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Abstract
In this paper, the realization of any specified planar Cartesian compliance for an object grasped by a compliant
hand is addressed. The hands considered have 2 or more fingers for which each has 3 modulated elastic joints
and predetermined link lengths. Geometric construction-based compliance synthesis procedures are developed.
Using these procedures, a large set of compliant behaviors can be realized by a single hand simply by adjusting the
configuration of each finger and by adjusting the joint stiffness (using variable stiffness actuation) of each finger
joint.

1. Introduction
Compliance is widely used in robotic manipulation to improve the accuracy of constrained relative posi-
tioning and to prevent excessive contact forces when interacting with its environment. Robot dexterity
is greatly enhanced when its compliance is properly structured for each constrained manipulation task
[1, 2]. Different tasks require different compliant behaviors. Dexterous manipulation can be attained for
many different tasks with a single robot if the robot is capable of changing its task-specific compliance
in real time.

A general model for compliance is a rigid body suspended by a set of elastic components. A compliant
behavior is characterized by the relationship between the force and torque exerted on the body and the
resulting deflection of the body. For small deflections, if the body motion is represented by a screw
displacement, twist t, and the force and torque are represented by a screw wrench w, then the relationship
is linear and can be described as:

w = Kt, (1)

where K is the symmetric positive semi-definite (PSD) stiffness matrix. For a full-rank suspension,
K is positive definite (PD), and Eq. (1) can be equivalently expressed as:

t = Cw, (2)

where C = K−1 is the compliance matrix.
In application, an elastic suspension of a body can be attained by a compliant mechanism composed

of elastic components connected in parallel or in series. To realize a desired compliance, both the geom-
etry and elastic behavior of each component need to be appropriately selected. This paper focuses on
compliance realization with a planar compliant hand, which is composed of multiple elastic serial mech-
anisms (fingers having elastic joints) connected in parallel to a base (the palm) as shown in Fig. 1. Each
finger considered has 3 joints with modulated stiffness (using variable stiffness actuation [3]) and each
fingertip contacts the surface of the body so that a desired elastic behavior is attained by the body.
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Figure 1. Compliant robotic hand with multiple 3-joint fingers. Each finger has 3 individually
modulated elastic joints. The object is held by the fingers in point contact.

Due to the kinematic redundancy of each finger, a hand has the ability to grasp objects of many
different shapes and to grasp/regrasp an object to achieve different elastic behaviors. For a given hand, a
continuous space of compliances can be achieved by adjusting the finger joint compliances and varying
the fingertip locations on the object surface without changing the pose of the held object.

1.1. Related work
In previous work on the realization of compliance, synthesis procedures for compliant mechanisms
have been developed to achieve any specified elastic behavior. Most early synthesis procedures were
developed for fully parallel mechanisms and fully serial mechanisms based on a rank-1 decomposition
of the stiffness/compliance matrix [4, 5, 6, 7].

In refs. [8, 9], methods of stiffness synthesis using planar parallel mechanisms with specific con-
structions were developed. In refs. [10, 11, 12, 13], compliance analysis and synthesis for mechanisms
composed of distributed elastic elements were presented.

In closely related prior work in the synthesis of planar compliance [14, 15, 16, 17], construction-
based approaches to the design of fully serial or fully parallel mechanisms having n (3 ≤ n ≤ 6) elastic
components were developed. In refs. [14, 18], the concepts of dual elastic mechanisms in serial and
parallel construction were introduced for the realization of planar [14] and spatial [18] compliance. It
was shown that the space of realizable compliances obtained by only adjusting joint compliances at a
given serial mechanism configuration is exactly the same as that of its parallel elastic dual obtained by
only adjusting spring stiffnesses. Thus, a serial mechanism can be replaced by its parallel elastic dual
(and vice versa) in synthesis procedures for the realization of a specified elastic behavior. In ref. [19],
the concept of dual elastic mechanisms was extended to non-full-rank cases.

In more recent work [20], the synthesis of an arbitrary planar compliance has been developed for
mechanisms composed of multiple 3R serial compliant arms rigidly connected in parallel to a single
body.

Many researchers addressed the analysis and synthesis of Cartesian compliance associated with an
object held by a robotic hand [21, 22, 23, 24, 25, 26, 27, 28]. Most work has concentrated on the cal-
culation of the Cartesian compliance of a given grasp. To approximate a specified object Cartesian
compliance, numerical search procedures [21, 27] or optimization procedures [23, 26] have been used.
In our most recent work [29], exact compliance realization was addressed for a planar hand having
multiple 2-joint fingers in which finger link lengths were unspecified. In most prior work, fingers were
modeled as rigid links connected in series by compliant joints. In refs. [30, 31], finite element methods
were used to model and analyze a hand grasp.

1.2. Contribution of the paper
This paper addresses the exact realization of an arbitrary planar compliance with a multi-finger hand in
which each finger has 3 elastic joints and predetermined rigid link lengths.
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In the synthesis of a desired elastic behavior for an object held by a compliant hand, the main limita-
tions of prior work are (1) the numerical approaches presented in refs. [21, 27, 23, 26] did not take into
account the geometric restrictions on each finger and did not guarantee that the desired compliance is
actually achieved and (2) the synthesis procedure developed in ref. [29] did not consider the restriction of
specified link lengths in each finger. Thus, due to kinematic limitations, the compliant hand determined
by the procedure for a given compliance is very unlikely to be used for the realization of a different
compliance.

This paper addresses the realization of an arbitrary planar compliance with a robotic hand having mul-
tiple 3-joint fingers in which finger base locations and link lengths are specified. The main contributions
of the paper are

1. The development of a means to exactly realize a desired planar compliance for a held object with
a given hand;

2. The development of geometry-based synthesis procedures for m (m ≥ 2) finger planar hands that
guarantee the realization of any realizable compliant behavior by the hand.

As previously stated, although constrained by hand geometry, a large, continuous space of compliant
behaviors can be achieved by adjusting the joint compliance of each finger joint and changing the location
where each fingertip contacts the held object.

1.3. Overview
This paper develops an approach to realizing an arbitrary planar (3 × 3) compliance matrix for an object
held by a given compliant hand having 2 or more fingers for which each has 3 modulated passive
compliant joints.

