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Abstract
We introduce the exponentially preferential recursive tree and study some properties related to the degree
profile of nodes in the tree. The definition of the tree involves a radix a> 0. In a tree of size n (nodes), the
nodes are labeled with the numbers 1, 2, . . . , n. The node labeled i attracts the future entrant n+ 1 with
probability proportional to ai.
We dedicate an early section for algorithms to generate and visualize the trees in different regimes. We
study the asymptotic distribution of the outdegree of node i, as n→∞, and find three regimes according to
whether 0< a< 1 (subcritical regime), a= 1 (critical regime), or a> 1 (supercritical regime). Within any
regime, there are also phases depending on a delicate interplay between i and n, ramifying the asymptotic
distribution within the regime into “early,” “intermediate” and “late” phases. In certain phases of certain
regimes, we find asymptotic Gaussian laws. In certain phases of some other regimes, small oscillations in
the asymototic laws are detected by the Poisson approximation techniques.
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1. Scope
The recursive tree is a classic hierarchical structure. Several models of randomness are used in a
variety of applications. Dozens of research papers have been devoted to the uniform model alone,
many of them are surveyed in Smythe and Mahmoud (1995). Today, the uniform recursive tree
is a standard entry in books on random structures (Drmota, 2009; Hofri and Mahmoud, 2018;
Frieze and Karoński, 2016). The uniform recursive tree is used as a model in many applications.
Some of the classic applications are in pyramid schemes (Gastwirth and Bhattacharya, 1984) and
Philology (Najock and Heyde, 1982).

Driven by other applications, interest was developed into nonuniform models, wherein the
attachment of new nodes is done preferentially according to some criterion. The earliest of these
preferential models is a probability scheme in which nodes of higher outdegrees are favored
(Szymański, 1987). Other preferential ideas are based on node fitness (Dereich and Ortgiese,
2014), old age of nodes (Hofri and Mahmoud, 2018), node Youthfulness (Lyon and Mahmoud,
2020), and power-weights on the nodes (Lyon and Mahmoud, 2022).

1.1 A proposed preferential model
In the present investigation, we propose a new preferential model parameterized by a real positive
radix, which we call a. In this exponential model, the affinity of a node is the radix raised to the
node label. A precise definition is given in Subsection 1.3.
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For instance, if the radix is less than 1, nodes that appear first (older in the tree) have
an attraction power that is larger than newer nodes. One sees such a phenomenon in the
growth of networks, where older nodes have a bigger chance of growth than younger ones.
For instance, in a graph representing the growth of technology companies, nodes representing
giants like Microsoft C© and AppleC© have a higher chance of attracting new subscribers than a node
representing a small start-up company.

We assume that the reader is familiar with the jargon of trees, such as “node,” “vertex,” “edge,”
“root,” “ancestors,” “descendants,” “children,” “parents,” “recruiting,” “affinity,” etc.

1.2 The building algorithm
A recursive tree is grown by an attachment algorithm that operates in the following way. Initially
(at time n= 0), there is a node labeled 1. At each subsequent epoch n≥ 1 of discrete time, a node
labeled n+ 1 joins the tree by choosing one of the existing nodes as a parent and attaching itself
to it via a new edge. The parent selection is determined according to some probability model on
the set {1, . . . , n}. Note that the labels on any root-to-leaf path are in an increasing sequence. For
this reason, some authors call these structures “increasing trees” (Bergeron et al., 1992).

These trees have been studied under several probability models, notably including the natu-
ral uniform model and preferential models based on favoring certain nodes according to some
criterion. The first preferential criterion in the literature is to select a node with probability pro-
portional to 1 plus its outdegree (Szymański, 1987; Mahmoud et al., 1993). This model gained
popularity, as it offers scalability properties and power laws that are met in certain trees in nature
(Barabási and Albert, 1999). For over a decade, the terminology “preferential attachment” stood
solely for preference by node outdegrees.

More recently, authors broke away from this narrower definition of “preference” to tree models
with other types of preference (Hofri and Mahmoud, 2018; Lyon and Mahmoud, 2020; Lyon and
Mahmoud, 2022).

1.3 Exponentially preferential trees
In this investigation, we consider a new exponentially preferential attachment algorithm, wherein
node i at time n− 1 recruits with probability proportional to ai, for some positive constant a.
Specifically, if we define An,i as the event that node i recruits (the node labeled n+ 1) when the
tree has n nodes in it (that is, when the tree is of age n− 1), we would have

P(An,i)= ai∑n
j=1 aj

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
n
, if a= 1;

(a− 1) ai−1

an − 1
, otherwise.

(1)

In the sequel, we observe a trichotomy of the positive real line into three regimes for a, and
in each regime we have a different behavior. We call the regime 0< a< 1 subcritical, the regime
a= 1 critical, and the regime a> 1 supercritical.

We call a tree grown according to this distribution for the choice of parent an exponentially
preferential tree with radix a. Since this is the only kind we study in this manuscript, we refer to it
simply as the “tree” most of the time. When a= 1, we have the special case of uniform recruiting,
which is extensively studied (Bergeron et al., 1992; Drmota, 2009; Hofri and Mahmoud, 2018;
Frieze and Karoński, 2016; Smythe and Mahmoud, 1995).

