as

uh(t) = ũh sin(ωt + φh),

uv(t) = uv + ũv sin(2ωt + φv),

θ(t) = θ̃ sin(ωt + φθ),

⎫⎬
⎭ (2.4)

where ω = 2πfθ . Quantities ũh, ũv and θ̃ denote, respectively, the amplitudes of the
horizontal and vertical components of the velocity and of the inclination, while φh, φv

and φθ are their phases. Figure 7(a) shows the dependence of the fluttering frequency
fθ on the elongation ratio ξ . Shorter cylinders oscillate at higher frequencies, as also
observed for cylinders in 3-D environments (Marchildon, Clamen & Gauvin 1964; Chow
& Adams 2011; Toupoint et al. 2019, to cite just a few). Important frequency differences
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Figure 7. (a) Fluttering frequency fθ and (b) amplitude of inclination θ̃ (in degrees) as a function of the
elongation ratio of the cylinder, for two density ratios.

are observed: cylinders with ξ = 20 oscillate at a frequency four times lower than that
displayed by cylinders with ξ = 3. Conversely, for a given elongation ratio, the frequencies
displayed by cylinders made of different materials are very close.

Figure 7(b) shows the dependence on the elongation ratio of the oscillation amplitude
of the inclination, θ̃ (in degrees). A non-monotonic evolution is observed as ξ increases.
A strong effect of the density ratio is also visible for given ξ , with the largest amplitude for
the largest density ratio. In the range of parameters investigated here, the amplitudes of the
inclination angle θ̃ evolve in the fluttering regime over a large range of values, spanning
from 10◦ to 70◦. They exceed 90◦ for the cases marked at this value, during the tumbling
phases observed for titanium cylinders having ξ = 5 or 7.

The amplitudes of the velocity components along the vertical and horizontal directions
are presented in figure 8(a), normalized with the mean fall velocity |uv|, as a function
of Ar3-D for various ξ . As noticed in the two examples of figure 6, the amplitudes of
the vertical fluctuations are smaller than those recorded for the horizontal component
over the whole parameter range. Furthermore, the amplitudes of the horizontal velocity
compare to the mean vertical velocity values, or even exceed them for elongation ratios
ξ > 7. A similar result is shown in figure 8(b) for the rotational velocity of the cylinder,
with amplitude values L ˜̇θ of the order of magnitude of |uv|. It can also be seen that the
Archimedes number Ar3-D is not sufficient to organize the data consistently for the two
density ratios investigated. For a given elongation ratio, both figures 8(a) and 8(b) show
a dependence on the density ratio as well as on Ar3-D. However, this dependence is more
pronounced for the translational velocity fluctuations (figure 8a), where higher amplitudes
are observed at the highest density ratio corresponding also to higher Ar3-D values.
In contrast, the amplitude values for the angular velocity fluctuations remain relatively
equivalent. In complement to the amplitudes, the phase difference between the body
oscillations in horizontal velocity and inclination, φh − φθ , is displayed in figure 8(c).
For the two values of ρc/ρf investigated, a similar evolution is observed as a function of
ξ , the phase lag increasing slightly as the body elongates.

As a conclusion, the detailed analysis of the characteristics of the oscillatory motion
reveals strong amplitudes of fluctuation for both translational and rotational velocity
components, comparable in magnitude to the mean fall velocity. This indicates that a good
prediction of the mean fall velocity of the cylinder can be achieved in the present case only
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Figure 8. Oscillation amplitudes of (a) the velocity components along the vertical (filled symbols) and
horizontal (open symbols) directions, and (b) the angular velocity, normalized with the mean vertical velocity.
(c) Phase difference φh − φθ . Aluminium cylinders in blue; titanium cylinders in red.

by considering altogether the different degrees of freedom, and by taking into account the
coupling between translational and rotational velocity components. The next section is
therefore devoted to build a force balance able to model the behaviour of the cylinders
over the whole range of parameters investigated.

3. A model for the paths of cylinders falling in fluid at rest

We have seen that the behaviour of freely falling cylinders depends strongly, and in a
complex manner, on the governing parameters, and that the different degrees of freedom of
the cylinder, in both translation and rotation, present comparable levels of energy. On the
basis of physical arguments, here we build up a model that, as large as possible in the
ranges of Ar3-D, ρc/ρf and ξ investigated experimentally, (i) proposes a mean force balance
on the cylinder that governs its mean fall velocity, and (ii) is at instantaneous equilibrium
when introducing the experimental temporal evolutions of the body’s degrees of freedom.
To do so, we will proceed by steps, and first determine the different forces that are expected
to enter in the force balance.

A difficulty here is that the generalized Kelvin–Kirchhoff equations (Lamb 1932; Howe
1995; Mougin & Magnaudet 2002) that express the conservations of momentum and of
moment of momentum, cannot be applied, as they are derived for a body free to move
in an unbounded incompressible fluid at rest. However, on the basis of these equations,
the following force balance can be considered to govern the motion of the body centre of
mass:

F I = F B + Fω. (3.1)
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Figure 9. Scheme of the freely moving cylinder, indicating the different notations used in the model.