The paper is outlined as follows. In Section 2, the technical background needed for the realization of
an elastic behavior with a mechanism is reviewed. In Section 3, the description of the compliance pro-
vided to a held object when in point contact with an elastic finger is addressed. Analysis and realization
of general point stiffness associated with a fully parallel mechanism and of general point compliance
associated with a fully serial mechanism are presented. In Section 4, compliance realization with a two
or more finger hand in which the link lengths of each finger are predetermined is addressed. As such, the
procedures can be applied to any given hand to synthesize an arbitrary compliant behavior. In Section 5,
a numerical example is provided to demonstrate the synthesis procedures. Finally, a brief summary is
presented in Section 6.

2. Technical background
In this section, the background needed for planar compliance realization with a compliant hand is
provided. First, the specific model of a compliant grasp used in the paper is described. Next, screw rep-
resentation of mechanism elastic characterization is reviewed. Finally, the limitation on the traditional
approach to calculate grasp stiffness is described.

2.1. Model of a compliant grasp
In a hand, each finger/object combination can be viewed as a serial mechanism. A compliant grasp then
can be modeled as a system of serial mechanisms connected in parallel to the held object. Unlike the
fully serial mechanisms studied in previous work [15, 16, 17], in which the connection between links are
all elastic revolute joints, the fingertip makes a hard point contact connection to the held body. As such,
at the point of contact, only force (no torque) can be transmitted to the body as illustrated in Fig. 2(a).

It can be seen that, with the above assumptions, each finger can provide only point compliance to the
body (yielding a rank deficient planar stiffness matrix at the contact point) regardless of number of the
compliant joints in the finger. Since the fingertip does not transmit torque, the connection between the
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(a) (b)

Figure 2. Model of a compliant robotic hand with multiple 3-joint fingers. The fingertip of each finger
only provides pure force (no torque) at the contact point and is modeled as a revolute joint without
elastic behavior.

finger tip and the object it contacts is equivalent to a free revolute joint at the contact point as shown in
Fig. 2(b). Thus, when in contact with the held object, each 3-joint finger can be viewed as a 4R serial
mechanism with the last joint having no elastic behavior.

2.2. Screw representation of mechanism geometry
Consider a fully parallel mechanism consisting of n line springs. The position of each spring can be
represented by a unit wrench defined as the spring wrench. In Plücker ray coordinates, a planar line
spring wrench has the form:

w =
[

n

d

]
, (3)

where the unit 2-vector n indicates the direction of the wrench (spring axis) and where

d = (r × n) · k, (4)

where r is the position vector from the origin to any point on the spring axis, and k is the unit vector
orthogonal to the plane. Conversely, a unit wrench w in the form of Eq. (3) can be used to represent a
line in the plane.

If a stiffness matrix K is passively realized with a parallel mechanism having n springs wi (1, . . . , n),
then [32]

K = k1w1wT
1 + k2w2wT

2 + · · · + knwnwT
n , (5)

where ki ≥ 0 is the spring stiffness associated with spring wrench wi.
Now consider a fully serial mechanism consisting of n elastic revolute joints. For a joint J, the unit

twist t centered at the joint is defined as its joint twist. In Plücker axis coordinates, joint twist t has the
form:

t =
[

v

1

]
, (6)

where v = r × k, k is the unit vector orthogonal to the plane, and r is the position vector of the revolute
joint with respect to the coordinate frame. The 2-vectors r and v (the translational component of t) are
related by:

r = �v, (7)

where � is the 2 × 2 skew-symmetric matrix defined as:

� =
[

0 −1

1 0

]
. (8)
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Conversely, a unit twist t in the form of Eq. (6) can be used to represent the location of a point in the
plane.

If a compliance matrix C is passively realized with a serial mechanism having n joints described by
joint twists ti, (1, . . . , n), then [33]

C = c1t1tT
1 + c2t2tT

2 + · · · + cntntT
n , (9)

where ci ≥ 0 is the joint compliance at the joint associated with ti.

2.3. Compliance of multi-serial mechanisms
As shown in Fig. 2, a compliant hand can be viewed as parallel system in which each finger is a serial
mechanism. For an m-serial mechanism, if each Ci (calculated using Eq. (9)) is the compliance matrix
attained at the elastically suspended body by the ith serial mechanism, then the overall Cartesian stiffness
of the multi-serial system is

K = C−1
1 + C−1

2 + · · · + C−1
m . (10)

However, for the compliant hand illustrated in Fig. 2(b), because the fingertip in contact with the
object surface is modeled as a free joint (each finger only exerts pure force (no torque) to the body),
the planar compliance provided by each finger is rank deficient. In other words, each finger provides
only point planar compliance (a 2 × 2 matrix) rather than general planar compliance (a 3 × 3 matrix).
As such, Eq. (10) cannot be directly applied to a hand as modeled in Fig. 2(b). A different approach to
determine the Cartesian stiffness of a hand needs to be developed, as described in the next section.

3. Point planar stiffness and point planar compliance
In this section, the analysis and synthesis of a point planar compliance are presented. Since spring
wrenches in a parallel mechanism and joint twists in a serial mechanism are represented by planar
screws (3-vectors), the relationship between a 2 × 2 point stiffness/compliance matrix in E(2) and its
3 × 3 representation in SE(2) is first presented. Then, the realization of a point planar compliance with
both a parallel mechanism and a serial mechanism is addressed.

3.1. Properties of point stiffness and compliance
Consider a 2-spring parallel mechanism having spring wrenches (w1, w2) and spring rates (k1, k2). The
stiffness of the 2-spring system is

K = k1w1wT
1 + k2w2wT

2 =
[

Kt b

bT kr

]
, (11)

which is a 3 × 3 rank-2 PSD matrix.
Suppose w1 and w2 intersect at point P (Fig. 3), then P must be the stiffness center of K. If the

coordinate frame is located at P, the stiffness matrix has the form:

K =
[

KP 0

0 0

]
, (12)

where KP is a 2 × 2 PD matrix. Thus, K is a point stiffness at P. Since the leading 2 × 2 diagonal block
in the stiffness matrix K is invariant under coordinate translation, Kt = KP. As a consequence, the 2 × 2
translational matrix KP can be obtained from the leading block of the 3 × 3 stiffness K in any coordinate
frame. Conversely, it can be proved that any point stiffness in the form of Eq. (12) is readily realized
with 2 springs intersecting at the coordinate frame origin. Therefore, to achieve a point stiffness at a
location, only the geometry and the elastic properties of two springs intersecting at that location need
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Figure 3. Any point planar stiffness at point P can be achieved by 2 springs intersecting at P.