Figure 1 displays the six exponentially preferential trees of size 4 with radix a= 1/2. The num-
bers above the trees are their probabilities. Note the high probability assigned to the bushiest tree
at the far right. In the uniform model, this tree only has probability 1/6. To discern the these
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Figure 1. The exponentially preferential attachment recursive trees of size 4 with radix a= 1/2 and their probabilities.

probabilities, we illustrate the computation for one tree. We choose the fourth one from the left
(with probability 4/21), as it has multiple nodes recruiting and a node (the root) recruiting twice.
Initially, we have a root node labeled with 1. With probability 1, this root node recruits the node
labeled with 2. So, the tree

1

2

appears with probability 1. The nodes 1 and 2 are now in a competition to attract node 3, with
probabilities (1/2)1

(1/2)1+(1/2)2 = 2/3 and (1/2)2
(1/2)1+(1/2)2 = 1/3. The tree

1

2 3

emerges with probability 1× 2/3. The nodes labeled with 1, 2, and 3 are now in competi-
tion to attract the node labeled with 4, with respective probabilities, (1/2)1

(1/2)1+(1/2)2+(1/2)3 = 4/7,
(1/2)2

(1/2)1+(1/2)2+(1/2)3 = 2/7, and (1/2)3
(1/2)1+(1/2)2+(1/2)3 = 1/7. Whence, if the node labeled with 2 is the

one that recruits, we get the third tree on the right in Figure 1 with probability 1× 2/3× 2/7=
4/21.

This example illustrates the dynamic nature of the attraction probability at node i. While ai is
a fixed number, the scaling used is changing with time.

2. Generation and visualization
Before we present any theoretical results, it may help the reader grasp the gist of the varied
behavior of the random exponentially preferential trees in the three regimes with diagrams.

To produce images, we first need a generating algorithm to provide the data. We present one
such algorithm that sequentially cranks out the edges that join the tree. The edges appear in the
form (n+ 1, r), where r is the recruiter, when the tree size is n. For instance, the pair (78, 50) stands
for an edge joining the vertex labeled 78 to a tree of size 77, in which node 50 is the recruiter.

As an illustration of the action of the algorithm, we trace through the evolution of the third
tree on the right in figure 1. The algorithm builds the tree edge by edge, first constructing the edge
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(2,1), then adding the edge (3,2) and finally completing the description of this tree by adding the
edge (4,2) to the list of edges.

Once the tree description is obtained in the form of a list of edges, we can visualize the tree by
a drawing obtained with the aid of a tree-graphing package.

The algorithm assumes it can access the function

F(s, i)←
i∑

r=1

(a− 1) ar−1

as − 1
= ai − 1

as − 1
,

which accumulates the probabilities P(As,1)+ · · · + P(As,i) for the purpose of generating the
recruiting index. With F(s, i) having a closed form, it can be evaluated in O(1) time.

The building algorithm assumes the existence of the primitive function random, which
generates a random number uniformly distributed over the interval (0, 1).

The core of the algorithm repeats the calculation of an index when the tree is of size “ size,” for
size= 1, . . . , n− 1. At each size between 1 and n− 1, a random variable U distributed uniformly
between 0 and 1 is generated. If the value of U falls between F(size, r− 1) and F(size, r), we take
the recruiter to be r. This recruiter is receiving the node size+ 1, and we store the pair (edge)
(size+ 1, r) in the array R of recruiters. At the end of the execution of the algorithm, the array R
holds a complete description of a tree of size n.

Here is a possible version in pseudo code:

for size from 1 to n− 1 do
U← random
r← 1
while U > F(size, r) and r < size do

r← r+ 1
R[size]← (size+ 1, r)

The innerwhile loopmay run an order of size in the worst case, and the outer for loop is driving
size through n− 1 iterations. The overall execution performs in O(n2) time. By this algorithm, we
obtained three trees of size n= 100 each, under the settings a= 1/2, a= 1, a= 2, respectively.
The data (edges) were then fed into the tree-drawing package “Pyvis,” which produced the three
images in Figure 2. The root of each tree is shown as a red star. The figure shows a random tree
in the subcritical regime with radix a= 1/2 (top left), a random uniform (standard) recursive
tree, with radix a= 1 (top right), and a random tree in the supercritical regime with radix a= 2
(bottom).

In Figure 2, we chose a drawing style to fill the space, rather than one going down vertically (as
in the more traditional vertical drawing as in Figure 1). The vertical drawing would use the space
sparsely.

The reader will notice right away that in the subcritical tree (the one at the top left in Figure 2),
the nodes cluster near the root, making it a shrubby structure. In the uniform tree (the one at the
top right in Figure 2), the nodes are all over the place, whereas in the supercritical tree (the one
at the bottom in Figure 2), many nodes drag the tree toward higher altitudes, making it a tall and
scrawny tree with short branches sprouting out of a main thin trunk.

2.1 Notation
The indicator of event E is IE. The following presentation involves H(r)

p =
∑p

k=1 1/k
r , the pth

harmonic number of order r.1 The harmonic numbers of the first two orders have well-known
asymptotic equivalents (as n→∞):2
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Figure 2. Randomly generated trees of size 100: subcritical (top left) with radix 1/2, uniform (top right) with radix a= 1,
supercritical (bottom) with radix 2.

Hn = ln n+ γ +O
(1
n

)
; (2)

H(2)
n =

π2

6
+O

(1
n

)
. (3)

Ceils and floors appear in the calculations. The floor of a real number x can be represented by
removing the floor and compensating for the fractional part of x, sometimes denoted by {x}. That
is, we have

�x� = x− {x}.
For i≥ 1, and a> 1, in the sequel, we use the numbers
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c(1)i (a)=
∞∑
k=i

1
ak − 1

,

c(2)i (a)=
∞∑
k=i

1
(ak − 1)2

.

We denote the normally distributed random variable with mean μ and variance σ 2 > 0 by
N(μ, σ 2) and denote the Poisson random variable with parameter λ > 0 by Poi (λ). The notation
L(X) stands for the law (probability distribution) of a random variable X.

