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Abstract

We prove an extension of the homology version of the Hofer–Zehnder conjecture proved
by Shelukhin to the weighted projective spaces which are symplectic orbifolds. In par-
ticular, we prove that if the number of fixed points counted with their isotropy order as
multiplicity of a non-degenerate Hamiltonian diffeomorphism of such a space is larger
than the minimum number possible, then there are infinitely many periodic points.

1. Introduction

We are interested in the study of the Hofer–Zehnder conjecture in a specific class of symplectic
orbifolds: the weighted projective spaces. These spaces appear as symplectic reductions: let us fix
a tuple of weights q = (q0, . . . , qd) ∈ (N∗)d+1 and define the Hamiltonian map Kq : Cd+1 → R,

Kq(z) := π
d∑

j=0

qj |zj |2,

this Hamiltonian induces the S1-action on Cd+1 defined by t̄ · (zj) := (e2iπqjtzj) and preserv-
ing the weighted sphere S(q) := K−1

q (π), the weighted projective space with weights q is the
symplectic orbifold CP(q) := S(q)/S1. The symplectic form ω of CP(q) is the unique 2-form
that satisfies p∗ω = i∗Ω where p : S(q)→ CP(q) is the quotient map, i : S(q) ↪→ Cd+1 is the
inclusion and Ω :=

∑
j dxj ∧ dyj is the canonical symplectic form of Cd+1. The study of Hamil-

tonian dynamics on CP(q) is equivalent to the study of the Hamiltonian dynamics on Cd+1 \ 0
restricted to the flows induced by positively 2-homogeneous Hamiltonians (Ht) commuting with
Kq. We study Hamiltonian diffeomorphisms ϕ ∈ Ham(CP(q)), which are time-one flows of this
dynamics. The case where all the weights qj = 1 corresponds to the dynamics on the complex
projective space CPd, it was proved by Fortune and Weinstein that the number of fixed points of
such a diffeomorphism is always ≥ d + 1, as was conjectured by Arnol’d [For85]. We first show
the following generalization of Fortune–Weinstein theorem. Let |q| :=

∑
j qj and for z ∈ CP(q)

let us denote order(z) ∈ N the order of the isotropy group of any lift of z to S(q).

Theorem 1.1. Every Hamiltonian diffeomorphism ϕ of CP(q) satisfies∑
x∈Fix(ϕ)

order(x) ≥ |q|.
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Surprisingly, the number of fixed points is replaced by a weighted count of the fixed points. Of
course, when q = (1, . . . , 1), we get the Fortune–Weinstein theorem back. In [Lu08], the author
claims that the d + 1 lower bound is also satisfied by the unweighted count of the fixed points.
However, the proof contains gaps where the orders of isotropy groups should intervene.1 Let
us remark that Theorem 1.1 is obvious when the qj are prime with each other two by two
because for every j ∈ {0, . . . , d}, there is only one point zj ∈ CP(q) such that order(zj) = qj

and every diffeomorphism preserves the order. Similarly, Theorem 1.1 is a consequence of the
Fortune–Weinstein theorem when q satisfies for all i, j, either qi = qj or qi is prime with qj (by
considering the restriction of ϕ to the weighted projective subspace {z | order(z) = qj} for each
j).

The main subject of our article is the study of periodic points of ϕ ∈ Ham(CP(q)), which
are fixed points of ϕk for some k ∈ N∗. On the tori T2d, Conley conjectured that every Hamil-
tonian diffeomorphism has infinitely many periodic points. This statement was proven by
Hingston [Hin09] after decades of advances [CZ86, SZ92, FH03, LeC06] and then generalized
to a large class of symplectic manifolds by Ginzburg [Gin10], Ginzburg and Gürel [GG12,
GG15, GG19] and Orita [Ori19]. However, the Conley conjecture does not hold in CP(q): the
Hamiltonian diffeomorphism

[z0 : z1 : · · · : zd] �→ [e2iπa0z0 : e2iπa1z1 : · · · : e2iπadzd],

with rationally independent a0, . . . , ad ∈ R/Z, has only d + 1 periodic points, which is the pro-
jection of the canonical base. In this case, one has equality at Theorem 1.1. Hofer and Zehnder
conjectured that the only case for which a Hamiltonian diffeomorphism of a symplectic manifold
can have finitely many periodic points is when its periodic points are fixed and in the minimal
number possible [HZ94, p. 263]. The conjecture was inspired by a theorem of Franks showing that
every area-preserving homeomorphism of CP1 isotopic to the identity has two or infinitely many
periodic points (which implies the Hofer–Zehnder conjecture in CP1) [Fra92, Fra96]. Collier et al.
gave a proof of the Franks theorem in the case of Ham(CP1) using symplectic tools [CKR+12].
The higher achievement in proving this conjecture is Shelukhin’s theorem showing a homology
version of this conjecture in a class of symplectic manifolds including CPd (see [She22] and
also [All22a, CGG22]). In this article, we prove an extension of this theorem to the weighted
projective spaces. Following Shelukhin, we introduce a homology count of the fixed points of
ϕ ∈ Ham(CP(q)):

N(ϕ; F) :=
∑

x∈Fix(ϕ)

O(x; F) ∈ N,

where the O(x; F) ∈ N are numbers linked to the local homology groups of the fixed points x
and depending on a coefficient field F (see (7) for a precise definition of the homology count,
the precise definition of N(ϕ; F) also depends on the choice of isotopy from id to ϕ). In the case
where the fixed point x is non-degenerate (i.e. 1 is not an eigenvalue of dϕ(x)), O(x; F) = order(x).
Therefore, if every fixed point is non-degenerate, N(ϕ; F) is the weighted count of fixed points
used in Theorem 1.1.

Theorem 1.2. Every Hamiltonian diffeomorphism ϕ of CP(q) such that N(ϕ; F) > |q| for some
field F whose characteristic is either zero or prime with each qj has infinitely many periodic
points. Moreover, when ϕ has finitely many fixed points, if F has characteristic zero in the
former assumption, there exists A ∈ N such that, for all prime p ≥ A, ϕ has a p-periodic point

1 Just before defining the family Ωz in the beginning of the proof, the fact that Π ◦ z̃1 = Π ◦ z̃2 should imply
order(z1)(λ1 − λ2) ∈ 2πZ rather than λ1 − λ2 ∈ 2πZ.
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that is not a fixed point; if F has characteristic p �= 0, ϕ has infinitely many periodic points
whose period belongs to {pk | k ∈ N}.

Using the fact that O(z; F) = order(z), we obtain the following answer to the generalized
Hofer–Zehnder conjecture in the non-degenerate case.

Corollary 1.3. Every Hamiltonian diffeomorphism ϕ of CP(q) such that∑
x∈Fix(ϕ)

x non-degenerate

order(x) > |q|

has infinitely many periodic points.

The proof of Theorem 1.2 is an adaptation of our proof of the theorem of Shelukhin in
the case of CPd (see [All22a]). It is based on the proofs given by Givental and Théret of the
Fortune–Weinstein theorem using generating functions [Giv90, The98], we mention that these
proofs can be easily adapted to show Theorem 1.1. The technical base of our proof is prior to Floer
theory and does not appeal to the J-holomorphic curves theory: it relies on finite-dimensional
critical point theory and classical algebraic topology. The key ideas of the proof of Theorem 1.2
are due to Shelukhin: we are studying a barcode that we can associate to the persistence
module (G(−∞,t)

∗ (ϕ; F))t induced by the generating functions homology of ϕ (as for N(ϕ; F),
it also depends on the choice of isotopy from id to ϕ). The definition of such homology groups
was introduced in [All22a] in the case of CPd and is a generating functions counterpart to the
Floer homology groups HF

(−∞,t)
∗ (ϕ) inspired by previous constructions of Viterbo [Vit92] and

Traynor [Tra94] in the case of compactly supported Hamiltonian diffeomorphisms of Cd. The the-
ory of barcodes in symplectic topology was introduced by Polterovich and Shelukhin in [PS16].
Adapting Shelukhin’s proof, we show that if the homology count N(ϕ; F) is greater than |q|, the
barcode of (ϕ; F) must contain finite bars. As each finite bar must have a length lower than 1
whereas the sum of the length of (representatives of) finite bars βtot(ϕk; F) is diverging to +∞
for good choices of powers k and fields F according to a Smith-type inequality, the number of
finite bars diverges (more precisely: the number of Z-orbits of finite bars diverges) and so does
the number of periodic points.