Figure 4. A point stiffness achieved by a serial mechanism. A free revolute joint is located at the point
of interest.

to be determined. Also, note that not every rank-2 planar 3 × 3 stiffness matrix can be expressed in the
form of Eq. (12), that is, not every rank-2 matrix represents a point stiffness. For example, the stiffness
matrix

K =
⎡
⎢⎣

1 0 0

0 0 0

0 0 1

⎤
⎥⎦ (13)

does not represent a point planar matrix. Although K in Eq. (13) is a rank-2 PSD matrix, the leading
2 × 2 block is not full rank and the matrix cannot be realized by two springs intersecting at a point.

In summary, for the planar case, we have

Proposition 1. A rank-2 stiffness matrix K represents a point planar stiffness at some point if and only if

(a) the leading 2 × 2 diagonal block is full rank; or equivalently,
(b) K can be realized by two non-parallel line springs.

Now consider a serial mechanism (Fig. 4) having n elastic revolute joints described by joint twists
(t1, t2, . . . , tn) with n ≥ 3. Then, the 3 × 3 compliance matrix associated with the serial mechanism using
Eq. (9) is

Ce = c1t1tT
1 + c2t2tT

2 + · · · + cntntT
n . (14)

If another joint JP with compliance cP is added at the distal link endpoint P, then

C = Ce + cPtPtT
P, (15)

where tP is the joint twist associated with JP. When the coordinate frame is located at point P, tP is

tP =
[

0

1

]
. (16)

Any full-rank compliance Ce described at the same coordinate frame has the form

Ce =
[

CP g

gT cr

]
. (17)
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Using Eqs. (15)-(17), the total compliance at P is

C =
[

CP g

gT cr + cp

]
. (18)

The location of its compliance center relative to endpoint P is calculated to be:

rc = − 1

(cr + cp)
�g, (19)

where � is the skew-symmetric matrix defined in Eq. (8). The inverse of C, the 3 × 3 stiffness matrix
K, is

K = C−1 =

⎡
⎢⎢⎢⎣

(
CP − 1

(cr + cp)
ggT

)−1

−1

h
C−1

P g

−1

h
gTC−1

P

1

h

⎤
⎥⎥⎥⎦ , (20)

where h = (cr + cp) − gTC−1
P g.

If cp → +∞, then rc → 0, meaning that the compliance center is located at P, and the associated
stiffness matrix in SE(2) is

K =
[

C−1
P 0

0 0

]
=

[
KP 0

0 0

]
. (21)

Thus, a point compliance is achieved by placing a free revolute joint at the end of the serial chain at
the point of interest. The 2 × 2 point compliance is the leading 2 × 2 block in the compliance matrix of
the fully elastic serial mechanism. Note that, unlike the stiffness matrix, the leading 2 × 2 block matrix
in the compliance matrix C associated with an elastic serial mechanism is not invariant under coordinate
translation. The point compliance CP can be obtained from the 3 × 3 planar compliance matrix C only
if it is expressed at a coordinate frame located at P. Also, to obtain a full-rank point planar compliance,
the elastic joints cannot be collinear. This is because, if all joints are located on the same line, any two
of the translational components vi and vj in joint twists ti and tj must be linearly dependent, making CP

in Eq. (18) rank deficient (rank 1). In summary,

Proposition 2. A serial mechanism with elastic joints Ji can achieve a point compliance by adding a
free revolute joint at the serial chain endpoint if and only if

(a) the number of elastic joints n ≥ 2; and
(b) the locations of all elastic joints are not collinear.

3.2. Realization of a point compliance
For a point stiffness at a given location, since only force and translation are considered, the force-
deflection relation can be expressed as

f = KPv, (22)
where the force f and the displacement v (the translational component of the twist) are 2-vectors. This
relationship can be alternatively expressed as:

v = CPf, (23)
where CP = K−1

P is the point compliance at P.
Consider a serial mechanism having n elastic joints, and the point compliance CP is at the most distal

link tip P. If ri is the 2-vector indicating the location of joint Ji relative to the coordinate frame Pxy,
then, using Eq. (7), the translational component of the joint twist ti is

vi = �Tri. (24)
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If ci is the joint compliance at Ji, then the 2 × 2 point compliance at P associated with the n-joint
mechanism configuration is

CP = c1v1vT
1 + c2v2vT

2 + · + cnvnvT
n . (25)

From Proposition 2, the point compliance can be achieved by a fully serial mechanism having n ≥ 2
elastic joints. To realize a full-rank PD 2 × 2 point compliance at point P, at least 2 elastic joints are
needed. It can be proved that, if for any two joints, a given passive point compliance is expressed as

CP = c1v1vT
1 + c2v2vT

2 , (26)

then both the coefficients c1 and c2 must be positive. In fact, if ri is the position of joint Ji with respect
to P, then using Eq. (24), rT

i vi = 0. Since CP is PD,

rT
1 CPr1 = c2

(
rT

1 v2

)2
> 0. (27)

Thus, c2 > 0. Similarly, c1 > 0.
This result for 2 joints is not true for 3 joints. As shown in ref. [34], an arbitrary point compliance

matrix CP can always be expressed in the form of Eq. (25) at any configuration of a 3R serial mechanism,
and the 3 coefficients (c1, c2, c3) are uniquely determined by the locations of the three elastic joints. These
coefficients, however, are not guaranteed to all be positive. Based on the result for 2 joints, it is readily
shown that among the 3 coefficients cis, at most one is negative. Conditions on the configuration of a 3R
serial mechanism that ensure passive realization of a given point compliance are presented in ref. [34].

When synthesizing a point compliance with a finger for which the locations of the base joint and the
fingertip contact are determined, an equivalent and easier to use condition is derived below.