The total variation distance (dTV ) between the laws of the nonnegative integer-valued random
variables X and Y is defined as

dTV
(L(X),L(Y))= 1

2

∞∑
j=0

∣∣P(X= j)− P(Y = j)
∣∣.

As some authors do, we simplify the notation of the total variation distance to dTV (X, Y), but it
should be understood that it is the distance between the laws of these variables.

The following theorem by Barbour and Holst (Barbour and Hall, 1984) is beneficial in
obtaining Poisson approximations for node degrees.

Theorem 2.1. Let X1, . . . , Xn be independent Bernoulli random variables, such that P(Xk = 1)=
pk, for i= 1, . . . , n, and let Sn =∑n

k=1 Xk be the sum of these variables. Define

λn,1 =
n∑

k=1
E[Xk]=

n∑
k=1

pk, and λn,2 =
n∑

k=1
p2k.

We have

dTV
(
Sn, Poi

(
λn,1

) )≤ (1− e−λn,1 )
λn,2
λn,1

.

The theorem is one of several versions fitting in the machinery of Poisson approximation (and the
more general framework of Chen−Stein methods) (Barbour et al., 1992).

3. Node outdegrees
Let�n,i be the outdegree of node i in a tree of size n. It is related to the degree of node i. Except for
the root, any node degree is 1 plus its outdegree. As the root is the only node that does not have a
parent, its degree is the same as its outdegree.

Remark 3.1. In a tree of size n, the sum of the outdegrees is n− 1.

The outdegree of node i increases, when it recruits, and we have the representation

�n,i =
n−1∑
k=i

IAk,i . (4)

3.1 Mean
Take expectations of (4). We then get, for n≥ 2, a mean value for the ith degree in the form
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E[�n,i]=
n−1∑
k=i

P(IAk,i = 1)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n−1∑
k=i

1
k
, if a= 1;

n−1∑
k=i

(a− 1) ai−1

ak − 1
, otherwise.

(5)

Proposition 3.1. Let �n,i be the outdegree of node i in an exponentially preferential tree of size n
and radix 0< a< 1. As n→∞, we have

E[�n,i]=
{
(1− a) ai−1 (n− i)+O(ai), if a< 1;
ln n− ln i+O

( 1
i
)
, if a= 1.

Otherwise, a is greater than 1, and the case is ramified according to the relationship between i and n.
As n→∞, we have the phases:

E[�n,i]=
{
(a− 1) ai−1c(1)i (a)+O

( 1
an−i

)
, i fixed;

1− 1
an−i +O

( 1
ai

)
, n≥ i→∞.

Proof.We need to cover three different regimes:

• The subcritical regime (0< a< 1): Start with the lower display in (5) in the form

E[�n,i]= (1− a) ai−1
n−1∑
k=i

1
1− ak

.

A Taylor series expansion of the summand yields:

E[�n,i]= (1− a) ai−1
n−1∑
k=i

(
1+O(ak)

)

= (1− a) ai−1
(
n− i+O

( n−1∑
k=i

ak
))

= (1− a) ai−1(n− i)+O(ai).

• The critical regime (a= 1): Here we use the upper display in (5), yielding

E[�n,i]=
n−1∑
k=i

1
k
=Hn−1 −Hi−1.

Using the asymptotic equivalent in (2), as both n and i approach∞, we get

E[�n,i]= ln n− ln i+O
(1
i

)
,

a known result (Javanian and Asl, 2003; Mahmoud, 2019).
• The supercritical regime a> 1: Again, we start with the lower display in (5). We have two
phases in the lives of the various nodes:
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(i) The index i is a constant. In this phase, we have

E[�n,i]= (a− 1) ai−1
n−1∑
k=i

1
ak − 1

= (a− 1) ai−1 c(1)i (a)+O
( 1
an−i

)
.

(ii) The index i is increasing with n. We can approximate the series in the lower display in (5)
with a geometric series. To this end, we quantify the absolute error En,i from the bound

En,i :=
∣∣∣∣∣
n−1∑
k=i

1
ak − 1

−
n−1∑
k=i

1
ak

∣∣∣∣∣=
n−1∑
k=i

1
ak − 1

−
n−1∑
k=i

1
ak
=

n−1∑
k=i

1
ak(ak − 1)

.

From a Taylor series expansion of the summand, we get

En,i :=
n−1∑
k=i

1
a2k

(
1+O

( 1
ak

))

= 1
a2i

(1− 1/a2(n−i)

1− 1/a2
)
+O

( n−1∑
k=i

1
a3k

)

= 1
a2(i−1)

(1− 1/a2(n−i)

a2 − 1

)
+O

( 1
a3(i−1)

( (1− 1/a3(n−i)
a3 − 1

))
=O

( 1
a2i

)
.

In this phase, we have

E[�n,i]= (a− 1) ai−1
(( n−1∑

k=i

1
ak

)
+ En,i

)

= (a− 1) ai−1
(( n−1∑

k=i

1
ak

)
+O

( 1
a2i

))

= (a− 1) ai−1 1− (1/a)n−i

ai(1− 1/a)
+O

( 1
ai

)
= 1− 1

an−i
+O

( 1
ai

)
.

�

3.2 Variance
In (4), the indicators IAn,i , for n≥ 1, are independent. It follows that

Var[�n,i]=Var
[ n−1∑

k=i
IAk,i

]
=

n−1∑
k=i

Var[IAk,i].

