## A CHARACTERIZATION OF LEFT PERFECT RINGS

## YIQIANG ZHOU

ABSTRACT. In this note, we show that a ring R is a left perfect ring if and only if every generating set of each left R-module contains a minimal generating set. This result gives a positive answer to a question on left perfect rings raised by Nashier and Nichols.

**Introduction.** Throughout all rings R are associative with identity, and all modules are unitary left R-modules. For a module M, a subset X of M is said to be a generating set of M if  $M = \sum_{x \in X} Rx$ ; and a minimal generating set of M is any generating set Y of M such that no proper subset of Y can generate M. A module is called quasi-cyclic if each of its finitely generated submodules is contained in a cyclic submodule [3]. For a sequence  $\{a_n, n = 1, 2, ...\}$  of elements of R, let F be the free R-module with basis  $x_1, x_2, \ldots, G$  the submodule of F generated by the set  $\{x_n - a_n x_{n+1} : n = 1, 2, \ldots\}$ , and  $[F, \{a_n\}, G]$  the quotient module F/G. It is an easy observation that every  $[F, \{a_n\}, G]$ is a quasi-cyclic module. In [2], Neggers conjectured that a ring R was left perfect if and only if every R-module had a minimal generating set. A counterexample to this conjecture was given by Nashier and Nichols in [3], where they provided an interesting characterization of left perfect rings which says that the ring R is left perfect if and only if every quasi-cyclic module is cyclic if and only if every  $[F, \{a_n\}, G]$  is cyclic. By means of the characterization, they observed that if, for a given ring R, every generating set of any R-module contains a minimal generating set, then the ring R must be left perfect. It remains open whether the converse holds. This question stimulates the work of the present paper.

A characterization of left perfect rings. The main result of this paper can be stated as follows.

THEOREM. The ring R is a left perfect ring if and only if every generating set of each R-module contains a minimal generating set.

We need the following lemma for the proof of the theorem.

LEMMA. If M is a semi-simple R-module, then every generating set of M contains a minimal generating set.

PROOF. Let M be a semi-simple R-module with a generating set X. By the Maximum Principle, there is a non-empty subset  $X_1 \subseteq X$  maximal with respect to the condition

Received by the editors March 11, 1994.

AMS subject classification: 16L30.

<sup>©</sup> Canadian Mathematical Society 1995.

that  $\{Rx: x \in X_1\}$  is independent. Clearly  $X_1$  is a minimal generating set of  $\sum_{x \in X_1} Rx$ . Suppose that we have chosen subsets  $X_{\alpha} \subseteq X$  for all  $\alpha < \sigma$  such that  $X_{\alpha}$  is a minimal generating set of  $\sum_{x \in X_{\alpha}} Rx$ , and for each  $\alpha + 1 < \sigma$  we have  $X_{\alpha} \subseteq X_{\alpha+1}$  and  $X_{\alpha} \subset X_{\alpha+1}$  if  $X_{\alpha}$  does not generate M.

- (1)  $\sigma$  is a limit ordinal. We choose  $X_{\sigma} = \bigcup_{\alpha < \sigma} X_{\alpha}$ . Thus,  $X_{\sigma}$  is a minimal generating set of  $\sum_{x \in X_{\sigma}} Rx$ .
- (2)  $\sigma$  is not a limit ordinal. If  $X_{\sigma-1}$  generates M, then we let  $X_{\sigma}=X_{\sigma-1}$ . Suppose that  $X_{\sigma-1}$  does not generate M. Since M is semi-simple,  $M=(\sum_{x\in X_{\sigma-1}}Rx)\oplus N$  for some N. Let  $\pi$  be the projection of M onto N. Since  $X_{\sigma-1}$  does not generate M, we have  $Y=\{x\in X:\pi(x)\neq 0\}$  is not empty. Again, there is a non-empty subset  $Z\subseteq Y$  maximal with respect to the condition that  $\{R\pi(x):x\in Z\}$  is independent. Let  $X_{\sigma}=X_{\sigma-1}\cup Z$ . Then  $X_{\sigma-1}\subset X_{\sigma}$ . It is straightforward to verify that  $X_{\sigma}$  is a minimal generating set of  $\sum_{x\in X_{\sigma}}Rx$ .