Consider a given 2 × 2 point compliance matrix CP at point P. Suppose that a 3R serial mechanism
has joints J1, J2, and J3 and suppose that ri is the position of Ji relative to point P. Denote ρi as the
line collinear with position vector ri and denote li as the line of action of force fi = KPvi. At a given
configuration, the compliance is expressed as:

CP = c1v1vT
1 + c2v2vT

2 + +c3v3vT
3 . (28)

For an arbitrary permutation (i, j, s) of {1, 2, 3}, since rT
s vs = 0 and CPfs = vs,

rT
s CPfs = ci

(
rT

s vi

) (
vT

i fs

) + cj

(
rT

s vj

) (
vT

j fs

) = 0. (29)

Thus, ci and cj have the same sign if and only if [
(
rT

s vi

) (
vT

i fs

)
] and [

(
rT

s vj

) (
vT

j fs

)
] have different

signs. Consider the following two cases.

Case 1:
(
rT

s vi

)
and

(
rT

s vj

)
have the same sign. In this case, joints Ji and Jj are on the same side of line

ρs. Then
(
vT

i fs

)
and

(
vT

j fs

)
must have different signs. Thus, Ji and Jj must be separated by ls.

Case 2:
(
rT

s vi

)
and

(
rT

s vj

)
have different signs. In this case, joints Ji and Jj are separated by ρs. Then(

vT
i fs

)
and

(
vT

j fs

)
must have the same sign. Thus, Ji and Jj must be on the same side of ls.

Thus, ci and cj have the same sign if and only if joints Ji and Jj are separated by either line ls or line
ρs (but not both). Since, of the 3 coefficients (c1, c2, c3), at most one is negative; therefore, if ci and cj

have the same sign, they must both be positive. In summary,

Proposition 3. A given point compliance CP at point P can be passively realized by a 3R serial mecha-
nism if and only if for all permutations (i, j, s) of {1, 2, 3}, joints Ji and Jj are separated by only one of
the 2 lines ls and ρs as illustrated in Fig. 5.

This general result is simplified when the 3-joint locations ri are not collinear and the first joint (base
joint) location is specified. For a given point compliance CP expressed in the form of Eq. (28), the force
f1 associated with translational twist v1 at joint J1 is

f1 = KPv1. (30)
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(a) (b)

Figure 5. Necessary and sufficient condition on the joint locations of a 3R mechanism for the realization
of a point compliance at a given point P. Joints Ji and Jj must satisfy either: (a) Ji and Jj are separated
by line ls and not by line ρs or (b) Ji and Jj are separated by line ρs and not by line ls.

Then,

CPf1 = c1

(
vT

1 f1

)
v1 + c2

(
vT

2 f1

)
v2 + c3

(
vT

3 f1

)
v3. (31)

Since CPf1 = v1, if J3 is located on line l1 (the line of action of f1), then vT
3 f1 = 0, and Eq. (31) becomes

v1 = c1

(
vT

1 f1

)
v1 + c2

(
vT

2 f1

)
v2. (32)

Since v1 and v2 are not collinear, they are linearly independent, and c2 = 0. Thus, if J3 is located
along l1,

CP = c1v1vT
1 + c3v3vT

3 . (33)

As proved in Eqs. (26)-(27), both c1 and c3 must be positive regardless of the location of J2.
Since c2 changes its sign when J3 moves across the line of action of f1, rotation of link L3 about the

fixed point P from a location along f1 will result in a sign change in c2. If a rotation yields a location of
J3 such that J2 and J3 are separated by either l1 or ρ1 (not both), then the 3 coefficients c1, c2, and c3 must
all be positive.

In the realization of an arbitrary point compliance using a 3R finger with the locations of base joint
J1 and fingertip P specified, only an evaluation of the locations of J2 and J3 relative to lines ρ1 and l1 is
needed. This approach will be used in the synthesis of compliance with multi-finger hands.

4. Compliance realization with a hand
In this section, the realization of an arbitrary compliance with a hand is addressed. The hands considered
consist of multiple fingers, each having 3 elastic joints in which the links connecting adjacent finger
joints have specified lengths. First, an overview of the synthesis overall approach is presented. Then,
procedures used to assess the realizability of a desired elastic behavior are reviewed. The synthesis
procedure is then described in detail.

4.1. Approach
Suppose that a specific 3 × 3 symmetric PD matrix K is desired for an object grasped by an m-finger
hand. To do this, the first step in the synthesis process is to identify a 2m-spring fully parallel mechanism
for which pairs of springs intersect on the held object surface at locations Pi. In doing this, the given stiff-
ness is strategically decomposed into the sum of rank-2 PSD matrices (each ultimately corresponding
to a point planar stiffness provided by a finger). The desired stiffness would then be described by:

K = K1 + K2 + . . . + Km, (34)

where m is the number of fingers in the hand.
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(a) (b)

Figure 6. Realization of an elastic behavior with a multi-finger hand. (a) Realization of the stiffness
by a 2m-spring mechanism with each pair of springs intersecting at the object surface. (b) The point
compliance CPi = K−1

Pi associated with each pair of springs is realized by a 3-joint finger.

In this point stiffness decomposition approach, each Ki is then realized using the results of
Proposition 2 by a 3R finger with the fingertip contacting the object surface at point Pi. The m fingers
together realize the desired K.

Specifically, the approach uses previously developed geometric construction-based synthesis proce-
dures [15, 17] for parallel mechanisms. As such, the decomposition of Eq. (34) is not arbitrary, but
strategic. In the process, 2m springs are selected with each pair (wq, ws) intersecting at point Pi on the
surface of the object as illustrated in Fig. 6(a). By Proposition 1, the stiffness Ki associated with (wq, ws)
must be a point stiffness at Pi.

Next, each rank-2 stiffness is converted to a finger compliance matrix at point Pi. Suppose that the
2 × 2 leading block of Ki is KPi, then

CPi = K−1
Pi (35)

is the 2 × 2 point compliance matrix at Pi to be realized by a finger. Note that KPi is expressed in
the global coordinate frame Oxy and does not change when translated to the frame at Pi, whereas CPi

obtained from Eq. (35) is the associated point compliance expressed only in the coordinate frame at Pi.
For each point compliance CPi, one 3-joint finger (a 3R serial mechanism) is configured such that the

last link contacts the object surface at Pi as shown in Fig. 6(b). As such, the desired compliant behavior
is achieved by the grasp.

4.2. Spring distribution constraints
As shown in ref. [20] in order for a parallel mechanism to realize a specified elastic behavior, the loca-
tions and orientations of the springs in the mechanism must satisfy a set of necessary conditions. Below,
the necessary conditions on the spring distribution of a parallel mechanism are reviewed.