Major works in symplectic topology recently used symplectic orbifolds [CHM+21, PS21] and
we are hoping that this study will contribute to a better understanding of what one should expect
of an orbifold Hamiltonian Floer homology theory. Indeed, our ‘weighted’ result is not the first
intriguing phenomenon observed in this topic: a recent work extending the Floer homology to
global quotient orbifolds (i.e. orbifolds obtained as quotient of a manifold by a finite group, in
contrast to CP(q)) relates this homology theory to the Chen–Ruan homology [Mor19].

Organization of the paper
In § 2, we discuss preliminary results needed for the construction of the generating functions
homology: homology projective join on weighted projective spaces and generating functions of
R∗

+ × S1-equivariant Hamiltonian diffeomorphisms. In § 3, we extend the construction of the gen-
erating functions homology for complex projective spaces to weighted projective spaces. We then
study the spectral invariants associated with these homology groups and derive Theorem 1.1 and
the universal bound on the length of finite bars (Theorem 3.9). In § 4, we show the Smith-type
inequality satisfied by the length of the finite bars of the barcode associated with a diffeo-
morphism ϕ. In § 5, we prove Theorem 1.2. In Appendix A, we discuss an extension of the Thom
isomorphism and the Gysin long exact sequence to orbibundles that is needed in our article.
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2. Preliminaries

2.1 The category of weighted projective spaces
Let us fix the conventions and notation for weighted projective spaces.

All spaces considered here are finite dimensional. Let E be a complex vector space and let
ρ : S1 → GL(E) be a smooth group morphism defining a linear S1-action of E. Formally, a
weighted projective space will consist of the data (E, ρ), where E and ρ are as above, and be
denoted P(E, ρ). The group R∗

+ × S1 acts on E \ 0 by

(λ, t) · z := λρ(t)z, ∀(λ, t) ∈ R∗
+ × S1, ∀z ∈ E \ 0.

The induced orbifold (E \ 0)/(R∗
+ × S1) is naturally associated with P(E, ρ) and we will often

identify P(E, ρ) with this space, by a slight abuse of notation (see [LT97] for an introduction to
the notion of orbifold in symplectic geometry). A morphism from P(E, ρ) to P(E′, ρ′) is a class
of injective S1-equivariant linear morphisms (E, ρ)→ (E′, ρ′) under the equivalence relationship
∼ defined by

f ∼ g ⇔ ∃(λ, t) ∈ R∗
+ × S1, f = λρ′(t) ◦ g.

Every morphism induces a natural orbifold map, we identify morphism and induced map by
a slight abuse of notation. A weighted projective subspace P ⊂ P(E, ρ) is a projective space
P = P(F, ρ′) induced by an S1-invariant subspace F ⊂ E with ρ′ the natural restricted action.

Given an S1-action ρ : S1 → GL(E), there exists a base (v0, . . . , vd) and integers q0, . . . , qd ∈
Z such that

ρ(t)vj := e2iπtqjvj , ∀t ∈ S1, ∀j ∈ {0, . . . , d},

seeing S1 as R/Z. The multiset {q0, . . . , qd} is uniquely defined by (E, ρ) and called the weights
of P(E, ρ): it defines a functor from the category of weighted projective spaces to the cate-
gory of multisets. We only study weighted projective spaces with positive weights. A usual (or
‘unweighted’) projective space is a weighted projective space whose weights are all equal to one.
Given q ∈ (N∗)d+1, let ρq : S1 → GLd+1(C) be such that

ρq(t)εj := e2iπtqjεj , ∀t ∈ S1, ∀j ∈ {0, . . . , d}, (1)

where (εj) is the canonical base. We use the notation CP(q) := P(Cd+1, ρq). Every weighted
projective space with weights q is isomorphic to CP(q): the category of weighted projective
spaces up to isomorphism is equivalent to the category of multisets of N∗.

2.2 Projective join
Given two weighted projective spaces Pj := P(Ej , ρj), j ∈ {1, 2}, their projective join P1 ∗ P2 is
the weighted projective space P(E1 × E2, ρ1 × ρ2). The spaces P1 and P2 are naturally included
in P1 ∗ P2 via E1 × 0 ⊂ E1 × E2 and 0× E2 ⊂ E1 × E2. Given subsets Aj ⊂ Pj , one can also
define the projective join A1 ∗A2 ⊂ P1 ∗ P2 by A1 ∪A2 ∪ π(Ã1 × Ã2), where π : (E1 × E2) \ 0→
P1 ∗ P2 is the quotient map and the Ãj ⊂ Ej are the inverse images of the Aj under Ej \ 0→ Pj .
Given points aj ∈ Aj , the projective line (a1a2) ⊂ P1 ∗ P2 will refer to the weighted projective
line {a1} ∗ {a2}.

Given a topological space or pair X, H∗(X) and H∗(X) denote the singular homology and
cohomology groups. When we need to make explicit the ring of coefficients R, it will be written
H∗(X; R) and H∗(X; R). In [All22a, Appendix A], we defined a natural morphism pj∗ : H∗(A×
B)→ H∗+2(A ∗B) in the unweighted case called the homology projective join. Let us extend
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this natural map. Given A ⊂ P and B ⊂ P ′ subsets of weighted projective spaces, let us define

EA,B := {(a, b, c) ∈ A×B × (A ∗B) | c ∈ (ab)},

and projection maps p1 : EA,B → A×B and p2 : EA,B → A ∗B.

Lemma 2.1. At the topological level, the map p1 defines a CP1-orbibundle (in the sense of
Appendix A), with the natural orientation induced by the complex structure.

Proof. We refer to Appendix A for the statement of the triviality condition we must show.
In order to work with coordinates, one can assume A ⊂ CP(q) and B ⊂ CP(q′), q ∈ Nd+1,
q′ ∈ Nd′+1. To simplify notation, let us rather express CP(q) as the quotient of Cd+1 \ 0 under
the equivalence relation

z ∼ z′ ⇔ zj = λqjz′j , ∃λ ∈ C∗, ∀j, (2)

and similarly for CP(q′) and CP(q,q′). The covering (Vk,l) of A×B is

Vk,l := {([a], [b]) ∈ A×B | ak �= 0 and bl �= 0}.

The associated sets Uk,l ⊂ Cd+d′ are the maximal subsets such that the map

ϕ̃k,l : (a0, . . . , âk, . . . , ad, b0, . . . , b̂l, . . . , bd′) �→ ([a0, . . . , ad], [b0, . . . , bd′ ]),

with ak := 1 and bl := 1 in the right-hand side (the symbol âk means that the symbol ak is erased
from the sequence), are well-defined Uk,l → Vk,l. Let us use Uk ⊂ C to denote the group of the
kth roots of unity. Then Γk,l := Uqk

× Uq′l acts linearly on Uk,l by

(ζ, ζ ′) · (a, b) := (ζq0a0, . . . , ζ̂qkak, . . . , ζ
qdad, (ζ ′)q′0b0, . . . , (̂ζ ′)q′lbl, . . . , (ζ ′)q′

d′ bd′).

The maps ϕ̃k,l induce homeomorphisms ϕk,l : Uk,l/Γk,l → Vk,l.
Let us now define the Γk,l-invariant map χ̃k,l : Uk,l × CP1 → p−1

1 (Vk,l) by

(a, b, [u : v]) �→
(
ϕ̃k,l(a, b),

[
uq0a0, . . . , u

qdad, v
q′0b0, . . . , v

q′
d′ bd′

])
,

with ak := 1 and bl := 1 in the right-hand side. These maps are invariant under the following
actions of the Γk,l:

(ζ, ζ ′) · ((a, b), [u : v]) := ((ζ, ζ ′) · (a, b), [ζ−1u : (ζ ′)−1v])

and induce homeomorphisms χk,l : (Uk,l × CP1)/Γk,l → p−1
1 (Vk,l). �

As CP1 � S2, there is a natural Gysin morphism p∗1 : H∗(A×B)→ H∗+2(EA,B) according
to Corollary A.2. We can now extend the definition of pj∗ to the weighted case by setting
pj∗ := (p2)∗ ◦ p∗1. Let us now get all the properties stated in [All22a, Appendix A] back in the
weighted case.