By the Transfinite Induction, we can construct a chain of subsets of X:

$$X_1 \subset X_2 \subset \cdots \subset X_{\sigma} \subset \cdots \subset X_{\sigma} \subset \cdots$$

such that  $X_{\alpha}$  is a minimal generating set of  $\sum_{x \in X_{\alpha}} Rx$ , and  $X_{\alpha} \subset X_{\alpha+1}$  if  $X_{\alpha}$  does not generate M. Since X is a set, there is an ordinal  $\sigma$  such that  $X_{\sigma} = X_{\sigma+1}$ . It shows that  $X_{\sigma}$  is a minimal generating set of M.

PROOF OF THE THEOREM. One direction is the observation of Nashier and Nichols [3]. For the other direction, we let R be a left perfect ring and M an R-module with a generating set X. We denote the Jacobson radical of R by J. As a module over the semi-simple ring R/J, M/(JM) is semi-simple, with a generating set  $\{x+JM: x \in X\}$ . By the lemma, there is a subset  $Y \subseteq X$  such that  $\{x+JM: x \in Y\}$  is a minimal generating set of the R/J-module M/(JM). This implies that Y is a minimal generating set of the R-module  $\sum_{x \in Y} Rx$ . Note that  $M = \sum_{x \in Y} Rx + JM$ . It follows that  $M/(\sum_{x \in Y} Rx) = J[M/(\sum_{x \in Y} Rx)]$ . Since J is left T-nilpotent, we have, by [1, 28.3], that  $M/(\sum_{x \in Y} Rx) = \bar{0}$ , i.e.,  $M = \sum_{x \in Y} Rx$ . Therefore, Y is a minimal generating set of M.

An element  $r \in R$  is said to be *left cancellable* if, for any  $a \in R$ , ra = 0 implies a = 0. A right cancellable element is defined analogously. It is known that for a left perfect ring R, every left cancellable element of R is invertible (see [5, Lemma 1.10, p. 54]). We have the following consequence.

COROLLARY. Every right cancellable element of a left perfect ring R is invertible.

PROOF. Let  $r \in R$  be a right cancellable element. We claim that r is left invertible. Consider the module  $[F, \{a_n\}, G]$ , where  $a_n = r$  for all n. Let  $H_i$  be the submodule of  $[F, \{a_n\}, G]$  generated by  $\{x_k + G : k \le i\}$ . Then

$$(0) \subseteq H_1 \subseteq H_2 \subseteq \cdots \subseteq H_i \subseteq \cdots$$
, and  $[F, \{a_n\}, G] = \bigcup_{i>0} H_i$ .

Suppose that r is not left invertible. Since r is right cancellable, it is straightforward to verify that  $x_i + G \in H_i$  but  $x_i + G \notin H_{i-1}$ . We show that no minimal generating set

can be extracted from the generating set  $\{x_i + G : i = 1, 2, ...\}$  of  $[F, \{a_n\}, G]$  and then our claim will follow from the theorem. Suppose that  $\{x_i + G : i \in L\}$  is a minimal generating set of  $[F, \{a_n\}, G]$ , where L is a subset of the set of positive integers. Let n be the least integer in L. From  $x_{n+1} + G \notin H_n$ , it follows that  $\{x_n + G\}$  can not be a minimal generating set of  $[F, \{a_n\}, G]$ . Therefore, there exists an integer  $m \in L$  with n < m. Clearly,  $x_n + G = r^{m-n}(x_m + G)$ . This implies that  $\{x_i + G : i \in L \setminus \{n\}\}$  is a generating set of  $[F, \{a_n\}, G]$ , a contradiction. Therefore, r is left invertible, i.e., tr = 1 for some  $t \in R$ . It follows that r is left cancellable, and hence is invertible by [5, Lemma 1.10, p. 54].

## REFERENCES

- 1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules (second edition), Springer-Verlag, 1992.
- 2. J. Neggers, Cyclic rings, Rev. Un. Mat. Argentina 28(1977), 108-114.
- 3. B. Nashier and W. Nichols, A note on perfect rings, Manuscripta Math. 70(1991), 307-310.
- 4. W. H. Rant, Minimally generated modules, Canad. Math. Bull. 23(1980), 103-105.
- 5. B. Stenström, Rings of Quotients, Springer-Verlag, 1975.

Mathematics Department University of British Columbia Vancouver, British Columbia V6T 1Z2