That is, we have

Var[�n,i]= (a− 1) ai−1
n−1∑
k=i

1
ak − 1

− (a− 1)2 a2i−2
n−1∑
k=i

( 1
ak − 1

)2
. (6)

This combinatorial form is reducible in the uniform case (a= 1), where we get

Var[�n,i]=
n−1∑
k=i

1
k

(
1− 1

k
)=Hn−1 −Hi−1 −

(
H(2)
n−1 −H(2)

i−1
)
. (7)

Again we have an asymptotic trichotomy.
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Proposition 3.2. Let �n,i be the outegree of node i in an exponential preferential tree of size n and
radix 0< a< 1.We then have

Var[�n,i]=
{
(1− a) ai−1

(
1− (1− a) ai−1

)
(n− i)+O(ai), if a< 1;

ln n− ln i+O( 1i ), if a= 1.

Otherwise, a is greater than 1, and the case is ramified according to the relationship between i and n.
As n→∞, we have the phases:

Var[�n,i]=

⎧⎪⎨
⎪⎩
(a− 1) ai−1c(1)i (a)
− (a− 1)2 a2i−2c(2)i (a)+O

( 1
an−i

)
, i fixed;

2
a+1 − 1

an−i + a−1
(a+1)a2n−2i +O

( 1
ai

)
, n≥ i→∞.

Proof.We need to cover three different regimes:

• The subcritical regime (0< a< 1):We first write the exact variance in (6) in the form

Var[�n,i]= (1− a) ai−1
n−1∑
k=i

1
1− ak

− (1− a)2 a2i−2
n−1∑
k=i

( 1
1− ak

)2
.

As we did in the proof of the mean, a Taylor series expansion for each series yields

Var[�n,i]=
(
(1− a) ai−1(n− i)+O(ai)

)
− (

(1− a)2 a2i−2(n− i)+O(a2i)
)

= (1− a) ai−1
(
1− (1− a) ai−1

)
(n− i)+O(ai).

• The critical regime (a= 1):Asymptotically, as both n and i≤ n approach∞, from (7) and
the asymptotics in (2)–(3), we get

Var[�n,i]=
((

ln n+ γ +O
(1
n

))
− (

ln i+ γ +O
(1
i

))
−

((π2

6
+O

(1
n

))
−

(π2

6
+O

(1
i

)))
= ln n− ln i+O

(1
i

)
,

a known result (Javanian and Asl, 2003; Mahmoud, 2019).
• The supercritical regime (a> 1): In (6), we have phases:

(i) The index i is a constant. In this case, we have

Var[�n,i]=
(
(a− 1) ai−1 c(1)i (a)+O

( 1
an−i

))
−

(
(a− 1)2 a2i−2 c(2)i (a)+O

( 1
a2n−2i

))
= (a− 1) ai−1 c(1)i (a)− (a− 1)2 a2i−2 c(2)i (a)+O

( 1
an−i

)
.
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(ii) The index i is increasing with n. We resort again to the approximation of the two sums
by geometric series. In this phase, we have

Var[�n,i]= (a− 1) ai−1
(( n−1∑

k=i

1
ak

)
+O

( 1
a2i

))

− (a− 1)2 a2i−2
( n−1∑

k=i

1
a2k

)
+O

( 1
a4i

))

= (a− 1) ai−1 1− (1/a)n−i

ai(1− 1/a)

− (a− 1)2 a2i−2 1− (1/a2)n−i

a2i(1− 1/a2)
+O

( 1
ai

)
=

(
1− 1

an−i
)
− a− 1

a+ 1

(
1− 1

a2n−2i
)
+O

( 1
ai

)
= 2

a+ 1
− 1

an−i
+ a− 1

(a+ 1)a2n−2i
+O

( 1
ai

)
.

�
Corollary 3.1. In the subcritical regime (0< a< 1), when (n− i)ai→∞, we have

�n,i
(n− i) ai

P−→ 1− a
a

,

and in the critical regime (a= 1), when n/i→∞, we have
�n,i

ln (n/i)
P−→ 1,

3.3 Distributions
In view of the trichotomy, we observed in the mean and variance, it should be anticipated that the
asymptotic distribution of the outdegree would have three regimes, too, according as where a is
on the real line.

Theorem 3.1. Let �n,i be the outegree of node i in an exponentially preferential tree of size n and
radix a> 0.We then have:

(i) Let g(n) be a positive integer-valued function increasing to infinity, such that
g(n)= o( ln n). In the subcritical regime (0< a< 1), we have phases:

(a) In the early phase (1≤ i≤ �log 1
a
n� − g(n)),3 as n→∞, we have4

�n,i − 1−a
a ai n√

ai n
L−→ N

(
0,

1− a
a

)
.

(b) In the intermediate phase (i= �log 1
a
n� + c, and c ∈Z), we have

dTV
(

�n,i, Poi
(
1− a
a

a
c−{log 1

a
n}

))
→ 0.

(c) Let h(n) be a positive integer-valued function increasing to infinity, that grows faster than
a constant, but remains at most n− �log 1

a
n�. In the late phase (i= �log 1

a
n� + h(n)), we

have

�n,i
P−→ 0.
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(ii) In the critical regime (a= 1), we have phases:

(a) In the early phase n/i→∞, we have
�n,i − ln (n/i)√

ln (n/i)
L−→ N(0, 1).

(b) In the intermediate phase i∼ cn (and c ∈ (0, 1)), we have
�n,i

P−→ Poi
(
ln

1
c

)
.

(c) In the late phase i∼ n, we have

�n,i
P−→ 0.

(iii) In the supercritical regime (a> 1), we have phases:

(a) In the early phase (i fixed), as n→∞, we have

�n,i
a.s.−→�∗i ,

and, for k≥ 1, the limiting random variable has the distribution

P(�∗i = k)= (a− 1)ka(i−1)k lim
n→∞

(( n−1∏
�=i

1
a� − 1

) ∑
i≤j1<j2<···<jk≤n−1

×
∏

i≤m≤n−1
m �∈{j1,...,jk}

(
(am − 1)− (a− 1)ai−1

))
.