Here, let us express CP(q) as the quotient of Cd+1 \ 0 under the equivalence relation (2) in
order to simplify the notation in the following definition. Following Kawasaki [Kaw73], let us
consider the map gq : CPd → CP(q),

gq([z0 : · · · : zd]) := [zq0
0 , . . . , zqd

d ].

Let Uk ⊂ C denote the groups of the kth roots of unity and Uq := Uq0 × · · · × Uqd
acting

coordinate-wise on CPd. The map gq induces a homeomorphism CPd/Uq � CP(q) (beware that
it is not an isomorphism of orbifolds). Let us recall the following classical result of singular
homology.
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Lemma 2.2 [Bor60, IV.3.4(c)]. Given a finite G-action on a topological space X, the morphism
induced by the quotient map in homology (and in cohomology)

H∗(X; R)G → H∗(X/G; R)

is an isomorphism when the characteristic of R is either zero or prime with the order
of G.

Let us remark that Uq acts trivially on H∗(CPd). Therefore, according to this lemma, when
the characteristic of R is either zero or prime with the order of Uq, that is when it is prime with
any of the weights qj , gq induces the isomorphism

(gq)∗ : H∗(CPd; R) �−→ H∗(CP(q); R), (3)

More generally, for every A ⊂ CP(q), gq induces the isomorphism

(gq)∗ : H∗(g−1
q (A); R)Uq �−→ H∗(A; R).

In order to get the properties stated in [All22a, Appendix A] back, let us show the commutativity
of the following diagram:

H∗(Ã× B̃; R)Uq×Uq′

(gq×gq′)∗�
��

pj∗
�� H∗+2(Ã ∗ B̃; R)Uq×Uq′

(g(q,q′))∗�
��

H∗(A×B; R)
pj∗

�� H∗+2(A ∗B; R)

(4)

where Ã := g−1
q (A) and B̃ := g−1

q′ (B) and the actions of the group Uq × Uq′ on Ã× B̃ and Ã ∗ B̃

are coordinate-wise. Let us show that the top pj∗ in (4) is well-defined, that is, pj∗ : H∗(Ã× B̃)→
H∗+2(Ã ∗ B̃) is Uq × Uq′-equivariant. The group Uq × Uq′ acts on EÃ,B̃ by restriction of its
diagonal action on (Ã× B̃)× (Ã ∗ B̃). Both associated projection maps p1 and p2 are equivariant
under these actions, so the equivariance of pj∗ follows.

By naturality of the properties stated in [All22a, Appendix A] and naturality of the homology
projective joins, diagram (4) implies that these properties are still verified for our extension of
the homology projective join to the weighted case: for instance, the homology projective join is
associative,

pj∗(pj∗(α× β)× γ) = pj∗(α× pj∗(β × γ)), ∀α, β, γ,

and it satisfies pj∗([P ]× [P ′]) = [P ∗ P ′] for every (disjoint) weighted projective spaces P
and P ′.

2.3 Generating functions of R∗
+ × S1-equivariant Hamiltonian diffeomorphisms

In this section, we recall definitions and properties already discussed in [All22b, Section 5] and
[All22a, Section 3.2] in the case of unweighted projective space and that generalize directly to
our ‘weighted’ case. Let us fix once for all the weights q = (q0, . . . , qd) ∈ (N∗)d+1, the S1-action
of Cd+1 will always refer to the action induced by ρq defined in (1).

Given a Hamiltonian map (hs) : S1 × CP(q)→ R, let (Hs) be the Hamiltonian map of Cd+1

that is 2-homogeneous, S1-invariant and whose restriction to S(q) lifts (hs) (see [LT97] for an
introduction to the notion of symplectic orbifold, here we only need to see an orbifold map of
CP(q) as a quotient of an S1-invariant map of S(q)). Let (Φs) be the associated Hamiltonian
flow. An R∗

+ × S1-equivariant Hamiltonian diffeomorphism will refer to the time-one map of
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such a flow. These are smooth diffeomorphisms of Cd+1 \ 0 that are S1-equivariant and posi-
tively homogeneous and extends to homeomorphisms of Cd+1. When the restriction of such a
diffeomorphism σ to S(q) is C1-close to the identity, there exists a unique map f : Cd+1 → R
such that f(0) = 0 and

∀z ∈ Cd+1, ∃!w ∈ Cd+1, w =
z + σ(z)

2
and ∇f(w) = i(z − σ(z)),

where ∇f denotes the gradient of f (the existence of g := ∇f is a consequence of the implicit
function theorem and g is a gradient because it is the graph of a Lagrangian submanifold).
The map f is called the elementary generating function of σ, and such σ will be called small
R∗

+ × S1-equivariant diffeomorphisms. It is smooth away from 0 where it is only C1, it is
S1-invariant and positively 2-homogeneous (this is a consequence of the definition of f and
the equivariance of σ). In general, an R∗

+ × S1-equivariant Hamiltonian diffeomorphism Φ can
be written as Φ = σn ◦ · · · ◦ σ1 where every R∗

+ × S1-equivariant Hamiltonian diffeomorphism σj

is sufficiently small so that it admits an elementary generating function fj . For all n ∈ N∗, we
say that the n-tuple σ = (σ1, . . . , σn) is associated with the Hamiltonian flow (Φs) if there exist
real numbers 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1 such that σk = Φtk ◦ Φ−1

tk−1
. For all k ∈ N, we denote by

εk the k-tuple
εk := (id, . . . , id).

More generally, given a tuple σ and an integer n ∈ N, σn denotes the n-fold concatenation.
A continuous family of such tuples (σs) will denote a family of tuples of the same size n ≥ 1,
σs =: (σ1,s, . . . , σn,s) such that the maps s �→ σk,s are C1-continuous. We denote by Fσ the
following function (Cd+1)n → R:

Fσ(v1, . . . , vn) :=
n∑

k=1

fk

(
vk + vk+1

2

)
+

1
2
〈vk, ivk+1〉,

with convention vn+1 = v1, each fk : Cd+1 → R being the elementary generating function asso-
ciated with σk. When n is odd, Fσ is a generating function of σn ◦ · · · ◦ σ1. Therefore, every
R∗

+ × S1-equivariant Hamiltonian diffeomorphism admits a generating function. Generating func-
tions are S1-invariant and positively 2-homogenous. The R∗

+ × S1-orbits (for the diagonal action)
of critical points of a generating function of Φ are in bijection with the R∗

+ × S1-orbits of fixed
points of Φ through the map (v1, . . . , vn) �→ v1.

Given generating functions F : Cd+1 × Ck → R and G : Cd+1 × Cl → R of Φ and Ψ, respec-
tively, the fiberwise sum of F and G denotes the map

(F + G)(x; ξ, η) := F (x; ξ) + G(x; η). (5)

Although this is not a generating function of Φ ◦Ψ, the critical points of F + G are also in
bijection with the fixed points of Φ ◦Ψ via (x; ξ, η) �→ x− i∂xG(x; η)/2.

When the small equivariant diffeomorphisms σj are linear, the associated fj are quadratic
forms and so is the resulting Fσ. When σn ◦ · · · ◦ σ1 also admits an elementary (quadratic)
generating function, we have the following unicity lemma, the proof of which follows that of
[The96, Prop. 35].

Lemma 2.3. Let Q : Cd+1 × Ck → R be a quadratic generating function generating the same
linear Hamiltonian diffeomorphism as the elementary generating function q : Cd+1 → R. Then,
there exists a linear fibered isomorphism A of Cd+1 × Ck which is isotopic to the identity through
linear fiberwise isomorphisms such that Q ◦A = q ⊕R for some quadratic form R : Ck → R.
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More precisely, if Q(z) = 〈Q̃z, z〉 with

Q̃ =
[
a b
tb c

]
,

then c is invertible and A(x; ξ) := (x; ξ − c−1tbx) so that Q ◦A(x; ξ) = q(x) + tξcξ.

3. Generating functions homology

In this section, we define the generating functions homology of a Hamiltonian diffeomorphism ϕ
in CP(q) and give its main properties. The constructions and proofs are very close to those of
the ‘unweighted’ case CPd, so we mainly refer to [All22a] and emphasize the key changes.