For a given stiffness matrix K, the distribution conditions [20] on the springs in a parallel mechanism
for the realization of K are described by a circle �k centered at the stiffness center Cc and a pair of lines
γ + and γ − intersecting at Cc. The circle and the line pair are determined by the principal stiffnesses of
the stiffness matrix.

Suppose that kχ and kη are the two translational principal stiffnesses along the principal χ - and η-axis,
respectively, and kτ is the rotational principal stiffness of stiffness matrix K. The radius of �k is

rk =
√

kτ

kχ + kη

. (36)

https://doi.org/10.1017/S0263574722001448 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001448


Robotica 597

(a) (b)

Figure 7. Realization of the compliant behavior with a 2m-spring parallel mechanism. (a) A 4-spring
mechanism. (b) A 6-spring mechanism. For both cases, the intersection of each pair of springs is located
at the surface of the object.

The angles between line γ + (γ −) and the principal χ -axis are

θ = ± sin−1

√
kχ

kχ + kη

. (37)

If ri is the perpendicular vector from compliance center Cc to the ith spring axis, then the following
conditions must be satisfied by the set of springs in the parallel mechanism:

(i) At least one spring line of action intersects �k, and at least one spring line of action does not
intersect �k;

(ii) All ris span more than a half plane, and at least 2-vectors ri and rj are separated by either γ + or
γ − but not both.

Since the synthesis approach is based on the realization of the compliance with a 2m-spring parallel
mechanism, these necessary conditions should be considered before and while performing the synthesis
procedure.

4.3. Synthesis procedure
The more detailed procedure presented below is used to synthesize a given compliant behavior with a
multi-finger hand. Each finger has 3 elastic joints and fixed link lengths. In a coordinate frame Oxy, the
desired stiffness for the held body is K.

Step 1: Parallel mechanism synthesis
Realize K with a fully parallel mechanism to obtain the corresponding point compliance matrices at the
surface of the object. The desired stiffness is first realized by a 2m-spring parallel mechanism in which
pairs of springs intersect at the object surface. Here, cases for which the number of fingers m = 2, m = 3,
and m > 3 are considered.

(i) m = 2. Using the process developed in ref. [29], 4-spring wrenches (w1, w2, w3, w4) and the cor-
responding spring rates (k1, k2, k3, k4) are obtained. In the geometry-based spring selection procedure
[29], the intersections of (w1, w2) and (w3, w4), P1 and P2, are located on the surface of the held object
as shown in Fig. 7(a).

The two rank-2 stiffness matrices associated with (w1, w2) and (w3, w4) are

K1 = k1w1wT
1 + k2w2wT

2 , (38)

K2 = k3w3wT
3 + k4w4wT

4 . (39)
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Figure 8. Realization of point compliance CPi by a 3-joint finger having fixed link lengths. The locations
of joints Ji2 and Ji3 must be separated by line li1 (or ρi1) and be on the same side of line ρi1 (or li1).

The 3 × 3 planar stiffness matrices K1 and K2 are converted to 2 × 2 point stiffness matrices at P1

and P2, KP1 and KP2, by extracting the leading 2 × 2 blocks of K1 and K2, respectively.
The twists associated with fingertip contact points P1 and P2 are calculated as

t̂P1 = w1 × w2, (40)

t̂P2 = w3 × w4, (41)

which are each converted to unit twists, tP1 and tP2. The position vectors of P1 and P2 in Oxy, r̃P1 and
r̃P2, are then obtained using Eq. (7):

r̃P1 = �vP1, (42)

r̃P2 = �vP2, (43)

where vP1 and vP2 are the first two components of the unit twists tP1 and tP2, respectively, and � is the
matrix defined in Eq. (8).

The two 2 × 2 point compliance matrices at P1 and P2 are then obtained:

CP1 = K−1
P1 , CP2 = K−1

P2 . (44)

(ii) m = 3. Similarly, using the process presented in ref. [29], 6-spring wrenches (w1, w2, . . . , w6) and
corresponding spring rates (k1, k2, k3, k4, k5, k6) are selected such that pairs of springs wrenches intersect
on the object surface. The intersections of (w1, w2), (w3, w4), and (w5, w6) are illustrated in Fig. 7(b).

Following an equivalent process to that described in Eqs. (40)-(44), the 2 × 2 point compliance
matrices CPi at Pi (i = 1, 2, 3) and the position vectors rPi are obtained.

(iii) m > 3. The 3-finger process can be extended to the case m > 3. For example, for m = 4, first
obtain three rank-2 point stiffness matrices KP1, KP2, KP3 on the object surface using the above process
for m = 3. Then CP1 = K−1

P1 can be realized with a 3-joint finger. Let

K̂2 = KP2 + KP3.

Then, K̂2 can be realized with three fingers using the 3-finger synthesis process. As such, the desired
stiffness is achieved with a hand having a total of 4 fingers by successive use of the 3-finger process.

Step 2: Compliance synthesis for each finger
Synthesis of each CPi with a 3-joint finger. For each finger, if both the contact point Pi (determined in
Step 1) and the location of the base joint Ji1 of a finger are specified, the 3-joint finger with fixed lengths
is kinematically equivalent to a 4-bar mechanism having link lengths Li1, Li2, and Li3 (as shown in Fig. 8).
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(i) Express each joint position in a local contact point coordinate frame Pixy. If the location of the
base joint Ji1 in the global coordinate frame Oxy is r̃i1, then in the coordinate frame Pixy, the
position of the base joint is

ri1 = r̃i1 − r̃Pi. (45)

(ii) Obtain vi1 using Eq. (24), then calculate fi1 = KPivi1 and obtain its line of action li1.
(iii) Select the position of Ji3 by rotating link Li3 about Pi such that Ji3 and Ji2 are separated by li1

and on the same side of ρi1 (alternatively, are separated by ρi1 and on the same side of li1) as
illustrated in Fig. 8.

(iv) Determine the location of Ji2 using the finger geometry. The joint must be located at the intersec-
tion of circle �i1 of radius Li1 centered at Ji1 and circle �i2 of radius Li2 centered at Ji3 as shown
in Fig. 8.