(b) Let b(n) be a function growing to infinity, in such a way that n− b(n) also grows to
infinity. In the intermediate phase (1≤ i= n− b(n)), we have5

P(�n,n−b(n) = k)= (a− 1)ka(n−b(n)−1)k
( n−1∏

�=i

1
a� − 1

)

×
∑

n−b(n)≤j1<j2<···<jk≤n−1

∏
i≤m≤n−1
m �∈{j1,...,jk}

(
(am − 1)− (a− 1)an−b(n)−1

)
.

(c) In the late phase (1≤ i= n− c, with c ∈N), we have �n,n−c
a.s.−→��

c , and ��
c has the

distribution

P(��
c = k)= (a− 1)k

ac(c+1)/2
∑

1≤r1<r2<···<rk≤c

∏
1≤s≤c

s�∈{r1,...,rk}

(as − a+ 1).

Proof.We need to cover three different regimes:

(i) The subcritical regime:Within the regime 0< a< 1, we recognize phases:

(a) The early phase (1≤ i= ⌊
log 1

a
n
⌋− g(n)): Let

s2n,i =Var[�n,i]=
n−1∑
k=i

Var[IAk,i].
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12 R. Aguech et al.

From the calculation of the variance in this regime (cf. Proposition 3.2), we have s2n,i ∼
(1− a) ai−1(n− i), as ai(n− i)→∞. The case is amenable to normality via Lindeberg’s
central limit theorem, if n− i→∞, in which case we have a sum of a large number of
independent indicators (Bernoulli random variables).
For i to be in this phase, wemust have log 1

a
(ai (n− i))→∞, as n→∞. That is to say,

−i+ log 1
a

(
n
(
1− i

n

))
=−i+ log 1

a
n+ log 1

a

(
1− i

n

)
= (

log 1
a
n
)− i+O(i/n)

must increase to ∞. If �log 1
a
n� − i→∞, such an asymptotic relation holds, when i

increases up to �log 1
a
n� − g(n), for any positive integer function g(n) that is o( ln n).

Fix ε > 0, and define Lindeberg’s quantity

Ln,i(ε)= 1
s2n,i

n−1∑
k=i

∫∣∣ IAk,i−E[IAk,i ] ∣∣>εsn,i
I
2
Ak,i

dP,

where P is the underlying probability measure. The indicators are Bernoulli random
variables bounded by 1. Hence, we have∣∣ IAk,i −E[IAk,i]

∣∣≤ IAk,i +E[IAk,i]≤ 2,

whereas εsn,i grows to infinity, no matter how small ε is, or what the value of i is within
the specified phase. In other words, the sets in the integration are all empty for large
enough n (greater than some n0 = n0(ε, i)). We can now read the Lindeberg quantity as

Ln,i(ε)= 1
s2n,i

n∑
k=i

∫
φ

I
2
Ak,i dP= 0.

We have verified that, within the phase i= �log 1
a
n� − g(n), the quantity Ln,i(ε)→ 0,

for all ε > 0. Thus, we have the Gaussian law

�n,i − (1− a) ai−1 (n− i)+O(ai)√
(1− a) ai−1

(
1− (1− a) ai−1

)
(n− i)+O(ai)

L−→ N(0, 1).

Toward simpler appearance, we use Slutsky’s theorem (Karr, 1993), pp. 146–147 to
remove some factors:

�n,i − 1−a
a ai n√

ain
L−→ N

(
0,

1− a
a

)
.

(b) The intermediate phase (i= ⌊
log 1

a
n
⌋+ c):

Let i= ⌊
log 1

a
n
⌋+ c= log 1

a
n− rn + c, where rn = {log 1

a
n} ∈ [0, 1), and c ∈Z. In this

phase, we have

ai(n− i)= a
log 1

a
n−rn+c(n− log 1

a
n+ rn − c)∼ ac−rn

n
× n= ac−rn .

In the notation of Theorem 2.1, we have

λn,1 =
n∑
k=i

P(IAk,i = 1)=
n∑
k=i

(1− a)ai−1

1− ak
∼ (1− a)ai−1(n− i)∼ 1− a

a
ac−rn ,
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and

λn,2 =
n−1∑
k=i

P
2(IAk,i = 1)

=
n−i∑
k=i

(1− a)2a2i−2

(1− ak)2

∼ (1− a)2a2i−2
(
n− i+O(ai)

)
∼

(1− a
a

)2
a
2( log 1

a
n−rn+c) × n

∼
(1− a

a

)2 a2c−2rn
n2
× n

→ 0.

By that theorem, we conclude

dTV
(

�n,i, Poi
(
1− a
a

ac−rn
))
→ 0.

(c) The late phase (i= �log 1
a
n� + h(n)≤ n, with h(n)→∞): In this late phase,

Var[�n,i]∼ (1− a)ai−1(n− i)→ 0. As is well known, convergence of the variance of
a sequence of random variables to 0 implies that the sequence converges weakly to a
constant, a consequence of Chebyshev’s inequality. The limiting constant must be the
constant obtained from the L1 converges �n,i

L−→ 0.
(ii) The critical regime: In this uniform attachment case, the distribution as stated is known.