3.1 Action and generating functions
Let (Φs) be the R∗

+ × S1-equivariant Hamiltonian flow lifting a Hamiltonian flow (ϕs) of CP(q)
generated by the Hamiltonian map (hs). Let x ∈ CP(q) be a fixed point of ϕ := ϕ1 and u : D2 →
CP(q) be an orbifold map such that u|∂D2 corresponds to s �→ ϕs(x) (a capping of x). The action
of the capped fixed point (x, u) is the real number

a(x, u) := − 1
π

( ∫
D2

u∗ω +
∫ 1

0
hs ◦ ϕs(x) ds

)
.

Proposition 5.8 in [The98] gives a characterization of the action values of the cappings of x
in terms of the lifted dynamics that directly extends to our weighted case. Let z ∈ S(q) be
a lift of x, it is not necessarily a fixed point of Φ := Φ1 but there exist numbers t ∈ R such
that ρq(−t)Φ(z) = z. Following Théret, we see that such t corresponds exactly to the action
values of the cappings of x. With this characterization, it is clear that the set of action values
of x is invariant under Z-translations. Here is the major difference between the weighted and
unweighted case: the set of action values of x equals t0 + (1/order(x))Z so the number of action
values inside [0, 1) depends on order(x). This is ultimately the reason why our version of the
Fortune–Weinstein theorem, which follows Givental and Théret’s steps, give multiplicity to fixed
points.

In order to study the fixed points of ϕ, we define continuous families of generating functions Ft

associated with ρq(−t)Φ for compact intervals I of t. A fixed point of action t ∈ I corresponds to
an R∗

+ × S1-orbit of critical points of such an Ft. Given a positively 2-homogeneous map F that is
invariant under ρq′ (in our case q′ will often be a concatenation qn), we define its projectivization
F̂ : CP(q′)→ R by factoring the restriction of F to S(q′) under S(q′)→ CP(q′). Fixed points
with action t ∈ I now correspond to critical points of F̂t with value zero.

Let us now recall the precise construction of the families of generating functions Ft = Fσm,t .
For m ∈ N, we define continuous tuples t �→ σm,t associated with ρq(−t)Φ for t ∈ [−m, m] in
the following way. Let (δt) be the family of small R∗

+ × S1-equivariant diffeomorphisms δt(z) :=
ρq(−t)z, |t| < 1/(2 max qj). The associated elementary generating function is

w �→ −
∑

j

tan(qjπt)|wj |2

(this function is an elementary generating function of δt as long as it is well defined for the fixed t,
we use it for a fixed t of absolute value smaller than 1/(2 max qj) in the proof of Proposition 4.2).
Let us fix once for all an even number n0 ≥ 4 max qj and let (δ(1)

t ) be the family of n0-tuples
(δt/n0

, . . . , δt/n0
) generating z �→ ρq(−t)z for t ∈ (−2, 2). For all m ∈ N∗, let (δ(m)

t ) be a family
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of mn0-tuples generating z �→ ρq(−t)z for t ∈ (−m− 1, m + 1) and satisfying

δ
(m+1)
t =

(
δ

(m)
t , εn0

)
, ∀t ∈ [−m, m]. (6)

More precisely, let χm : R→ R be an odd smooth non-decreasing map such that χm ≡ id on
[−m− 1/4, m + 1/4] and χm ≡ m + 1/2 on [m + 3/4, +∞). We set

δ
(m+1)
t =

(
δ

(m)
χm(t), δ

(1)
t−χm(t)

)
, ∀t ∈ (−m− 2, m + 2).

Finally, we can set

σm,t :=
(
σ, δ

(m)
t

)
, ∀t ∈ [−m, m].

As tan is increasing on (−π/2, π/2), we deduce that ∂tFσm,t ≤ 0 by a straightforward computa-
tion (here it is crucial that each weight qj is positive).

3.2 Homology of sublevel sets and local homology of a fixed point
Here and throughout this paper, H∗(X) and H∗(X) denote the singular homology and the
singular cohomology, respectively, of a topological space or pair X over an indeterminate ring
R whose characteristic is zero or prime with any of the weights qj (that have been fixed once
for all). If one needs to specify the ring R, one writes H∗(X; R) and H∗(X; R) instead. The
following notation naturally extends the one used in the unweighted case. Let σ be an n-tuple
of small R∗

+ × S1-equivariant Hamiltonian diffeomorphisms (as defined in § 2.3). We denote by
Z(σ) ⊂ CP(qn) the sublevel set

Z(σ) := {F̂σ ≤ 0},

where F̂σ denotes the projectivization of the generating function associated with σ. We denote
by HZ∗(σ) the shifted homology group

HZ∗(σ) := H∗+(n−1)(d+1)(Z(σ)),

and if Z(σ′) ⊂ Z(σ), with σ′ an n-tuple, we set

HZ∗(σ, σ′) := H∗+(n−1)(d+1)(Z(σ), Z(σ′)).

For m ∈ N∗ and a ≤ b in [−m, m], one has Fσm,b
≤ Fσm,a so Z(σm,a) ⊂ Z(σm,b) and we can

set

G
(a,b)
∗ (σ, m) := HZ∗(σm,b, σm,a),

when a and b are not action values of σ. We define in the same way the cohomology
analogues by

G∗
(a,b)(σ, m) := HZ∗(σm,b, σm,a) = H∗+(n−1)(d+1)(Z(σm,b), Z(σm,a)).

This homology group can be naturally identified to the homology of sublevel sets of a map
(see [All22b, Section 5.4])

G
(a,b)
∗ (σ, m) � H∗+(n−1)(d+1)({T ≤ b}, {T ≤ a}),

for some C1-map T : M → R defined on a manifold M and that is smooth in the neighborhood
of its critical points. The function T is some kind of finite-dimensional action: critical points of T
are in one-to-one correspondence with capped fixed points of ϕ with action value inside [−m, m].
In the unweighted case at least, this correspondence sends critical value to action value and Morse
index up to a (n− 1)(d + 1) shift in degree to the Conley–Zehnder index. More generally, the
local homology of T (up to the same shift in degree) is isomorphic to the local Floer homology

95

https://doi.org/10.1112/S0010437X22007825 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X22007825


S. Allais

of the corresponding capped orbit (in the unweighted case at least). Let us denote by C∗(f ; x)
the local homology of the critical point x of a map f :

C∗(f ; x) := H∗({f ≤ f(x)}, {f ≤ f(x)} \ x).

We can define up to isomorphism

C∗(σ; z, t) � C∗(F̂σm,t ; ζ) � C∗+(n−1)(d+1)(T ; (ζ, t)),

where ζ ∈ CP(qn) is the critical point of F̂σm,t associated with the fixed point z ∈ CP(q) of
action t ∈ [−m, m]. Let us briefly justify the independence on m, we refer to [All22b, Section 5.5]
for the technical details. In § 3.3, we define an isomorphism θm+1

m between G
(a,b)
∗ (σ, m) and

G
(a,b)
∗ (σ, m + 1). For ε > 0 small enough,

G
(t−ε,t+ε)
∗ (σ, m) �

⊕
z

C∗(σ; z, t, m),

for z ∈ CP(q) fixed points with action t (here we temporarily keep the dependency on m explicit).
In this case, one shows that θm+1

m respects this decomposition, which gives the desired iso-
morphisms. Similarly, the local homology groups C∗(σ; z, t) and C∗(σ; z, t + 1) are isomorphic
up to a 2|q| shift in degree by the local version of the periodicity isomorphism defined at (10).
However, when order(z) �= 1, it is not clear whether the local homology groups associated with
action values that do not differ by an integer are isomorphic (up to a shift in degree). For these
reasons, when the grading is irrelevant, we only specify the action value up to an integer.

We can now define precisely N(σ; F) for a choice of tuple σ and of field F (whose characteristic
is either 0 or prime with any of the weights) by

N(σ; F) :=
∑

z∈Fix(ϕ)

order(z)∑
j=1

dim C∗(σ; z, tj(z); F) ∈ N, (7)

where (tj(z)) is the increasing sequence of action values that z takes inside [0, 1). The integer
O(z; F) defined in the introduction for a fixed point z ∈ Fix(ϕ) is then

O(z; F) :=
order(z)∑

j=1

dim C∗(σ; z, tj(z); F).