(v) Calculate the joint compliances using [34]

c1 = rT
2 Cr3(

rT
2 v1

) (
rT

3 v1

) , (46)

c2 = rT
3 Cr1(

rT
3 v2

) (
rT

1 v2

) , (47)

c3 = rT
1 Cr2(

rT
1 v3

) (
rT

2 v3

) . (48)

Step 3: Determination of hand configuration
Obtain each joint location in the global coordinate frame. For finger i, each joint location is calculated
using

r̃ij = r̃Pi + rij, j = 1, 2, 3. (49)

With the final step, all finger configurations and elastic properties are identified.

4.4. Discussion
The synthesis of a grasp stiffness depends on the locations where fingers contact the object, which
directly relate to the selection of spring intersections on the object surface. In selecting a set of springs,
the spring distribution necessary conditions [20] (reviewed in Section 4.2) need to be considered.
It should be noted that the realizability of a stiffness with a given hand depends not only on the given
stiffness but also on the shape of the object and the geometry of the hand. Not every stiffness matrix
can be realized by a compliant grasp due to the conditions associated with point contact on the object
surface. If the compliant behavior cannot be realized by a 2m-spring parallel mechanism with springs
intersecting at the object surface using the results of refs. [15] or [17], then the behavior cannot be
achieved by any m-finger compliant hand modeled as shown in Fig. 2(b) regardless of the number of
elastic joints or the locations of fingertip contact with the object.

When the desired locations of fingertip contact are identified, each contact point Pi must be in the
workspace of a finger so that all contact points can be reached by a given hand. This requirement should
be considered in selecting the location of the hand base and in selecting the intersection locations of
spring pairs in the first step.

As stated previously, if the contact point and the base joint locations are determined, a 3-joint finger
is equivalent to a 4-bar mechanism. The ability of a finger to achieve an arbitrary point compliance
depends on its relative link lengths. For example, if the mechanism is Grashof with L3 being the shortest
link, then any point compliance matrix can be realized [34]. Thus, in designing finger geometry, the
last link (the one in contact with the object) should be the shortest one. The contact point should not be

https://doi.org/10.1017/S0263574722001448 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001448


600 Shuguang Huang and Joseph M. Schimmels

Figure 9. The dimension of a given object, the location of the base (palm), and geometry of a given
2-finger hand used to realize the desired compliance.

close to the boundary of the finger workspace so that it has sufficient mobility to vary the locations of
the other joints in order to achieve the desired point compliance.

Hard fingertip contact with the surface of a held object is modeled as a free revolute joint. This model
is based on the assumption that the fingertip does not slip on the object surface. This requires that friction
between the fingertip and the object surface is sufficient to prevent slipping. If slipping does occur, force
closure from all fingertips of a hand cannot be established, and a stable grasp cannot be accomplished.
The theory presented in this paper is valid only for non-slip cases. In the synthesis process, the locations
of fingertip contact points should be judiciously selected so that force closure and a stable grasp can be
achieved for a desired full-rank compliance matrix.

5. Example
In this section, an example is provided to illustrate the synthesis procedures. The realization of a desired
compliance is described in detail for a 2-finger hand. The extension of the synthesis procedure for a
3-finger hand is summarized.

The compliance to be realized by a hand is one obtained from optimizing the object compliance for
a peg-in-hole assembly problem [35]. The held body is a stake with the geometry illustrated in Fig. 9.
In the coordinate frame Oxy shown at the left side of the stake, the desired compliance is

C =
⎡
⎢⎣

0.03 0.00 0.00

0.00 5.00 −0.56

0.00 −0.56 0.08

⎤
⎥⎦ . (50)

The stiffness matrix is

K = C−1 =
⎡
⎢⎣

33.3333 0 0

0 0.9259 6.4815

0 6.4815 57.8704

⎤
⎥⎦ . (51)

The compliance center Cc is calculated to be at (7, 0). The acceptable fingertip contact locations are
selected to be in the range (0 < x < 3) on the opposing edges of the stake as shown in Fig. 9.

As described in Section 4.2, a set of necessary conditions on the locations and orientations of the
springs in the mechanism must be satisfied. These conditions should be evaluated before performing
the synthesis procedure. Below, the set of necessary conditions on the spring distribution of a parallel
mechanism is evaluated for the given stiffness matrix and object.
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Figure 10. Compliance synthesis with a 4-spring parallel mechanism. The intersections of spring pairs
(w1, w2) and (w3, w4) will be the contact locations of the two fingertips.

5.1. Distribution condition evaluation
The two necessary conditions on the parallel spring distribution described in Section 4.2 are evaluated
for the given stiffness matrix K (in Eq. (51)) and the object.

The three principal stiffnesses of K are

[kχ , kη, kτ ] = [33.3333, 0.9259, 12.5000],

and the principal axes are parallel to the coordinate frame axes. The radius of circle �k is calculated
using Eq. (36) to be:

rk = 0.6040.

The angles between line γ + is calculated using Eq. (37) as:

θ = 80.5377◦.

Circle �k and lines γ ± are illustrated in Fig. 9. Since �k does not enclose the peg, a set of 2m springs
can be selected to meet the two distribution conditions, where m is the number of fingers eventually used
in the realization.

5.2. Compliance synthesis with a 2-finger hand
The desired compliance is first realized with a 4-spring parallel mechanism with pairs of springs inter-
secting at locations within the acceptable area on the body surface (x < 3 shown in Fig. 9). Then, each
point compliance associated with the intersecting spring pairs is synthesized with a 3-joint finger.

Step 1: Stiffness synthesis with a parallel mechanism
A 4-spring parallel mechanism synthesis procedure is used to obtain the two locations of fingertip contact
with the body surface. The fingertip contact points are at the two locations where spring pairs intersect.
A procedure similar to that presented in ref. [29] is used. The geometry associated with each step is
illustrated in Fig. 10.

1. Choose point T12 (where spring wrenches w1 and w2 intersect) and point T34 (where spring
wrenches w3 and w4 intersect) on the body surface with x < 3. For a selected location of T12

represented by twist t12, calculate the corresponding wrench:

w12 = Kt12.