On the left-hand side, F I stands for the inertial forces, involving both proper and added
inertia contributions. On the right-hand side, F B is the force due to buoyancy, and Fω

corresponds to the force associated with the production of vorticity at the body surface,
also accounting for its interaction with the confining walls. The former is known, and reads
F B = (ρc − ρf )Vg, where V is the body volume, and g is the gravitational acceleration,
while Fω is unknown.

In the formalism of the Kelvin–Kirchhoff equations, the inertial forces on a body of
mass m = ρcV read

F I = (mI + A)
duc

dt
+ Ω × ((mI + A)uc), (3.2)

where uc is the velocity of the centre of mass, and Ω is the angular velocity of the
cylinder. The notation I stands for the identity tensor, and A for the added-mass tensor.
For convenience, we also introduce the notations F IT and F IR , standing for the inertia
components associated with, respectively, the translation and the rotation of the body,
so that the right-hand side of (3.2) reads F IT + F IR . The equations are expressed in a
coordinate system having a fixed origin O in the laboratory and axes rotating with the
body. As shown in figure 9, the longitudinal direction is parallel to the revolution axis
of the cylinder (unit vector el), and the transverse direction is perpendicular to it in the
plane of the cell (unit vector et). The system of axes is completed with the direction
perpendicular to the plane of cell, corresponding to unit vector ez. In this system of axes,
the added-mass tensor is diagonal, with added-mass coefficient A along el, and B along et.
These coefficients depend on the body geometry, and are known for only several simple
geometries. They are unknown in the present situation involving confining walls. The
laboratory frame is given by (O, eh, ev, ez), where eh denotes the horizontal unit vector,
while ev is the ascending vertical unit vector. The angle θ characterizes the inclination of
the cylinder relative to the horizontal, as seen before, and the drift angle α measures the
inclination of the velocity vector uc relative to the body revolution axis el. Note that in
the present configuration, the velocity component in the direction ez is uz = 0. Moreover,
the angular velocity is given by Ω = (0, 0, θ̇ ). Finally, we define the velocity components
as uc = uheh + uvev = ulel + utet. Equations (3.1) and (3.2) can therefore be recast in the
form

(ρcV + A)u̇l − (ρcV + B)θ̇ut = Fl
ω − 	ρ Vg sin θ, (3.3)

(ρcV + B)u̇t + (ρcV + A)θ̇ul = Ft
ω − 	ρ Vg cos θ, (3.4)

where Fω = Fl
ωel + Ft

ωet and 	ρ = ρc − ρf . For cylinders of finite length in an
unconfined fluid, Loewenberg (1993) determined numerically the values of the
added-mass coefficients in the longitudinal and transverse directions, A and B,

1002 A46-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1163


Fluttering motion of a confined freely falling cylinder

respectively, for several values of the elongation ratio. Pierson (2023) proposed the
following fits for these data:

Au = ρf π
d3

4

(
0.655 − 0.141

1 + ξ1.17

)
and Bu = ρf π

d3

4
ξ

(
1 − 0.828

1 + ξ1.12

)
. (3.5a,b)

In the present configuration, as no data are available for the added-mass coefficients,
we will assume an identical evolution with ξ . For infinite cylinders, Blevins & Plunkett
(1980) showed numerically that the confinement modifies the values of the added-mass
coefficients relative to an unconfined situation by a factor depending on the degree of
confinement. They showed that the confinement increases the values of B (transverse
direction), by a factor of 1.83 for a confinement equal to that of our configuration.
No estimation was provided for the longitudinal component, but the multiplying factor
can be expected to be weaker. We will therefore use here B = 1.83Bu and A = Au.
Nonetheless, for the fluttering cases observed here for aluminium and titanium cylinders,
it turns out that the term associated with the proper mass of the body ρcV predominates
over the added-mass contributions obtained in this manner. Knowing the exact values of
the coefficients A and B is therefore not needed for the analysis and conclusions that are
developed in the paper. We can now see that entering the experimental measurements of
the body kinematics into (3.3)–(3.4) provides an instantaneous measure of the longitudinal
and transverse components Fl

ω and Ft
ω of the vortical force.

3.1. Preliminary considerations

3.1.1. Mean force balance along the transverse direction
Before proceeding with the modelling of Fω, we present in this section the information
for this force that is provided by the measurements of the body kinematics, as these allow
us to determine both F I and F B. As the first goal of the model is to achieve a better
understanding of the forces controlling the mean fall velocity of the cylinder, we will start
by investigating the mean force balance along the transverse direction. Averaged over a
time period of the fluttering motion, the conservation of momentum in the direction et
given by (3.4) reads

