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From the highest-resolution electron ptychography [1–3] to micrometer-scale strain mapping [4], four-

dimensional scanning transmission electron microscopy (4D-STEM) has demonstrated significant 

advancements in the study of materials. The commercialization of direct electron detectors, such as the 

electron microscope pixel array detector (EMPAD) [5,6], has made 4D-STEM a more general technique 

than a few years ago. However, the processing of large 4D data still remains challenging and heavily 

relies on experts. Here, we present the utilization of unsupervised learning and Bayesian optimization to 

assist 4D-STEM data processing. 

 

For mapping deformations in materials, we developed a hierarchical unsupervised learning workflow to 

cluster nanobeam electron diffraction patterns in 4D datasets [7]. This approach provides an initial 

analysis of the 4D data and uncovers essential features in the sample even without prior knowledge. For 

example, using this method, we uncovered strain and ripples in two-dimensional (2D) lateral 

heterojunctions in agreement with previously reported results4 (Figure 1a, b). Applying this approach on 

a novel 2D ferroelectric SnSe sample, we have identified ferroelectric domains and super domains 

(Figure 1c-e). Based on the results, a subsequent quantitative analysis of the same 4D data provides 

details in lattice structure at different domains and domain boundaries. 

 

In addition, we also developed a streamlined data-processing workflow for electron ptychography. 

Electron ptychography is capable of deep sub-angstrom resolution reconstructions but requires careful 

selection of multiple reconstruction parameters. We demonstrate a scheme for automatic parameter 

tuning by implementing Bayesian optimization with Gaussian processes. This approach is able to find 

high-resolution reconstructions after exploring only 1% of the entire parameter space. With minimal 

prior knowledge, the approach significantly improves the efficiency of 4D data processing and provides 

high quality ptychography reconstructions that agree with the experts [8].  
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Figure 1. Unsupervised learning to uncover deformations. (a) Clustering results from the 4D dataset 

of the WS2-WSe2 multi-junction sample. (b) Sub-clustering results in WSe2 with colors indicating strain, 

flat area, and ripples. (c) Clustering results of SnSe, which contains four different domains. (d) 

Difference between mean diffraction patterns of yellow and black domains. (e) Difference between 

mean diffraction patterns of white and black domains. 

 

 

 
 

Figure 2. Automatic reconstruction tuning with Bayesian optimization. (a) The workflow aims to 

find the optimal point that maximizes the unknown quality function. (b) Bayesian optimization 

iteratively samples more points, performs ptychographic reconstructions, and updates a surrogate model 

that approximates the quality function. (c) Best reconstruction is retrieved at the end of the process. 

Scale bar is 5Å. 
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