The axis of w12 must intersect the opposite edge of the stake in the acceptable range x < 3;
otherwise, the given compliant behavior cannot be realized. The location of the intersection of
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the second spring pair, T34, is at the intersection of w12 and the edge on the opposite side of the
stake.
Note that when T12 varies along the body edge, T34 varies along the opposite edge. Here, the
location of T12 is chosen such that T34 has the same x-coordinate. For the given problem, this is
possible and the two points can be determined by the following step.
Let t12 = [1, −x, 1]T be the twist associated with T12, then if T34 has the same horizontal
coordinate x, the corresponding twist t34 = [ − 1, −x, 1]T . The value of x is determined by

tT
34Kt12 = 0

which yields x = 2.2566. Thus, points (2.2566, 1) and (2.2566, −1) are selected as the locations
of T12 and T34. These two points will be the fingertip contact locations, P1 and P2.
Calculate the wrenches associated with T12 and T34: ŵ12 = Kt12 and ŵ34 = Kt34. The normalized
two unit wrenches are

w12 = [0.9914, 0.1306, 1.2862]T ,

w34 = [ − 0.9914, 0.1306, 1.2862]T .

2. Select wrench w13. Here, a vertical line passing through point (−2, 0) is selected as the line of
action of w13 in order to project t13 on the far side of Cc so that the distribution conditions can
be satisfied. Then,

w13 = [0, −1, 2]T ,

which intersects w12 and w34 at H and Q, respectively, as shown in Fig. 10. Calculate the
corresponding twist:

t13 = Cw13 = [0, −6.1200, 0.7200]T .

The center of t13, T13, is determined to be (8.5, 0).
3. Select the location of T24 on the axis of w13 between H and Q. This point is selected to be (−2, 0)

for the spring layout to be symmetric about the x-axis. The twist associated with T24 is

t24 = [0, 2, 1]T .

4. Determine the 4-spring axes. The 4-spring axes can be determined by

ŵi = tij × tim.

The 4 normalized spring wrenches are

[w1, w2, w3, w4] =
⎡
⎢⎣

0.9874 −0.9735 0.9874 −0.9735

−0.1582 −0.2287 0.1582 0.2287

−1.3443 0.4574 1.3443 −0.4574

⎤
⎥⎦ .

Once the 4-spring wrenches are determined, the corresponding spring rates can be obtained using
the equations developed in [15]. The calculated spring rates are

[k1, k2, k3, k4] = [15.8652, 1.2645, 15.8652, 1.2645] .

The axes of the 4 springs are illustrated in Fig. 10.
5. Obtain the two 3 × 3 stiffness matrices described at Oxy associated with the spring pair

intersections at T12 and T34:

K1 = k1w1wT
1 + k2w2wT

2 =
⎡
⎢⎣

16.6667 −2.1960 −21.6222

−2.1960 0.4630 3.2407

−21.6222 3.2407 28.9352

⎤
⎥⎦ ,
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K2 = k3w3wT
3 + k4w4wT

4 =
⎡
⎢⎣

16.6667 2.1960 21.6222

2.1960 0.4630 3.2407

21.6222 3.2407 28.9352

⎤
⎥⎦ .

The 2 × 2 point stiffness matrices are obtained by extracting the 2 × 2 leading blocks for K1

and K2:

KP1 =
[

16.6667 −2.1960

−2.1960 0.4630

]
,

KP2 =
[

16.6667 2.1960

2.1960 0.4630

]
.

The two point compliance matrices at points T12 and T34 are then obtained by taking the inverse
of KP1 and KP2:

CP1 =
[

0.1600 0.7589

0.7589 5.7600

]
,

CP2 =
[

0.1600 −0.7589

−0.7589 5.7600

]
.

Step 2: Compliance synthesis for each finger
The desired compliance is realized with the 2-finger hand by identifying the joint stiffnesses and the
configuration of each finger. In the following, only the synthesis for one finger (CP1 at P1) is presented.

Since the base joint J11 location (given in the base location and geometry) and the finger tip P1 location
(calculated in Step 1) are determined, only the locations of the second and third joints J12 and J13 need
to be identified.

In the local coordinate frame P1xy, the position vector (using Eq. (45)) and the corresponding
translational twist of base joint J11 are

r11 = [ − 5.2566, 0.6]T , v11 = [0.6, 5.2566]T .

The locations of J12 and J13 can be identified by the following procedure. The geometry associated
with each step is illustrated in Fig. 11(a).

1. Calculate force f11 associated with joint twist v11:

f11 = KP1v11 = [ − 1.5436, 1.1160]T .

The line of action of f11, l11, obtained is shown in Fig. 11(a).
2. Select the location of J13. Joint J13 must be on circle �3 of radius L3 centered at P1. Here, in the

local frame P1xy, r13 is arbitrarily selected to be:

r13 = L3[ − cos 25◦, sin 25◦]T = [ − 1.8126, 0.8452]T .

3. Determine the location of J12. Once J13 is selected, joint J12 must be located at the intersection
of circles �11 and �12 with radii L1 and L2 and centered at J11 and J13, respectively. There are two
intersection points J12 and J′

12. Both are acceptable in that each is separated from J13 by either
ρ11 or l11, but not both. The one that is separated from J13 by l11 is chosen. This joint location is
determined to be:

r12 = [ − 2.9353, 2.5004]T .
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Table I. Finger joint locations and joint compliances for the obtained hand configuration.

Finger Joint Location Joint compliance
1 1 (−3.0000, 1.6000) 0.2017

2 (−0.6787, 3.5004) 0.0106
3 (0.4440, 1.8452) 0.0293

2 1 (−3.0000, −1.6000) 0.2017
2 (−0.6787, −3.5004) 0.0106
3 (0.4440, −1.8452) 0.0293

(a) (b)

Figure 11. Synthesis of point compliance at P1 with a finger of a given hand. Each of the following two
approaches yields an acceptable joint configuration. (a) Rotate L3 about P1 (counterclockwise) such
that J13 and J12 are separated by line l11. (b) Rotate L3 about P1 (clockwise) such that J13 and J12 are
separated by line l11.

The translational components of the joint twists associated with the selected joints are

[v11, v12, v13] =
[−0.6000 −2.5004 −0.8452

−5.2566 −2.9353 −1.8126

]
.

4. Calculate the joint compliances using Eqs. (46)-(48):

[c11, c12,c13] = [0.2017, 0.0106, 0.0293].

With this final step, a finger to achieve the point compliance CP1 is obtained. The joint locations of
J12 and J13 in the original coordinate frame Oxy are determined using Eq. (49) to be:

r̃12 = [ − 0.6787, 3.5004]T ,

r̃13 = [0.4440, 1.8452]T .