〈Ft
ω〉 = (ρcV + A)〈θ̇ul〉 + 	ρ Vg〈cos θ〉, (3.6)

where, for a quantity Q, the notation 〈Q〉 corresponds to its average over a time period.
Note that here, the inertia term in translation has a zero mean contribution, and is
therefore omitted. We now investigate the different terms composing equation (3.6) for
the fluttering cases provided by aluminium (ρc/ρf = 2.7) and titanium (ρc/ρf = 4.5)
cylinders. For the two density ratios, figure 10 presents the mean contributions measured
for the inertial force, the buoyancy force and the vortical force, when the elongation
ratio of the cylinder varies. The plotted values correspond to the mean contributions
of the considered forces normalized with the magnitude of the buoyancy force 	ρ Vg.
The values for the vortical force are obtained by summing the two other contributions
(inertia and buoyancy), according to (3.6). Several remarkable results are conspicuous.
First, for all the parameters (ξ, ρc/ρf ) investigated, we can see that the mean value of
the measured vortical force in the transverse direction is nearly constant and very close to
	ρ Vg. Interestingly, this extends to unsteady paths a result holding for rectilinear motions,
for which the transverse direction corresponds to the vertical direction, and the vortical
force reduces to the drag force (see (2.1) or (3.11)). A second observation is that this
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Figure 10. Measured mean contributions to the force balance in the transverse direction as a function of the
elongation ratio of the cylinders, for two density ratios. Filled symbols indicate present study; open symbols
indicate data from Toupoint (2018).

result is achieved because the mean contribution of the inertial force associated with the
body rotation has a contribution of opposite sign and complementary in magnitude to
that of the buoyancy force. In particular, when the mean buoyancy contribution along the
transverse direction decreases due to higher fluttering inclinations θ , the coupling of the
rotation rate θ̇ with the longitudinal velocity component ul provides a mean contribution
equivalent to this decrease. The changes in the control parameters (ξ, ρc/ρf ) also show
that this compensation happens for a large range of magnitude of these forces (decrease in
buoyancy reaching 50 % for titanium cylinders). Finally, these results reveal the salient
role and the important magnitudes that can be achieved by the inertia nonlinear term
associated with the body rotation. When the amplitudes of oscillation of the body velocity
in translation and rotation are weak relative to the mean fall velocity, this term is usually
weak. However, when amplitudes of oscillation comparable to the mean fall velocity are
at play and the fluctuating degrees of freedom are out of phase, a mean component arises
at leading order in the mean force balance. As shown for the fluttering cases investigated
here, the oscillatory motion then impacts the mean force balance, and classical estimations
using the gravitational velocity scale fail to predict the mean fall velocity. Furthermore,
this force balance enlightens how the density ratio enters additionally into play through
this inertia effect. As will be shown in the following, the consideration of this inertia
effect avoids assuming a dependence of Cd on ρc/ρf in the modelling of the drag term,
and more generally, of the vortical force Fω. Finally, it is worth pointing out that the
inertial force coupling the translational and rotational degrees of freedom of the body has
two components: one associated with the proper inertia of the cylinder, and one with the
added inertia of the surrounding fluid. Depending on the governing control parameters,
the relative weights of these two terms can be different. Here, the proper inertia term is
predominant.

3.1.2. Scaling law for the fluttering frequency
The analysis of the mean force balance along the transverse direction of the cylinder has
shown that the translational and rotational velocity components couple, over a time period,
in a way such that

〈Ft
ω〉 = (ρcV + A)〈θ̇ul〉 + 	ρ Vg〈cos θ〉 � 	ρ Vg, (3.7)
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Figure 11. Fluttering frequency normalized with
√

(	ρ/ρc)(g/L) for various elongation ratios and density
ratios. Filled symbols indicate present study; open symbols indicate data from Toupoint (2018).

in the range of values of ξ and ρc/ρf investigated. We have also seen that added mass can
be neglected here relative to the proper mass of the cylinder. Equation (3.7) can therefore
be written in dimensionless form, using L as the characteristic length scale associated with
the longitudinal velocity and 1/fθ as the time scale, as

ρcLf 2
θ

	ρ g
〈θ̇∗u∗

l 〉 + 〈cos θ∗〉 � 1, (3.8)

with dimensionless quantities indicated with an asterisk. From this balance, the
dimensionless quantity ρcLf 2

θ /(	ρ g) emerges, and allows us to propose the following
scale for the fluttering frequency:

fθ ∼
√

	ρ

ρc

g
L

. (3.9)

Figure 11 shows the frequency of oscillation measured experimentally, normalized with
the prediction. We can observe that the data points gather consistently for the two density
ratios about a mean value approximately 0.13. This result confirms that for all the cases
investigated, the degrees of freedom, as well as their rate of change, couple in a very
consistent manner over a time period to maintain 〈Ft

ω〉 close to 	ρ Vg. Interestingly,
the time scale of (3.9) was proposed and observed experimentally by Marchildon et al.
(1964) and Chow & Adams (2011) for cylinders freely falling in an unbounded medium
for Reynolds numbers in between 200 and 6000, and by D’Angelo et al. (2017) for
confined cylinders in a complementary parameter range. Marchildon et al. (1964) and
Chow & Adams (2011) introduce this frequency scaling by considering a torque equation
on the cylinder that balances the time variation of the moment of momentum with
a hydrodynamical torque related to a difference between the centre of gravity of the
body and the centre of pressure, that depends linearly on the angle θ (denoted α in
their works). We claim, however, that this torque balance is not satisfactory (except for
high density ratios) due to the omission of the added-mass torque, which has a strong
contribution to the torque balance (Ern et al. 2012). Their experimental results correspond
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to a pre-factor 0.126, extremely close to the value 0.13 obtained in the present work.
This leads us to consider that the results and conclusions obtained here from the mean
transverse force balance (3.7) are generic and may also apply to non-confined cylinders
exhibiting high amplitudes of fluttering motion. Depending on the density ratio and on
the body geometry, including added mass could be necessary, through the more general
normalization fθ ∼ √

(	ρ/(ρc + A/V))(g/L).