We recall that an integer k ∈ N∗ is said to be admissible for ϕ at a fixed point z if λk �= 1
for all eigenvalues λ �= 1 of dϕ(z). Until the end of the section, ϕ is associated with a tuple σ
and the periodic points of ϕ are isolated in order to simplify the statements. The proofs do not
differ from the unweighted case [All22a, Proposition 3.1 and Corollary 3.2].

Proposition 3.1. Let k ∈ N∗ be an admissible iteration of ϕ at the fixed point z. Then as
graded modules over a ring whose characteristic is prime with any of the weights,

C∗(σk; z) � C∗−ik(σ; z),

for some shift in degree ik ∈ Z.

Corollary 3.2. For every fixed point z of ϕ, there exists B > 0 such that, for all prime p

dim C∗(σp; z, tj(z); Fp) < B, ∀j ∈ {1, . . . , order(z)}.
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3.3 Composition morphisms and the direct system of G
(a,b)
∗ (σ)

In [All22a, Section 4.1], we observed that the linear embedding,

B̃n,m(w,w′) :=
(
w,

m∑
k=1

(−1)k+1w′
k,w

′
)

, ∀w ∈ (Cd+1)n, ∀w′ ∈ (Cd+1)m,

expressed in coordinates wk := (vk + vk+1)/2, satisfies for all n-tuples σ and m-tuples σ′

F(σ,ε,σ′)(B̃n,m(w,w′)) = Fσ(w) + Fσ′(w′).

Therefore, the induced map Bn,m : CP(q) ∗ CP(q′) ↪→ CP(q, 1,q′) defines a natural morphism
H∗(Z(σ) ∗ Z(σ′))→ H∗(Z(σ, ε, σ′)) and the composition with the homology projective join
α⊗ β �→ pj∗(α× β) define the composition morphism

HZ∗(σ)⊗HZ∗(σ′)→ HZ∗−2d((σ, ε, σ′))

denoted by α⊗ β �→ α � β. For the same formal reasons as in the unweighted case, this morphism
admits relative versions and it is associative [All22a, Section 4.1].

As for the unweighted case, for a fixed m ∈ N, the long exact sequence of the triple induces
inclusion and boundary morphisms fitting into a long exact sequence:

· · · ∂∗+1−−−→ G
(a,b)
∗ (σ, m)→ G

(a,c)
∗ (σ, m)→ G

(b,c)
∗ (σ, m) ∂∗−→ G

(a,b)
∗−1 (σ, m)→ · · ·

with −m ≤ a ≤ b ≤ c ≤ m and a, b, c not action values of σ. Using the composition morphism
�, one can define canonical isomorphisms

θm+1
m : G

(a,b)
∗ (σ, m)→ G

(a,b)
∗ (σ, m + 1), (8)

for −m ≤ a ≤ b ≤ m, that commute with the previously mentioned inclusion and boundary
morphisms. One can then define G

(a,b)
∗ (σ) as the direct limit of the direct system induced by

(θm+1
m )m:

G
(a,b)
∗ (σ) := lim−→G

(a,b)
∗ (σ, m).

We then have inclusion and boundary morphisms fitting into a long exact sequence

· · · ∂∗+1−−−→ G
(a,b)
∗ (σ)→ G

(a,c)
∗ (σ)→ G

(b,c)
∗ (σ) ∂∗−→ G

(a,b)
∗−1 (σ)→ · · ·

for all a ≤ b ≤ c that are not action values; one can thus set

G
(−∞,b)
∗ (σ) := lim←−G

(a,b)
∗ (σ), a→ −∞,

and one can then define G
(−∞,+∞)
∗ (σ) by taking a direct limit in a similar way. The definition

of (8) is the natural extension of the unweighted case, let us make it explicit. For an odd n, the
space Z(εn) retracts on the projectivization of the maximal non-positive linear subspace of Fεn

which has the same homology as a CPN−1 with N = (d + 1)(n + 1)/2. Therefore,

HZ∗(εn) =
d⊕

k=−(d+1)(n−1)/2

Ra
(n)
k � H∗+(n−1)(d+1)(CP(d+1)(n+1)/2−1),

where a
(n)
k is the generator of degree 2k identified with the class [CPl] of appropriate degree

2l = 2k + (n− 1)(d + 1) under the isomorphism induced by the inclusion of a maximal complex
projective subspace of Z(εn) and (3). We now define (8) by

θm+1
m (α) := α � a

(n0−1)
d ∈ G

(a,b)
∗ (σ, m + 1), ∀α ∈ G

(a,b)
∗ (σ, m).

With the same proof as in the unweighted case, one shows that θm+1
m is an isomorphism.
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In [All22a, Section 4.4], we defined a second composition morphism � with the goal (only
partially reached) to imitate the composition morphism of the Hamiltonian Floer homology.
Let us fix two tuples σ and σ′ of odd respective sizes n and n′, a, b, c ∈ R that are not action
values of σ and σ′ respectively. For sufficiently large m, m′ ∈ N, this composition morphism
α⊗ β �→ α � β,

HZ∗(σ′
m′,c)⊗G

(a,b)
∗ (σ, m)→ G

(a+c,b+c)
∗−2d ((σ′, ε, σ), m + m′),

naturally generalizes with the same construction. By the same formal arguments as in the
unweighted case, it is associative and it commutes with the morphisms θm+1

m ultimately defining

HZ∗(σ′
m′,c)⊗G

(a,b)
∗ (σ)→ G

(a+c,b+c)
∗−2d ((σ′, ε, σ)). (9)

3.4 Properties of the generating functions homology
Let us first focus on the special case σ = ε, i.e. ϕs ≡ id. Let us denote by Tm,t the family of
generating functions associated with (εm,t)t. As the elementary generating function of δs is a
quadratic form, so is the map Tm,t. As Tm,0 is a generating function of the identity, its kernel as a
quadratic form has dimension 2(d + 1) and indTm,0 = mn0(d + 1) (see [All22a, Proposition 4.1]).
The variation of index is governed by the Maslov index of

t �→ ρq(−t) =
d⊕

j=0

e−2iπqjt,

so that

indTm,t − indTm,0 = 2
d∑

j=0

�qjt�

(see [All22b, Section 3 and Lemma 5.5]). Similarly to the unweighted case, we deduce that
the persistence module (H∗(Z(εm,t))) is isomorphic to the persistence module (H∗(CPN(t))),
−m < t < m, induced by the family of non-decreasing projective subspaces of complex dimension
N(t) := m(d + 1)n0/2 +

∑
j�qjt�. We recall that the coefficient ring R has characteristic zero or

prime with the qj (see (3), otherwise the family (CPN(t)) of non-decreasing unweighted projective
subspaces must be replace by a family of non-decreasing weighted projective subspaces). Thus,
as a graded R-module,

HZ∗(εm,t) =
d+

∑
j�qjt�⊕

k=−(d+1)mn0/2

Ra
(mn0+1)
k (t),

where a
(mn0+1)
k (t) is the generator of degree 2k identified with the class [CPl] of appropriate

degree 2l = 2k + (d + 1)mn0 under the previous persistence modules isomorphism. The inclusion
morphism HZ∗(εm,t)→ HZ∗(εm,s) maps each a

(mn0+1)
k (t) to a

(mn0+1)
k (s) (for −m ≤ t ≤ s ≤ m).

Hence,

G
(a,b)
∗ (ε, m) =

d+
∑

j�qjb�⊕
k=d+

∑
j�qja�

Rα
(m)
k (a, b),

for −m < a ≤ b < m, where α
(m)
k (a, b) is the image of a

(mn0+1)
k (b) under the inclusion mor-

phism HZ∗(εm,b)→ G
(a,b)
∗ (ε, m). Similarly to the unweighted case, one has θm+1

m α
(m)
k (a, b) =

α
(m+1)
k (a, b). We set αk(a, b) := θ∞m α

(m)
k (a, b). For a < b < c, if αk(b, c) is well-defined, then
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αk(a, c) is also well-defined and sent to the former; there exists a well-defined αk(−∞, c) ∈
G

(−∞,c)
2k (ε) sent to αk(a, c) for all a ≤ c. Let αk be the image of αk(−∞, c) under G

(−∞,c)
2k (ε)→

G
(−∞,+∞)
2k (ε), then

G
(−∞,+∞)
∗ (ε) =

⊕
k∈Z

Rαk.