We refer the reader to two different proofs in Javanian and Asl (2003); Mahmoud (2019).
(iii) The supercritical regime: In this regime we, work from the exact distribution to produce

local limit theorems in the different phases. For �n,i to be equal to k, node i must recruit
k times and fail to recruit n− i− k times. We can partition the event �n,i = k into disjoint
sets according to the the size of the tree at the times of recruiting. Suppose the k successes
in recruiting occur when the tree sizes are i≤ j1 < j2 < . . . jk ≤ n− 1. The probability of
this event is ( ∏

�∈{j1,...,jk}
P(IA�,i = 1)

)( ∏
i≤m≤n−1
m �∈{j1,...,jk}

P(IAm,i = 0)
)
.

Using the probabilities in the lower display in (1), we obtain

P(�n,i = k)=
∑

i≤j1<j2<···jk≤n−1

( ∏
�∈{j1,...,jk}

P(IA�,i = 1)
)

×
( ∏

i≤m≤n−1
m �∈{j1,...,jk}

P(IAm,i = 0)
)

=
∑

i≤j1<j2<···<jk≤n−1

( ∏
�∈{j1,...,jk}

(a− 1)ai−1

a� − 1

)

×
∏

i≤m≤n−1
m �∈{j1,...,jk}

(
1− (a− 1)ai−1

am − 1

)
(8)
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= (a− 1)ka(i−1)k
( n−1∏

�=i

1
a� − 1

) ∑
i≤j1<j2<···<jk≤n−1

×
∏

i≤m≤n−1
m �∈{j1,...,jk}

(
(am − 1)− (a− 1)ai−1

)
. (9)

According to Kolmogorov’s criterion (Theorem 22.3 in Billingsley (2012)), for indepen-
dent zero-mean random variables X1, X2, X3, . . ., when

∑∞
k=1 Var[Xk]<∞, the sum∑n

k=1 Xk converges almost surely to a limit.
In the supercritical regime, when n− i→∞, we have

n∑
k=i

Var
[
IAk,i −E[IAk,i]

]≤ ∞∑
k=1

(a− 1) ai−1

ak − 1

(
1− (a− 1) ai−1

ak − 1

)
<∞.

In view of Kolmogorov’s criterion, when n− i= g(n)→∞,

�n,i −E[�n,i]=
n∑
k=i

IAk,i −
n∑
k=i

E[IAk,i]

converges to a limit.
Having shown that in the supercritical phase we have

∑n
k=i E[IAk,i]=E[�n,i] is convergent

(cf. Proposition 3.1), we see right away that, if n− i→∞, we would have�n,i =∑n
k=i IAk,i

converging to a limit.

(a) The early phase (i fixed): Certainly, in this phase n− i→∞, as n→∞. By
Kolmogorov’s criterion, �n,i converges to a limit, which we call ��

i . We can determine
the distribution of ��

i := limn→∞ �n,i by the following argument.
Since�n,i converges almost surly, it also converges in distribution. The limit of the latter
probabilities exists (and must be the distribution of the almost-sure limit, too). Indeed,
�n,i converges almost surely to a limit �∗i with a distribution determined as the limit of
the probabilities in (9).

(b) The intermediate phase (i grows faster than a constant, but slower than n− c, for any
c ∈N). In this phase, i is n− d(n), for an integer-valued function d(n)→∞, in such a
way that n− d(n) also tends to infinity. In this case, for any fixed k, (8) takes the form:6

P(�n,n−d(n) = k)=
∑

n−d(n)≤j1<j2<···<jk≤n−1

( ∏
�∈{j1,...,jk}

(a− 1)an−d(n)−1

a� − 1

)

×
∏

n−d(n)≤m≤n−1
m �∈{j1,...,jk}

(
1− (a− 1)an−d(n)−1

am − 1

)

= (a− 1)kak(n−d(n)−1)∏n−1
r=n−d(n) (ar − 1)

∑
n−d(n)≤j1<j2<···<jk≤n−1

×
∏

n−d(n)≤m≤n−1
m �∈{j1,...,jk}

(
am − 1− (a− 1)an−d(n)−1

)
.

(c) The late phase (1≤ i= n− c, and c ∈N): Starting with the probabilities in the form (8),
we write an asymptotic equivalent.
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Note that while the indices in the sum are large numbers there, is only a finite number
of them (c of them to be exact). It is therefore legitimate to take the asymptotic terms
individually:

P(�n,n−c = k)∼
∑

n−c≤j1<j2<···<jk≤n−1

( ∏
�∈{j1,...,jk}

a− 1
a�−(n−c)+1

)

×
∏

n−c≤m≤n−1
m �∈{j1,...,jk}

(
1− a− 1

am−(n−c)+1
)

∼ (a− 1)k∏n−1
r=n−c ar−(n−c)+1

×
∑

n−c≤j1<j2<···<jk<n−1

∏
n−c≤m≤n−1
m �∈{j1,...,jk}

(am−(n−c)+1 − a+ 1)

→ (a− 1)k

aa2 . . . ac
∑

1≤r1<r2<···<rk≤c

∏
1≤s≤c

s�∈{r1,...,rk}

(as − a+ 1).

�

3.4 Illustrative examples
In any of the three regimes of a, there is an intriguing interplay between n and i. We only dis-
cuss interpretations and examples from the subcritical and supercritical regimes, since the critical
phase is well studied, and illustrative examples of it can be found elsewhere. We refer a reader
interested in a discussion of the critical regime to Javanian and Asl (2003); Mahmoud (2019).

3.5 The subcritical regime
When a< 1, the term ai−1 in E[�n,i] decreases exponentially fast in i. Take a= 1/2, for instance.
With this radix, for i in the subcritical phase, we have the convergence

�n,i − n
2i√

n
2i

L−→ N(0, 1).