3.2. The different contributions to the vortical force
We now aim to obtain a model for the vortical force Fω that will then be compared to
the experimental determination for this force. The vortical force acting on the body can
be expected to be associated with classical drag and lift forces, respectively, F D and FΓ .
Usually, drag and lift definitions are related to instantaneous quantities. In the present
situation, history effects can also be expected to play a significant role. They will be
taken into account by a force denoted F H . To model Fω, we therefore consider three
contributions:

Fω = F D + FΓ + F H. (3.10)

Each term on the right-hand side will now be elaborated separately. To determine the
drag force, rectilinear motions will first be analysed. The expression will then be extended
to fluttering motions, using a quasi-steady approximation, by taking into account the
instantaneous orientation of the velocity vector relative to the body revolution axis.
We will then consider the lift contribution, and following the literature, we will suggest an
expression in the form of a translational and a rotational lift, based on the circulation Γ .
We will finally propose an integro-differential expression for the history force that enables
(3.10) to match the experimental determination of Fω.

3.2.1. Drag force F D for cylinders following a rectilinear path
For bodies displaying a rectilinear motion, the drag force F D = Fl

Del + Ft
Det reduces to

the transverse component, which balances the buoyancy force, so that

Ft
D = (ρc − ρf )gπL

d2

4
. (3.11)

As the cylinders fall with their revolution axis aligned with the horizontal direction, we
have ul = 0, θ = 0◦, α = 90◦ and uv = ut, which will be denoted u0 in the following
model. The drag coefficient associated with the rectilinear motion is denoted Cα=90◦

d , and
the drag force then reads

Ft
D = −1

2ρf SCα=90◦
d |u0| u0, (3.12)

with S = dL. For consistency with what follows, we introduce the Reynolds number

Re = ucd
νf

, (3.13)

based on the norm of uc, uc =
√

u2
l + u2

t . For a rectilinear motion, we have Re = Rev . For
cylinders with ρc/ρf = 1.12 and 1.16 displaying a rectilinear path (figure 3), we seek a
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dependence of Cα=90◦
d on ξ and Re (violet data points of figure 5a) and obtain

Cα=90◦
d = κα=90◦

1 (ξ)

Re
, with κα=90◦

1 (ξ) = 73 + 6.3ξ. (3.14)

Note that this expression quantifies the drag experienced by cylinders in rectilinear motion
in this specific configuration, accounting both for their wake and for the presence of the
confinement. Combining (3.11) and (3.12) then gives

u0 = sgn(ug)
π

2
u2

g
d
νf

1

κα=90◦
1 (ξ)

, (3.15)

where ug is the gravitational velocity scale given by (2.3). At this stage, it is interesting
to point out that the velocity scale u0 presents a dependence on ρc/ρf different from
that of ug. Note also that the dependence on Re has a form similar to the expression
Cα=90◦

d ∝ Re−0.78 proposed by Clift et al. (1978) based on the data from Pruppacher,
Clair & Hamielec (1970) for an unconfined long fixed cylinder held in an incident
flow up to Reynolds number Re = 400. In the thin-gap cell configuration investigated
here, an additional dependence on d/w in (3.14) is expected to exist, but is out of the
scope of the present paper (this parameter is not varied). The comparison of u0 with
the experimental results is provided in figure 4, where the evolution for u0 is drawn
with dashed lines for each density ratio, including those for which fluttering motions
are observed. For a more detailed comparison, figure 12 also shows for all the cases the
mean transverse velocity measured experimentally, normalized with u0. As the model was
adjusted for the rectilinear motions, good agreement is obtained for these cases (violet data
points corresponding to the density ratios ρc/ρf = 1.12 and 1.16), the model accurately
predicting the falling speed within 6 %. When considering also cylinders with ρc/ρf = 1.4
in rectilinear motion (green data points), the error increases to 9 %. However, microscope
examination of these cylinders revealed shape imperfections, notably the presence of
filaments at their extremities, having lengths comparable to the diameter of the cylinder.
Such defects may be expected to slightly increase the drag experienced by the cylinders.
We therefore do not consider their deviation from the model to consist in a significant
drawback. For the fluttering cases, as seen from the analysis of § 3.1.1, the balance provided
by (3.11) is incomplete, and the velocity scale u0, as well as ug, strongly overestimates the
mean transverse component of the velocity. However, on the basis of the modelling for
rectilinear motions, we can now proceed with trying to improve the drag modelling for
fluttering motions.