The ‘periodicity’ isomorphism naturally extends to the weighted case as

G
(a,b)
∗ (σ) �−→ G

(a+1,b+1)
∗+2|q| (σ), (10)

(we recall that |q| :=
∑

j qj). Similarly to the unweighted case, it is defined using composition
morphisms � (9), with slight changes in the degree of the generators ak involved, let us precise
them. Let us set ad := a

(mn0+1)
d (0) ∈ HZ2d(εm,0) and ad+|q| := a

(mn0+1)
d+|q| (1) ∈ HZ2(d+|q|)(εm,1).

The morphism G
(a+1,b+1)
∗ (σ)→ G

(a+1,b+1)
∗ ((ε2, σ)), α �→ ad � α, is an isomorphism, let us write

α �→ a−1
d � α its inverse morphism. We define the morphism (10) by α �→ a−1

d � ad+|q| � α. The
proof of [All22a, Proposition 4.10] applies with these formal adaptations (in the proof, the
generator a−1 of degree −2 must also be replaced by the generator ad−|q| of degree 2(d− |q|)).

Proposition 3.3. The morphism (10) is an isomorphism commuting with inclusion and
boundary morphisms.

Following the proof in the unweighted case, one can now define spectral invariants ck(σ) in
our generalized setting.

Theorem 3.4. Let σ be a tuple of small R∗
+ × S1-equivariant Hamiltonian diffeomorphisms

associated with the Hamiltonian diffeomorphism ϕ of CP(q). As a graded module over a
coefficient ring R whose characteristic is either zero or prime with the weights,

G
(−∞,+∞)
∗ (σ) =

⊕
k∈Z

Rαk

for some non-zero αk’s with deg αk = 2k. For all k ∈ Z, let

ck(σ) := inf
{
t ∈ R | αk ∈ im(G(−∞,t)

∗ (σ)→ G
(−∞,+∞)
∗ (σ))

}
.

Then for all k ∈ Z, ck(σ) ∈ R is an action value of σ and ck+|q|(σ) = ck(σ) + 1. Moreover,

ck(σ) ≤ ck+1(σ)

for all k ∈ Z, and if there exists k ∈ Z such that ck(σ) = ck+1(σ), then ϕ has infinitely many
fixed points of action ck(σ). If d + 1 consecutive ck(σ) are equal, then ϕ = id.

As a corollary, we obtain the generalization of the Fortune-Weinstein theorem stated in the
introduction.

Proof of Theorem 1.1. Let σ be a tuple associated with the Hamiltonian diffeomorphism ϕ ∈
Ham(CP(q)) that has finitely many fixed points. The spectral values ck(σ) must all be distinct.
As (ck(σ)) is increasing and satisfies ck+|q|(σ) = ck(σ) + 1, there are exactly |q| distinct spectral
values inside [0, 1). However, the number of action values inside [0, 1) associated with a fixed
point z equals order(z), so the conclusion follows. �

The Poincaré duality in singular homology implies the following duality, according to the
proof of [All22a, Proposition 4.13].
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Proposition 3.5. Let σ be a tuple of small R∗
+ × S1-equivariant Hamiltonian diffeomorphisms

of Cd+1. There exists a duality isomorphism between generating functions homology and
cohomology

PD : G∗
(a,b)(σ) ∼−→ G

(−b,−a)
2d−∗ (σ−1),

with −∞ ≤ a ≤ b ≤ +∞ and a, b not action values. This isomorphism is natural: it commutes
with inclusion and boundary maps.

Corollary 3.6. Let σ be a tuple of small R∗
+ × S1-equivariant Hamiltonian diffeomorphisms,

then

ck(σ−1) = −cd−k(σ).

Following the proof in the unweighted case, the properties of the composition morphisms
imply the sub-additivity of the spectral invariants.

Proposition 3.7. Given any tuples σ and σ′ of small R∗
+ × S1-equivariant Hamiltonian

diffeomorphisms, one has

ck+l−d((σ, ε, σ′)) ≤ ck(σ) + cl(σ′).

We can now associate to every σ a persistence module (G(−∞,t)
∗ (σ))t that satisfies the ‘period-

icity’ property G
(−∞,t+1)
∗ (σ) � G

(−∞,t)
∗+2|q| (σ), the isomorphism being an isomorphism of persistence

module according to the naturality of (10). Let us refer to [All22a, Section 3.1] and references
therein for a quick review of persistence modules and barcodes and let us just recall that persis-
tence modules are R-families of vector spaces (V t)t∈R with natural maps V t → V s for t ≤ s and
that, under some finiteness and continuity conditions (that are satisfied in our case), one can
associate a multiset B(V t) of intervals [a, b) called the barcode of (V t) satisfying, for all t0 ∈ R,

Card{I ∈ B(V t) | t0 ∈ I} = dimV t0 .

While discussing barcodes properties of (G(−∞,t)
∗ (σ))t, we assume that the persistence module is

over a field (whose characteristic is either zero or prime with the weights) and that the number of
fixed points in CP(q) associated with σ is finite. As this periodicity property shifts the degree by
a constant positive integer 2|q|, it induces a permutation of the bars of the barcode sending a bar
[a, b) on a bar [a + 1, b + 1) that generates a free Z-action on the bars. A family of representatives
of the bars is given by the union of the barcodes of (G(−∞,t)

k (σ))t for 0 ≤ k ≤ 2|q| − 1. The infinite
bars of the barcode are exactly the multiset of intervals Ik := [ck(σ), +∞), k ∈ Z, the positive
generator of the Z-action sending Ik to Ik+|q|, so that there are exactly |q| Z-orbits of infinite
bars. Still following the proof in the unweighted case, we obtain the following interpretation of
the homology count of fixed points N(σ; F) in terms of count of bars.

Proposition 3.8. Given a tuple σ of R∗
+ × S1-equivariant Hamiltonian diffeomorphisms with

a finite number of fixed R∗
+ × S1-orbits, for every field F whose characteristic is either zero or

prime with the weights,

N(σ; F) = |q|+ 2K(σ; F),

where K(σ; F) is the number of Z-orbits of finite bars of the persistence module of σ over the
field F. In other words, N(σ; F) is the number of (finite) extremities of a set of representative
bars.

The crucial point here is that N(σ; F) > |q| means that there exist finite bars. Let us denote
β(σ; F) ≥ 0 the maximal length of a finite bar of the barcode and βtot(σ; F) ≥ 0 the sum of the
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lengths of representatives of the Z-orbits of finite bars. A final key property whose proof does
not differ from the unweighted case is the universal bound on the length of finite bars.

Theorem 3.9. For every tuple of small R∗
+ × S1-equivariant Hamiltonian diffeomorphisms σ

generating a Hamiltonian diffeomorphism of CP(q) with finitely many fixed points and every
field F whose characteristic is either zero or prime with each weight qj , the longest finite bar of
its barcode satisfies

β(σ; F) < cd+k(σ)− ck(σ), ∀k ∈ Z.

In particular, the longest finite bar is less than one.

4. Smith inequality

In this section, we show the natural extension of the Smith-type inequality stated in [All22a,
Corollary 6.3]. Although the proof is rather similar to the unweighted case, some technical
adjustments must be made. The assumption that the prime number used does not divide any of
the weights is crucial here.

4.1 Z/pZ-action of a p-iterated generating function
Let us fix a prime number p ≥ 3 that does not divide any of the weights qj . Let us fix t ∈ R and
study the generating function of ρq(−t)Φ expressed

Fσm,t(v) :=
n∑

k=1

fk

(
vk + vk+1

2

)
+

1
2
〈vk, ivk+1〉,

where v := (v1, . . . , vn) ∈ (Cd+1)n and the fk : Cd+1 → R are S1-invariant and positively
2-homogeneous. Thus, Fσp

m,t
: (Cn(d+1))p → R is invariant under the action of Z/pZ by cyclic

permutation of coordinates generated by

(v1,v2, . . . ,vp) �→ (vp,v1, . . . ,vp−1),

(here σp
m,t means (σm,t)p). The induced F̂σp

m,t
: CP(qnp)→ R is then invariant under the

Z/pZ-action by permutation of (weighted) homogeneous coordinates induced by

[v1 : v2 : · · · : vp] �→ [vp : v1 : · · · : vp−1].