The 3-joint locations in the original coordinate frame Oxy and the values of corresponding joint
compliances are listed in Table I.

Alternatively, joint J13 could have been selected to be on the other side of line l11 by rotating L3

clockwise (as shown in Fig. 11(b)). If J13 is arbitrarily selected as:

r13 = L3[ − cos 70◦, sin 70◦]T = [ − 0.6840, 1.8794]T ,

then, the two intersection points of circles �1 and �2 are located at J12 and J′
12 as illustrated in Fig. 11(b).

Only J12 is separated by l11 from J13 which is located at:

r12 = [ − 2.2569, 0.6440]T .

https://doi.org/10.1017/S0263574722001448 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574722001448


Robotica 605

Table II. Finger joint locations and joint compliances for the alternative hand configuration.

Finger Joint Location Joint compliance
1 1 (−3.0000, 1.6000) 0.1906

2 (−0.0003, 1.6440) 0.0957
3 (1.5725, 2.8794) 0.0146

2 1 (−3.0000, −1.6000) 0.1906
2 (−0.0003, −1.6440) 0.0957
3 (1.5725, −2.8794) 0.0146

(a) (b)

Figure 12. Compliance synthesis with a 2-finger hand. The desired compliance can be achieved by the
same hand at different symmetric configurations (a) and (b) with different joint stiffnesses.

Then, the 3 alternative joint locations are determined. The 3-joint twists are

[v11, v12, v13] =
[−0.6000 −0.6440 −1.8794

−5.2566 −2.2569 −0.6840

]
.

The 3-joint compliances are calculated using Eqs. (46)-(48):

[c11, c12, c13] = [0.1906, 0.0957, 0.0146].

The alternative locations of J12 and J13 in the original coordinate frame Oxy are

r̃12 = [ − 0.0003, 1.6440]T ,

r̃13 = [1.5725, 2.8794]T .

The 3-joint locations in the original coordinate frame Oxy and the values of corresponding joint
compliances for the alternative hand configuration are listed in Table II.

Using the same process, point compliance CP2 at point P2 can be achieved by the second finger.
Since the compliant behavior is symmetric about the x-axis along the peg’s symmetric axis, one can
choose the finger configuration symmetric about the axis with the same joint compliances. Figure 12(a)
and (b) illustrates the two selected symmetric hand configurations that realize the desired compliance.
Note that, due to kinematic redundancy and the ability to select each joint compliance using variable
stiffness actuation, there are infinitely many other possible configurations that realize the desired elastic
behavior.
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5.3. Result verification
For the hand configuration shown in Fig. 12(a), the 2 × 2 point compliance matrices at the fingertip P1

are calculated using the joint compliances and joint twists obtained in the procedure.

CP1 = c11v11vT
11 + c12v12vT

12 + c13v13vT
13 =

[
0.1600 0.7589

0.7589 5.7600

]
.

The joint translational twists associated with the symmetric finger configuration at P2 in Fig. 12(a)
are

[v11, v12, v13] =
[

0.6000 2.5004 0.8452

−5.2566 −2.9353 −1.8126

]
.

The associated point compliance is

CP2 = c21v21vT
21 + c22v22vT

22 + c23v23vT
23 =

[
0.1600 −0.7589

−0.7589 5.7600

]
.

The 3 × 3 stiffness matrices in the local coordinate frames at P1 and P2 are

K̃P1 =
[

C−1
P1 0

0 0

]
=

⎡
⎢⎣

16.6667 −2.1960 0

−2.1960 0.4630 0

0 0 0

⎤
⎥⎦ ,

K̃P2 =
[

C−1
P2 0

0 0

]
=

⎡
⎢⎣

16.6667 2.1960 0

2.1960 0.4630 0

0 0 0

⎤
⎥⎦ .

The transformation (translation) matrices from local coordinate frames P1xy and P2xy to the original
frame Oxy, respectively, are

TP1 =
⎡
⎢⎣

1 0 1

0 1 −2.2566

0 0 1

⎤
⎥⎦ , TP2 =

⎡
⎢⎣

1 0 −1

0 1 −2.2566

0 0 1

⎤
⎥⎦ .

In the original coordinate frame, the grasp stiffness matrix of the 2-finger hand is

Kh = TT
P1K̃P1TP1 + TT

P2K̃P2TP2 =
⎡
⎢⎣

33.3333 0 0

0 0.9259 6.4815

0 6.4815 57.8704

⎤
⎥⎦ ,

which confirms that the desired stiffness matrix in Eq. (51) is achieved.
Using the same process, it is also verified that the hand configuration in Fig. 12(b) realizes the desired

elastic behavior.

5.4. Compliance synthesis with a hand having 3 or more fingers
The desired compliant behavior can be also realized with a hand having 3 or more joints. Similar to the
process used for a 2-finger hand, the desired behavior is first realized with a 6-spring parallel mechanism
with spring pairs intersecting at the surface of the peg and the corresponding point compliance matrix
at each contact point is obtained. Then, each point compliance is realized with a finger of the hand.

If use of more fingers is desired, as discussed in Section 4.3, the synthesis procedures for 2-finger
and 3-finger hands can be used to decompose the given stiffness matrix into the sum of m rank-2 point
stiffness matrices KPi. Then, using the process (Step 2) described in Section 4.3, each KPi is achieved
by a 3-joint finger.
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6. Summary
In this paper, an approach to providing an object an arbitrary compliance with a compliant hand is
developed. The hands considered in this paper have multiple fingers for which each has 3 modulated
joint stiffnesses and predetermined link lengths.

Synthesis procedures for 2-finger, 3-finger, and more than 3-finger hands are described. Using these
results, any given hand having the corresponding topology can achieve a large space of compliant behav-
iors by adjusting the joint compliances of each finger and by changing the locations of fingertip contact
on the surface of the held object.

If the compliant behavior cannot be achieved by a 2m-spring parallel mechanism with spring pairs
intersecting at the object surface, then the behavior cannot be realized by any m-finger compliant hand
as modeled in this paper regardless of the number of elastic joints or the locations of fingertip contact
with the object.

Since the procedures developed are completely geometric construction based, computer graphics
tools can be used in the process. This ability enables one to easily choose the configuration of each
finger in a constrained space for any given hand to achieve a desired compliance.
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