3.2.2. Drag force F D for both rectilinear and periodic motions
The simplest way to extend the previous drag model to fluttering motions is to adopt a
quasi-steady approach that takes into account at each time the instantaneous orientation
of the velocity vector relative to el, characterized by the angle α (see figure 9). This
approach was, in particular, used by Andersen et al. (2005) for the modelling of the
behaviour of freely falling two-dimensional plates, exhibiting paths comparable with the
ones investigated here. The quasi-steady approximation makes possible to use the results
for a body fixed in a uniform flow of velocity uc and oriented at angle α relative to the
flow direction, when these results are known. However, for finite-length cylinders, even
in this simpler situation, there is no general expression for the drag force. A possibility is
then to adopt a result valid in the Stokes regime, based on the linearity of the equations,
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Figure 12. Mean transverse velocity component normalized with u0. Filled symbols indicate present study;
open symbols indicate data from Toupoint (2018).

that considers that the cylinder receives in the proportion of cos α the force experienced
when placed parallel to the incident flow (α = 0◦) and of sin α the force that it experiences
when perpendicular to the flow (α = 90◦). We assume that this property still holds for the
inertial regime of fluttering motions considered here. As, by definition, the drag force is
aligned with the velocity vector uc, we then get

Cd = Cα=0◦
d cos2 α + Cα=90◦

d sin2 α. (3.16)

At this stage, the choice of Andersen et al. (2005) was to adjust the values of Cα=0◦
d and

Cα=90◦
d in order to match their experimental results for four different cases of freely falling

plates. As we have a larger data set, we seek here an explicit dependence on ξ and Re
for the drag coefficients Cα=0◦

d and Cα=90◦
d . The latter has already been obtained in (3.14).

As Cα=0◦
d is unknown, we assume Cα=0◦

d = 1
2 Cα=90◦

d , the theoretical relation derived in the
slender-body approximation (for d � L) in the viscous regime and for an unconfined fluid
(Batchelor 1970). Note that this relation was shown to still provide satisfactory results for
a fixed cylinder with ξ = 3 and Reynolds numbers between 25 and 100 in the numerical
investigation by Pierson et al. (2019). This series of considerations leads us to propose
the following expression for the quasi-steady drag force experienced by the freely falling
cylinder:

F D = −1
2ρf Cd(ξ, Re, α) Suc(ulel + utet), (3.17)

with

Cd(ξ, Re, α) = Cα=90◦
d (1

2 cos2 α + sin2 α), (3.18)

where S = dL, uc =
√

u2
l + u2

t and Cα=90◦
d = κα=90◦

1 /Re as determined previously for
rectilinear motions in the present configuration (3.14). Though strong approximations were
used, the strength of this simple expression is to take into account the instantaneous drift
angle α in a way that is consistent with the rectilinear motion (when α = 0◦) and with
cylinders fixed in an incoming flow (when α̇ = 0◦ s−1).
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3.2.3. Lift force FΓ due to the circulation Γ

To complement the quasi-steady drag force, we follow Pesavento & Wang (2004) and
Andersen et al. (2005), and define a force FΓ proportional to the circulation Γ , as

FΓ = ρf Γ (−utel + ulet). (3.19)

As in these studies, we also assume two contributions to the circulation,

Γ = −CTLd
ulut

uc
+ 1

2
CRdL2θ̇ , (3.20)

so that the force FΓ has two components, FΓ = FΓT + FΓR . The former component,
proportional to CT and ulut = uc sin(2α), can be assimilated to a translation-induced lift.
The latter component, proportional to CR and the angular velocity θ̇ , can be understood as
a rotation-induced lift. Andersen et al. (2005) showed that the rotation-induced lift has an
essential contribution to the force balance, and found values for CT and CR that allowed
them to close the force balance for each path considered. However, they were not able
to quantitatively evaluate the dependence of the coefficients CT and CR on the control
parameters due to the limited number of experimental cases available (four). As done
previously for the drag force, we here seek evolutions of the coefficients CT(Re) and
CR(Re) with the Reynolds number Re of the cylinders. As will be discussed later in detail
(§ 3.3.1), such expressions can be found here satisfactorily to close the mean force balance
along the transverse direction, obtained by averaging (3.4) over a period (there is no mean
component for the longitudinal force balance). However, we were not able to achieve the
instantaneous equilibrium of the forces along the longitudinal and transverse directions
using the precedent expressions for the drag and lift terms. While, of course, the models for
these terms could be revisited and improved, we attribute their failure to their dependence
on the instantaneous kinematics of the cylinder. We therefore seek a correction in the form
of a history force.

3.2.4. History force F H
Here, we seek to incorporate in the model a force that will be able to guarantee the
instantaneous force balance in both the longitudinal and transverse directions. With this
force, we try to correct the quasi-steady character of the models proposed for F D and FΓ .
As the flow at a given time is clearly dependent on the flow at preceding times, this is also
the case for the hydrodynamical loads experienced by the body. This dependence of the
loads on the preceding times cannot be accounted for by the instantaneous values of the
body kinematics. The simplest idea is therefore to take into account a rate of change for
these quantities. However, the choice of the relevant quantities and the formulation of this
history effect is not trivial. An alternative explored here is to consider the history of the
temporal rate of change of the loads themselves. A careful analysis of the different force
components, in particular their phase, led us to the following choice for F H:

F H = Kl Stθ

∫ t

t−τl

e−(t−t∗)/τl
dFl

Γ

dt∗
dt∗ el + Kt

∫ t

t−τt

e−(t−t∗)/τt
dFt

D
dt∗

dt∗ et, with Stθ = dfθ
uc

.