A Gaussian law holds so long as i is well below �log 1
a
n� (differing by an increasing function

from that critical level). When i approaches the critical phase, Poisson approximations kick in to
replace the normal distribution. When i is tied to �log 1

a
n� by a constant, it is related to log 1

a
n

via corrections obtained by removing the floors. These corrections are oscillating functions in n
and are uniformly dense on the real line (Kuipers and Niederreiter, 1974). So, there is not really
convergence to a Poisson limit, but rather approximations to a family of Poisson distributions,
with parameters lying in the range [ 1

2c ,
2
2c ).

Table 1 shows the behavior in the subcritical regime for a= 1/2 and some selected phases. Note
the fourth and fifth entries (from the top) which lie in the intermediate phase, where there is no
limit per se, but rather good approximations by various Poisson distributions. For instance, in the
phase i= �log2 n� − 5, Poi (18.4136) is a good approximation for the distribution of �20000,10 at
n= 20000, Poi (18.4182) is a good approximation for the distribution of �20001,10 at n= 20001,
and Poi (18.4228) is a good approximation for the distribution of �20002,10 at n= 20002.

For the last two entries in Table 1, the variance is diminishing at a fast rate, and the sum of
the variances converges. By Kolmogorov’s theorem, we have an almost-sure convergence in both
cases.
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Table 1.The asymptotic mean, variance, and distribution of the outdegree of an exponentially preferential tree
with radix 1/2 in some selected phases

i Mean Variance Distribution

1 n
2

n
4

�n,1− 1
2 n√
n

L−→ N
(
0, 14

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 n
32

n
32

�n,5− 1
32 n√
n

L−→ N
(
0, 1

32

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�ln ln n� − 3 8n
2�ln ln n�

8n
2�ln ln n�

�n,�ln ln n�−3− 8n
2�ln ln n�√

8n
2 �ln ln n�

L−→ N(0, 1)
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�log2 n� − 5 32× 2{log2 n} 32× 2{log2 n} dTV
(
�n,�log2 n�−5, Poi

(
32× 2{log2 n}) )

→ 0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�log2 n� + 5 2{log2 n}
32

2{log2 n}
32 dTV

(
�n,�log2 n�+5, Poi

(
2{log2 n}
32

) )
→ 0

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�√n+ π� n
2�
√
n+π�

n
2�
√
n+π� �n,�√n+π�

a.s.−→ 0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n− 5 32
2n

32
2n �n,n−5

a.s.−→ 0

Table 2.The limiting value of the outde-
gree of the first few entries in an expo-
nentially preferential tree with radix 2

i limn→∞ E[�n,i]

1 1.607
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 1.213
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 1.093
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 1.044
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 1.021
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 1.010
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 1.005
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 1.002
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 1.001
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 1.000
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 1.000
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12 1.000

3.6 The supercritical regime
As an instance, take a= 2. Over an extended period of time, the average root outdegree converges:
E[�n,1]→ c(1)1 (2)≈ 1.607. Table 2 shows the asymptotic outdegree for the first 12 entries in the
tree, approximated to three decimal places.

A late entry in the tree, such as i= n− �n1/4�, has an average outdegree

E[�n,i]= 1+O
( 1
2n1/4

)
A much later entrant, such as a node with with the index n− 4 has an average outdegree

E[�n,i]= 1− 1
24
+O

( 1
2n

)
= 15

16
+O

( 1
2n

)
.
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We discern a “thinning” occurring in the tree. At a node with a high index i, the subtree of
descendants is tapered almost into a path.

At a= 2, cancellations occur in the formula in the expression in Theorem 3.1 (iiia), greatly
simplifying the calculation for the root outdegree (also its degree, the case i= 1) and giving
transparency into the limiting distribution:

P(�n,1 = k)→ P(�∗i = k)

= lim
n→∞

(( n−1∏
�=1

1
2� − 1

) ∑
1≤j1<j2<···jk≤n−1

∏
m �∈{j1,...,jk}

(2m − 2)
)
.

Note that if j1 �= 1, the product retainsm= 1 as one of its indices and 2m − 2= 0 for this value
ofm, annihilating the entire part of the expression with j1 = 1 in the sum, simplifying it further to

P(�∗1 = k)= lim
n→∞

(( n−1∏
�=1

1
2� − 1

) ∑
1<j2<···<jk≤n−1

∏
m �∈{1,j2,...,jk}

2(2m−1 − 1)
)

= lim
n→∞

(( n−1∏
�=1

1
2� − 1

) ∑
1<j2<···<jk≤n−1

2n−k−1
∏n−1

m=2 (2m−1 − 1)
(2j2−1 − 1) · · · (2jk−1 − 1)

)

= lim
n→∞

( 2n−k−1

2n−1 − 1
∑

1<j2<···<jk≤n−1

1
(2j2−1 − 1) · · · (2jk−1 − 1)

)

= 1
2k

∑
1<j2<···<jk≤∞

1
(2j2−1 − 1) · · · (2jk−1 − 1)

.

The first few values in the sequence P(�∗1 = k) are7

P(�∗1 = 1)= 1
2
;

P(�∗1 = 2)= 1
4

∞∑
�=2

1
2� − 1

≈ 0.1516737881 . . .

P(�∗1 = 3)= 1
8

∞∑
�=2

∞∑
m=�+1

1
(2� − 1)(2m − 1)

≈ 0.01442126698 . . . .

The first three values alone contain about 0.6661 of the mass of the limiting distribution. The
root comes early and stays the longest in the tree. So, it has repeated chances for recruiting.
However, the probabilities are very quickly diminished by the appearance of nodes of higher
indices, with higher chances of recruiting. While the limit distribution of the root outdegree
(which is also the degree) is supported on N, there is a high probability of remaining small
(confined to the values 1,2,3).