Lemma 4.1. The fixed points (CP(qnp))Z/pZ of the above action are the disjoint union
⊔

q Pq of
the p following projective subspaces of weights qn:

Pr :=
{
[v : ρqn(r/p)v : ρqn(2r/p)v : · · · : ρqn((p− 1)r/p)v] | [v] ∈ CP(qn)

}
,

for r ∈ Z/pZ.

Proof. Let (v1, . . . ,vp) ∈ S(qnp) be a point whose projection is in (CP(qnp))Z/pZ. There exists
t ∈ R such that vj+1 = ρqn(t)vj for all j so that every vj is non-zero and ρqn(pt) fixes it. Let
m ∈ N be the order of the isotropy group of v1 under the S1-action, so that pt = k/m for some
k ∈ N. As m divides one of the weights, it is prime with p so there exists u, v ∈ Z such that
um + vp = 1. Thus, t = k(u/p + v/m). As ρqn(kv/m) fixes v1, one can assume t = ku/p and we
deduce that [v1 : · · · : vp] ∈ Pku.

The other inclusion is clear. �
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Proposition 4.2. For r ∈ Z/pZ and t ∈ (−m, m), let gr,t be the restriction to Pr of F̂σp
m,t

. Up

to a shift in degree,

H∗({gr,b ≤ 0}, {gr,a ≤ 0}) � G
(a+r/p,b+r/p)
∗ (σ),

when −m < pa < pb < m, with a + r/p and b + r/p not action values of σ as well as pa and pb
not action values of σp.

Proof. Given a family (ht) of maps X → R, we use the notation

G(ht) := H∗({hb ≤ 0}, {ha ≤ 0}),
so that we must show G(gr,t) � G(F̂σm,t+r/p

), up to a shift in degree.
Using the fact that the fk are S1-invariant,
1
p
Fσp

m,t
(v, ρqn(r/p)v, . . . , ρqn(r(p− 1)/p)v)

=
n−1∑
k=1

[
fk

(
vk + vk+1

2

)
+

1
2
〈vk, ivk+1〉

]
+ fn

(
vn + ρq(r/p)v1

2

)
+

1
2
〈vn, iρq(r/p)v1〉.

We apply the linear change of variables v �→ u given by

uk := vk + (−1)k I − ρq(r/p)
/

2v1

so that ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1 + u2 = v1 + v2,
u2 + u3 = v2 + v3,

...
un−1 + un = vn−1 + vn,

un + u1 = vn + ρq(r/p)v1.

A direct computation gives
n−1∑
k=1

〈vk, ivk+1〉+ 〈vn, iρq(r/p)v1〉 =
n∑

k=1

〈uk, iuk+1〉 − 2
d∑

j=0

tan
(

rπqj

p

)
|u1,j |2,

for all integer r ∈ Z/pZ, so that

Fσp
m,t

(v, ρqn(r/p)v, . . . , ρqn(r(p− 1)/p)v) = p

[
Fσm,t(u)−

d∑
j=0

tan
(

rπqj

p

)
|u1,j |2

]

= p[Fσm,t(u) + Fδr/p
(u1)].

The last bracket is the fiberwise sum of a generating function of ρq(−t)Φ and the elementary
generating function of δr/p = ρq(−r/p), that we denote Fσm,t + Fδr/p

, evaluated at u. From this
change of coordinates, we deduce the isomorphism

G(gr,t) � G
(

̂Fσm,t + Fδr/p

)
.

We recall that in this case, an R∗
+ × S1-orbit of critical points of the fiberwise sum is in one-

to-one correspondence with an R∗
+ × S1-orbit of fixed points of the composed diffeomorphism

ρq(−t− r/p)Φ (see the paragraph surrounding (5)). Let us identify r with its representative
in {0, 1, . . . , p− 1}. In contrast to the unweighted case, the path s �→ Fδsr/p

, s ∈ [0, 1], is not
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well-defined in general and one must add auxiliary variables to this generating function. The
generating function Fε1,r/p

is a quadratic form generating the same Hamiltonian diffeomorphism
as the elementary generating function Fδr/p

. According to Lemma 2.3, there exists a linear
fiberwise isomorphism (x; ξ) �→ (x; L(x, ξ)) such that

Fε1,r/p
(x; L(x, ξ)) = Fδr/p

(x) + R(ξ),

where R is a non-degenerate quadratic form. Applying the fiberwise isomorphism (x; η, ξ)→
(x; η, L(x; ξ)), one obtains

G
(

̂Fσm,t + Fε1,r/p

)
� G

(
̂Fσm,t + (Fδr/p

⊕R)
)
.

As 0 is a regular value of ̂Fσm,t + (Fδr/p
⊕R) for t ∈ {a, b} by assumption, [Giv90,

Proposition B.1] implies

G
(

̂Fσm,t + (Fδr/p
⊕R)

)
� G

(
̂Fσm,t + Fδr/p

)
,

up to a shift in degree (the index of R). Therefore, we can now replace Fδr/p
by Fε1,r/p

.
Let (fs,t) be the family of well-defined maps

fs,t := Fσm,t+(1−s)r/p
+ Fε1,sr/p

, s ∈ [0, 1].

The function fs,t is the fiberwise sum of a generating function of ρq(−t− (1− s)r/p)Φ and a
generating function of ρq(−sr/p) so 0 is a regular value of fs,t if and only if ρq(−t− r/p)Φ does
not have any R∗

+ × S1-orbit of fixed points, that is, if and only if t + r/p is not an action value
of σ. According to [All22a, Proposition 4.7], G(f0,t) � G(f1,t) so that

G(gr,t) � G
(

̂Fσm,t+r/p
+ Fε1,0

)
.

As Fε1,0 is generating the identity as the zero map, by the same argument as before, one can
replace Fσm,t+r/p

+ Fε1,0 in the last expression with Fσm,t+r/p
, the conclusion follows. �

4.2 Application of Smith inequality and computation of βtot

Let X be a locally compact space or pair such that H∗(X; Fp) is finitely generated. According
to Smith inequality, if the group Z/pZ acts on X,

dim H∗(X; Fp) ≥ dimH∗(XZ/pZ; Fp) (11)

(see, for instance, [Bor60, Chapter IV, §4.1]). Here dimH∗ means the total dimension
∑

k dimHk.

Proposition 4.3. Given any tuple σ of small R∗
+ × S1-equivariant Hamiltonian diffeo-

morphisms, for every prime number p that is prime with any of the weights and every a ≤ b
such that a + r/p and b + r/p are not action values of σ and pa and pb are not action values
of σp,

dimG
(pa,pb)
∗ (σp; Fp) ≥

∑
(1−p)/2≤r≤(p−1)/2

dimG
(a+r/p,b+r/p)
∗ (σ; Fp).

We only prove the case p ≥ 3 in order to simplify the exposition. In order to treat the case
p = 2, one should modify the argument given in [All22a, Section 6.4] with arguments similar to
those used here.
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Proof. Let us take m > max(|a|, |b|). Now, we apply the Smith inequality (11) to the couple

X :=
({

F̂σp
m,b
≤ 0

}
,
{
F̂σp

m,a
≤ 0

})
.

Similarly to the unweighted case, for some i0 ∈ N,

H∗+i0(X) = HZ∗(σ
p
m,b, σ

p
m,a) � G

(pa,pb)
∗ (σp, pm) � G

(pa,pb)
∗ (σp). (12)

According to Lemma 4.1,

XZ/pZ �
⊔

(1−p)/2≤r≤(p−1)/2

({
F̂σp

m,b
|Pr ≤ 0

}
,
{
F̂σp

m,a
|Pr ≤ 0

})
.

According to Proposition 4.2, up to a shift in degree,

H∗(XZ/pZ; Fp) �
⊕

(1−p)/2≤r≤(p−1)/2

G
(a+r/p,b+r/p)
∗ (σ; Fp).