(3.21)

The coefficients Kl and Kt allow us to adjust separately the amplitudes of the two
components. While the expressions are different for the longitudinal and transverse
directions, they have the same shape and the same meaning. Using an integro-differential
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formulation inspired by the Basset–Boussinesq history force (Basset 1888) and by the force
proposed by Lawrence & Weinbaum (1986) at low Reynolds numbers, the contributions
of F H are composed with the product of a kernel with the temporal derivatives of the
drag (for the transverse direction) and lift (for the longitudinal direction) forces. Different
time scales are considered for the longitudinal (τl) and transverse (τt) components, though
close values will be obtained when tuning the parameters of the model. The integration
is performed over a characteristic time interval τl (and τt, respectively) preceding the
instantaneous time t, expected to be smaller than a period of oscillation (τlfθ < 1 and
τtfθ < 1). The kernel is chosen, for simplicity, as an exponential decaying function of
same characteristic time scale (τl or τt). A similar kernel was used by Ern et al. (2009) to
model the vortical torque experienced by freely falling disks. Note also that we introduce
the Strouhal number Stθ to modulate the amplitude of the longitudinal component of
F H . The amplitude of this term is in fact strongly dependent on the elongation ratio of
the body, shorter cylinders corresponding to larger Strouhal numbers. As the Strouhal
number compares the rate of change of the flow surrounding the body ( fθ ) to the inertial
time (d/|uc|), the quasi-steady approximation is more justified for lower values of Stθ
(occurring for longer cylinders), and history effects are then also less important. This can
be understood clearly by comparing the behaviour of long and short cylinders in figure 1
(or in figure 2). The vertical displacement of the body, plotted at equal time steps, is seen
to scan very differently a period of oscillation in each case, due to the strong differences
in velocity and oscillation frequency.

3.2.5. Values of the coefficients used in the model
The calibration of the eight coefficients (CT(Re), CR(Re), Kl, Kt, τl, τt and two coefficients
for κα=90◦

1 (ξ) already introduced in (3.14)) involved in the model for the vortical force Fω

was performed by steps. Two of these parameters were first set from the investigation of
the rectilinear motions, as seen in § 3.2.1. The consideration of the mean force balance
in the transverse direction then allowed us to obtain suitable values for the coefficients
CT(Re) and CR(Re). The optimization of these parameters was performed using a cost
function that evaluates the average value over the entire data set of the sum of the different
contributions entering in the force balance for each cylinder (ρc/ρf , ξ, Ar3-D), expected to
be zero for each case.

Assuming the laws for CT(Re) and CR(Re) obtained in this manner, we then look for the
remaining parameters, Kl, Kt, τl and τt, that close the instantaneous force balances in both
the transverse and longitudinal directions. These were obtained by minimizing the sum of
the contributions at each time for each experimental run, focusing on aluminium cylinders.
The dimensionless coefficients Kl and Kt were initialized with values close to unity, and
the initial values for the times τl and τt with values close to the period of oscillation
T . After this first determination in consecutive steps, the obtained values were used as
initialization values for the optimization process of the six coefficients let free. Values
close, yet different, to those from the iterative procedure were found. These provide the
following closure relations:

κα=90◦
1 (ξ) = 73 + 6.3ξ, (3.22a)

CT(Re) = 145
Re

and CR(Re) = 66
Re

, (3.23a,b)

Kl = −14.43, τl = 0.53T, (3.24a,b)

Kt = 2.63, τt = 0.63T. (3.25a,b)
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Fluttering motion of a confined freely falling cylinder

Similarly to the drag coefficient Cd, the coefficients involved in the lift force, CT and
CR, are inversely proportional to the Reynolds number Re in the range of parameters
investigated here. As concerns the history force, the time scales τl and τt correspond to
approximately half a period of oscillation T , and have comparable magnitudes in both
directions. Interestingly, the coefficient Kl is negative, contributing along the longitudinal
direction in a way opposite to the lift, the lift force providing a centripetal force
contribution on the cylinder, and the history force a centrifugal one (see figure 16).

3.3. Discussion of the results
The comparison of the model with the experimental data is carried out in this subsection.
We then discuss the relative weights of the different contributions involved in the vortical
force Fω, and their evolution along the path of the moving body. For each force F , we
define its components Fl and Ft along the longitudinal and transverse directions of the
cylinders as F = Flel + Ftet.

3.3.1. Closure of the mean force balance along the transverse direction
The first goal of the force model elaborated for Fω is to close the mean force balance in the
transverse direction, investigated in § 3.1.1. Averaged over a time period, the conservation
of momentum in the direction et given by (3.4), along with the force decomposition of
(3.10), reads ∑

〈Ft〉 = −(ρcV + A)〈θ̇ul〉 + 〈Ft
ω〉 − 	ρ Vg〈cos θ〉 = 0, (3.26)

with
〈Ft

ω〉 = 〈Ft
D〉 + 〈Ft

ΓT
〉 + 〈Ft

ΓR
〉 + 〈Ft

H〉, (3.27)

where, as already defined, the notation 〈Q〉 corresponds to the average over a time period
of the quantity Q. Figure 13 presents the results obtained for the four density ratios and the
seven elongation ratios, forming a total of 22 cylinders of parameters (ξ, ρc/ρf , Ar3-D).
The force model is also applied to the data from Toupoint (2018) to extend the parameter
range. The sum