The probability formula in the intermediate phase of the supercritical regime is unwieldy
(Theorem 3.1 (iiib)), yet it can be used to tell us something about the asymptotic structure of
the tree. With a= 2 and i= n− �ln n�, we can compute the probability of the intermediate node
i in the following way. Here, b(n) is �ln n�. For k= 0, the set {j1, . . . , j0} is empty, and the only
product that stands is the one on the full set {n− h(n), . . . , n− 1}. We have

P(�n,n−�ln n� = 0)= 1∏n−1
r=n−�ln n� (2r − 1)

n−1∏
m=n−�ln n�

(
2m − 1− 2n−�ln n�−1

)
.
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At n= 1000, this probability is about 0.2933.
The very late nodes have the lion’s share. Consider a= 2, and the tree when the size is some

large n. The outdegree of node n is 0, as it has not recruited yet (which is consistent with zeromean
and zero variance as given by the exact and asymptotic formulas). Being of the second to highest
index in the tree, node n− 1, has a chance of recruiting node n and has a chance of missing. The
probability of node n− 1 recruiting node n is 2n−1(2− 1)/(2n − 1)→ 1/2. Thus, the outdegree
of the penultimate node is asymptotically distributed like a Bernoulli(1/2) random variable.

Node n− 2 has two chances at recruiting by time n and has an asymptotic distribution on
{0, 1, 2} with mean 1/4, and so on. According to Theorem 3.1 (iiic), we have

P(��
n,n−2 = k)→ P(��

2 = k)→ 1
23

∑
1≤r1<r2<···<rk≤2

∏
1≤s≤2

s�∈{r1,...,rk}

(2s − 1),

for k= 0, 1, 2. For k= 0, the set r1, r2, . . . , r0 is empty, and we compute

P(��
2 = 0)→ 1

8
∏
1≤s≤2
s�∈φ

(2s − 1)= 1× 3
8
= 3

8
.

Further, we have

P(��
2 = 1)→ 1

8
∑

1≤k1≤2

∏
1≤s≤2
s�∈{k1}

(2s − 1)= 3+ 1
8
= 4

8
.

We can find P(��
2 = 2) from 1− P(��

2 = 0)− P(��
2 = 1)= 1/8. In summary, we have

��
2 =

⎧⎪⎨
⎪⎩
0, with probability 3/8;
1, with probability 4/8;
2, with probability 1/8.

Remark 3.2. We discussed phases, where the growth of i is systematically increasing toward n.
However, there is no limit to how bizarre the sequence i= i(n) can be. For example, i(n) might
be a sequence alternating between two (or more values), such as the sequence i(n)= 5+ (− 1)n, in
which case the degree of node i does not converge to a limit. Or, i(n)might alternate between low and
high values, such as

i(n)=
{
1 n, even;
�ln n+ 0.76884�, n odd.

Even worse, i(n)may not have any structure at all. We reckon that such sequences are not interesting
and do not appear in practice.

4. Concluding remarks
We discussed an exponentially preferential model of recursive trees, wherein node i recruits with
probability proportional to ai. The proportionality constant is time dependent, which captures
the reality of dynamic change in networks. The radix a governs the behavior of the tree. The case
a= 1 is critical and corresponds to the standard well-studied uniformmodel of random recursive
trees. This criticality creates three regimes, the subcritical (0< a< 1), the critical (a= 1), and the
supercritical (a> 1). Each regime has its own early, intermediate, and late phases. They are not
the same. For instance, the early phase in the subcritical regime extends toO( ln n), whereas in the
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critical regime, the early phase stops at n/i→∞ and in the supercritical regime the early phase is
restricted to fixed i.

Gaussian behavior appears only in the early phases of the subcritical and critical regimes. Other
behavior is detected, too. For instance, Poisson approximations are the appropriate asymptotic
behavior in the intermediate phases of both the subcritical and critical regimes, with oscillations
in the case of the subcritical regime.

Consistently, in the late phase of all three regimes (noting they start differently),�n,i converges
to a constant, with constant being 0 in the subcritical and critical regimes, while it is a positive
constant in the supercritical regime. The intuition behind these constants is that in the subcritical
and critical regimes, the nodes in the early and intermediate phases gobble up the largest share of
recruits, but in the supercritical regime, the highest labeled nodes in the late stage are the most
attractive.

The dependence on the radix a hosts a broad range of applicability. For example, with a= 1
alone, the entire class of uniform recursive trees comes in with its plethora of known applications.
The range 0< a< 1 corresponds to applications where early nodes are the most attractive, such as
the growth of companies and subsidiary branches, where the headquarters and its closest branches
acquire influence and wealth over time. The case a> 1 corresponds to applications where late
nodes are the most attractive, such as some social networks in which newcomers are the most
anxious to expand their circles.

Future research may extend to deal with other tree properties, such as the maximal degree,
the depth of nodes, and the total path length (among many others). We may also consider other
weights and generalizations.

Supplementary material. The supplementary material for this article can be found at https://doi.org/
10.1017/nws.2025.3.

Notes
1 The superscript r is often dropped, when it is 1.
2 The number γ ≈ 0.5772 is Euler–Mascheroni constant.
3 The reader should be alerted to that the words “early,” “intermediate,” and “late” mean different things in the different
regimes.
4 One should take note that i is a node index and is always an integer.
5 The ultimate formula is unwieldy, but can be used to discover the probability for small k, such as, for example that an
intermediate node is a leaf (k= 0).
6 The ultimate formula is unwieldy, but can be used to discover the probability for small k, such as, for example that an
intermediate node is a leaf (k= 0).
7 For k= 1, the sum is for a product that does not exist, to be interpreted as 1.
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