∑〈Ft〉 is normalized for each cylinder with the magnitude of the buoyancy
force, 	ρ Vg, where 	ρ = (ρc − ρf ). A satisfactory equilibrium is reached, resulting in
average error 7 %. Its main strength is to cover the whole range of parameters investigated,
the departure from 0 being mostly due to the variability from one experiment to the
other for given (ξ, ρc/ρf , Ar3-D). The experimental cases for plastic cylinders made of
POMC (ρc/ρf = 1.4) provide in average a less accurate balance, probably due to shape
imperfections, as already discussed at the end of § 3.2.1.

We can now look at the mean contributions of the forces proposed to model the vortical
force Ft

ω. For the two density ratios (aluminium and titanium cylinders), figure 14 presents
the mean contributions along the transverse direction for the proposed drag force, the
lift forces in translation and rotation, and the history force, when the elongation ratio of
the cylinder varies. As in the previous figure, the values of the forces are normalized
with the magnitude of the buoyancy force 	ρ Vg. The inertial force and buoyancy
force contributions, already determined and presented in figure 10, are also plotted for
comparison. We can observe that the history force has no contribution to the mean force
balance along the transverse direction, as expected. Moreover, we observe that the mean
contributions of both the drag and circulation-induced forces are necessary to close the
mean force balance.
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Figure 13. Mean balance in the transverse direction, averaged over a time period, for different elongation
ratios and density ratios. Filled symbols indicate present study; open symbols indicate data from Toupoint
(2018).
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Figure 14. Mean contributions to the force balance in the transverse direction, measured forces and modelled
ones, as a function of the elongation ratio of the cylinders, for two density ratios. Filled symbols indicate present
study; open symbols indicate data from Toupoint (2018).

3.3.2. Instantaneous force balance experienced by the body along its path
We now turn our attention to the instantaneous force balance experienced by the body
along its path. We first compare the temporal evolution over a fluttering period of the
vortical force Fω obtained from the experimental measurements to that obtained from
the model. Figure 15 presents this comparison for aluminium cylinders featuring five
different elongation ratios. As a first point, we can see from both the experimental
data and the model that the lowest magnitude of the vortical force is experienced by
the body close to an extremum of its path, whatever ξ . While differences between the
experiments and the model are visible (the largest difference being observed for the
highest elongation ratio of the study, ξ = 20), we can also see that the model is able to
stay close to the experimental determination all along a fluttering period for aluminium
cylinders with different elongation ratios. For the shortest cylinder investigated, ξ = 3 (not
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Figure 15. Comparison of the temporal evolutions over a fluttering period of the measured vortical force to
those obtained with the model for aluminium cylinders of various elongation ratios. Ten cylinders are drawn in
black at regular time intervals. The trajectory of the centre of gravity of the cylinder is plotted in blue.

presented here), the model does not provide satisfactory results. Also, the instantaneous
force balance is not verified satisfactorily for the fluttering titanium cylinders, though the
model provides, for all density ratios and elongation ratios investigated here, a good closure
of the mean force balance (figure 13). To extend the range of validity of the model, more
sophisticated dependences of the model parameters on the control parameters could be
elaborated, for instance by improving the dependence of Cd, CT and CR on Re (the decrease
as Re−1 requiring a correction when Re is sufficiently large). Also, different formulations
for the forces could be considered to improve the present modelling, especially for the
history force, which plays a crucial role in the instantaneous force balance.

In spite of its limitations, the model provides a rather good prediction of the mean
components of the hydrodynamical forces acting on cylinders featuring different materials
and elongation ratios, falling in a fluttering or rectilinear regime. It also provides a vision of
the different forces exerted instantaneously on fluttering aluminium cylinders along their
paths. Figure 16 displays the instantaneous contributions of the three forces F D, FΓ and
F H involved in the model for the vortical force Fω. In magnitude, the circulation-related
forces are stronger than the quasi-steady drag term. For all the elongation ratios considered,
the translation-induced lift is weaker than the rotation-induced lift. However, both
contribute in the same direction, except when the cylinder inclination reaches a maximum.
At this stage, the translation-induced lift changes sign, slightly before the rotation-induced

1002 A46-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
63

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1163


D. Letessier, V. Roig and P. Ern

–5 0 5

X/d

0

5

10

15

20

25

Y/d

ξ = 5

Cylinder
FΓT
FΓR
FD
FH

–5 0 5

X/d

0

5

10

15

20

25

ξ = 7

–10 –5 0 5 10

X/d

0

5

10

15

20

25

30

Y/d

ξ = 10

–10 –5 0 5 10

X/d

0

5

10

15

20

25

30
ξ = 12

–15 –10 –5 0 5 10 15
X/d

0

5

10

15

20

25

30

35

Y/d

ξ = 20

Figure 16. Illustration of the different contributions involved in the model for the vortical force for
aluminium cylinders with different elongation ratios.

lift. By definition, the relative weight between the drag and lift contributions is related
to the body degrees of freedom and to the control parameters. As shown in figure 7(b),
the amplitude of oscillation of the inclination decreases for aluminium cylinders when
the elongation ratio ξ increases from 5 to 20. The inclination angle of the velocity vector
also decreases, reducing the lift contribution relative to that of the drag. The important
contribution of the history force is also conspicuous.

In addition, figure 17 displays, over a fluttering period, the instantaneous contributions
of the inertial forces in translation and rotation. As expected, these become weaker as the
amplitudes of oscillation of the body degrees of freedom decrease (ξ increases). We can
also observe in this representation that the mean contribution of the nonlinear inertial force
due to rotation F IR has opposite sign relative to the buoyancy force, as already seen in
figure 10. The inertia term coupling the rotation of the body with its longitudinal velocity
therefore behaves as an upward driving force on the body.

Finally, a more detailed illustration of the force balance experienced by the fluttering
cylinders is presented in figure 18. The figure shows the temporal evolution of the
different forces, measured and modelled, acting along the longitudinal and transverse
directions for an aluminium cylinder with ρc/ρf = 2.7 and ξ = 10. Both longitudinal
and transverse directions display complex fluctuating dynamics, and complex shapes
for the different force components. For both directions, the sum of the different force
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Figure 17. Illustration of the evolution over a fluttering period of the inertial force in translation and rotation,
of the buoyancy force (represented only for the cylinder at the highest position) and of the vortical force for
aluminium cylinders with different elongation ratios.

components (expected to be zero) is plotted with a black dashed line. Measured forces are
those provided by the Kelvin–Kirchhoff equations, namely the buoyancy force F B and the
inertial forces in translation and rotation, respectively F IT and F IR . These exhibit important
fluctuations along the longitudinal direction, particularly the buoyancy force and the force
corresponding to translational inertia. We can also see that in this acceleration term, higher
frequencies emerge. Yet a rather satisfactory equilibrium of forces is reached with the
model for Fω. The fluttering dynamics is well captured by the model, since the remaining
fluctuations are essentially at a much larger frequency than for fluttering. The different
contributions introduced to model Fω have amplitudes comparable to one another. Good
agreement is in particular reached for the transverse force balance, for which both mean
and fluctuating components have to be compensated. We can observe that the introduction
of the history term is necessary to complement the fluctuations of the quasi-steady drag
term in this direction. Interestingly, the projection on both the transverse and longitudinal
directions of the circulation-induced lift, in particular the contribution associated with
translational effects, yields strong longitudinal fluctuations. At variance with the transverse
direction, a history force has to be introduced in the longitudinal direction to compensate
partly for these fluctuations.
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Figure 18. Temporal evolutions of the (measured and modelled) forces experienced by an aluminium cylinder
with ξ = 10 along its fluttering path. (a) Projection on the longitudinal axis of the cylinder. (b) Projection on
the transverse axis of the cylinder.

4. Conclusion

We first investigated experimentally the planar paths displayed by single cylinders falling
freely in a thin-gap cell containing liquid at rest. For a significant range of control
parameters (elongation ratio of the cylinder, solid-to-fluid density ratio, and Archimedes
number), we determined the characteristics of the cylinder kinematics. Their analysis
revealed that high-amplitude oscillations of the order of magnitude of the mean vertical
velocity of the cylinder are observed for both translational and rotational velocities. The
experimental results further showed that the mean fall velocity uv does not scale with the
gravitational velocity, which overestimates uv and is, in particular, unable to capture the
influence of the density ratio on it. We therefore developed a model able to account for
the cylinder dynamics under these kinematical conditions, also encountered for distinct
freely falling or rising bodies in confined or unconfined configurations. To model the
body behaviour, we proposed a force balance that includes proper and added inertia terms,
the buoyancy force and vortical contributions. Averaging the equations over a temporal
period provides a mean force balance that governs the mean fall velocity of the cylinder,
showing that the coupling between the translational and rotational velocity fluctuations
induces a mean upward inertial force responsible for the decrease of uv . The consideration
of this contribution enables us to take into account in the force balance the effect of
the density ratio where it is expected physically, in an inertia term and not in a drag
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term. This mean force balance also provides a scaling for the frequency of oscillation of
heavier cylinders in agreement with the experimental measurements of the present study
and with those of previous studies in confined and unconfined environments (Marchildon
et al. 1964; Chow & Adams 2011; D’Angelo et al. 2017; Toupoint 2018). The mean force
balance presented here may therefore be generally relevant for bodies displaying velocity
fluctuations comparable to their mean fall velocity in confined and unconfined situations.
We then considered the instantaneous force balance experienced by the body, and proposed
three contributions for the vortical force modelling. These can be interpreted as drag, lift
and history forces, and expressions for their dependence on the control parameters were
adjusted on the basis of the experimental evolutions of the body’s degrees of freedom. The
drag and lift formulations developed here extend ideas conveyed in particular by Andersen
et al. (2005) (and references therein) for falling plates, enabling us to satisfactorily close
the mean force balance acting on the cylinders. However, an additional zero-mean force,
proposed under the form of a history force that breaks the instantaneous dependence of the
vortical force, is necessary in our configuration to close the instantaneous force balance
experienced by the cylinder.
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