Therefore, Smith inequality (11) together with (12) bring the conclusion. �

Deducing the Smith-type inequality for βtot is now identical to the unweighted case: one can
express βtot as an integral and then apply Proposition 4.3.

Proposition 4.4. Let σ be a tuple of small R∗
+ × S1-equivariant Hamiltonian diffeomorphisms

with a finite number of associated fixed points in CP(q). For every a ∈ R, every integer n ∈ N∗

and every field F whose characteristic is either zero or prime to any of the weights qj ,

βtot(σ; F) =
1
2

(∫ 1

0
dimG

(a+t,a+t+n)
∗ (σ; F) dt− n|q|

)
.

Corollary 4.5. For every tuple of small R∗
+ × S1-equivariant Hamiltonian diffeomorphisms

with a finite number of associated fixed points in CP(q), for every prime number p that is prime
with any of the weights,

βtot(σp; Fp) ≥ pβtot(σ; Fp).

Another easy consequence of the integral formula is the following proposition (a direct
extension of [All22a, Proposition 6.4]).

Proposition 4.6. For every tuple of small R∗
+ × S1-equivariant Hamiltonian diffeomorphisms

σ with a finite number of associated fixed points in CP(q), there exists an integer N ∈ N such
that for all prime number p ≥ N ,

βtot(σ; Fp) = βtot(σ; Q).

5. Proof of the main theorem

The proof of Theorem 1.2 is essentially identical to that given in [All22a]: we reproduce it with
slight modifications for the reader’s convenience. The proof of Theorem 1.1 was given after
Theorem 3.4.

Proof of Theorem 1.2. Let σ be any tuple of R∗
+ × S1-equivariant Hamiltonian diffeomorphisms

associated with ϕ, so that N(σ; F) = N(ϕ; F). Let us denote by K(σ; F) the number of Z-orbits
of finite bars of the barcode associated with σ over the field F. According to the universal
coefficient theorem, one can assume that F = Q if F has characteristic zero and F = Fp if it has
characteristic p �= 0.
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Let us assume that F = Q. According to Proposition 3.8, N(σ; Q) > |q| implies that
K(σ; Q) > 0 so the maximal length of a finite bar β(σ; Q) > 0. According to Corollary 4.5,
for all prime number p prime with any of the weights,

K
(
σp; Fp

)
β(σp; Fp) ≥ βtot(σp; Fp) ≥ pβtot(σ; Fp).

Thus, by Proposition 4.6, for all sufficiently large prime p,

K(σp; Fp)β(σp; Fp) ≥ pβtot(σ; Q) ≥ pβ(σ; Q),

that is to say that K(σp; Fp)β(σp; Fp) grows at least linearly with prime numbers p. According
to Theorem 3.9, β(σp; Fp) ≤ 1 so K(σp; Fp) must diverge to +∞ with prime numbers p and so
must N(σp; Fp) by Proposition 3.8. Let z1, . . . , zn ∈ CP(q) be the fixed points of ϕ. According
to Corollary 3.2, there exists B > 0 such that dim C∗(σp; zk, tj(zk); Fp) < B for all k, j, and any
prime p that does not divide any of the weights. Let A ∈ N be such that for any prime p ≥ A,
N(σp; Fp) > nq0q1 · · · qdB. Then, for any prime p ≥ A, there must be at least one fixed point of
ϕp that is not one of the zk, that is, there must be at least one p-periodic point that is not a
fixed point. Hence, the conclusion for the case F of characteristic zero.

Let us assume that F = Fp for some prime number p. By contradiction, let us assume
that ϕ has only finitely many periodic points of period belonging to {pk | k ∈ N}. According
to Corollary 4.5,

βtot(σpk
; Fp) ≥ pkβtot(σ; Fp), ∀k ∈ N,

in particular, N(σpk
; Fp) > |q| for all k ∈ N. Thus, by taking a sufficiently large pk-iterate of

ϕ, one can assume that every periodic point of ϕ of period pk for some k is an admissible
fixed point of ϕ (see the text before Proposition 3.1 for the definition of an admissible fixed
point). According to Proposition 3.1, it implies that N(σpk

; Fp) = N(σ; Fp) for all k ∈ N. But
Corollary 4.5 together with Proposition 3.8 imply that the left-hand side of this equation must
diverge to +∞ as k grows, a contradiction. �
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Appendix A. Homology properties of orbibundles

In this appendix, we show a version of the Thom isomorphism and the existence of the Gysin
morphism for orbibundles.

We refer to [Sat57, § 3] for a precise definition of the orbifold structure of a smooth orbibundle
(orbibundles are called V -bundles there). We only use the underlying topological spaces at stake
and work with the following topological version of orbifold containing the underlying topological
maps of the smooth definition. A continuous map π : E → B is an F -orbibundle, F being a
topological space or pair, if B is covered by open sets (Vα) satisfying the following trivialization
property. For all α, there exist a topological space Uα, a finite group Γα acting continuously on
Uα, a continuous action of Γα on Uα × F of the form

γ · (x, y) := (γ · x, fα(γ, x, y)), ∀(x, y) ∈ Uα × F,∀γ ∈ Γα,
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for some map fα, there also exist Γα-invariant continuous map Uα → Vα and Uα × F → π−1(Vα)
inducing the respective homeomorphisms ϕα : Uα/Γα → Vα and χα : (Uα × F )/Γα → π−1(Vα)
and making the following diagram commute:

π−1(Vα)

π

��

(Uα × F )/Γα
χα

�
��

pr1
��

Uα × F��

pr1

��

Vα Uα/Γα
ϕα

�
�� Uα

��

where the pr1 denote the projection on the first factor and the unlabeled maps are quotient
maps.

Given a ring of coefficients R and an R-oriented manifold F , we say that an F -orbibundle
π : E → B is R-oriented if there are a preferred orientation of each fiber π−1(b) and covering
(Vα) such that the χα and the Γα-actions respect the orientation fiberwise. Such a covering of π
is called an R-oriented covering.

Theorem A.1 Thom isomorphism. Let π : E → B be an (Rn, 0)-orbibundle that is R-oriented
(as an Rn-orbibundle). Let us assume that the order of the finite linear groups Γα of an
R-oriented covering of π are prime with the characteristic of R or that the characteristic of R
is zero. Then there exists a natural class τ ∈ Hn(E, E0; R) called the Thom class of π such
that the respective morphisms α �→ π∗(α � τ) and u �→ τ � π∗u are isomorphisms

H∗(E, E0; R) �−→ H∗−n(B; R) and H∗(B; R) �−→ H∗+n(E, E0; R),

where E0 ⊂ E denotes the total space of the associated (Rn \ 0)-orbibundle.

Proof. Let us define the restriction of the Thom class τα to (E, E0) ∩ π−1(Vα) for any α. The key
point of this generalization is that the quotient maps associated with Uα and Uα × (Rn, Rn \ 0)
induce isomorphism in cohomology (and homology) over R according to Lemma 2.2:

H∗((E, E0) ∩ π−1(Vα); R) �−→ H∗(Uα × (Rn, Rn \ 0); R)Γα , (A.1)

indeed, the characteristic of R is either zero or prime with the order of Γα. Let τ ′
α ∈ Hn(Uα ×

(Rn, Rn \ 0)) be the Thom class of the trivial (Rn, 0)-bundle Uα × (Rn, 0)→ Uα. As the action
of Γα on Uα × Rn sends oriented fiber to oriented fiber, it preserves τ ′

α and the Thom iso-
morphism on this trivial bundle is Γα-equivariant. Therefore, τα can naturally be defined as the
inverse image of τ ′

α under (A.1). The proof now follows verbatim the proof of the usual Thom
isomorphism theorem given in [MS74, § 10]. �

Similarly to the case of Sn-bundles, one can canonically include any Sn-orbibundle inside an
(Rn+1, 0)-orbibundle E → B and consider the long exact sequence of pair (E, E0) to obtain the
following corollary.

Corollary A.2 The Gysin long exact sequence. Let π : E → B be an Sn-orbibundle that is
R-oriented. Let us assume that the order of the finite linear groups Γα of an R-oriented covering
of π are prime with the characteristic of R or that the characteristic of R is zero. Then there
exists a natural long exact sequence in homology called the Gysin long exact sequence

· · · → H∗+1(E; R) π∗−→ H∗+1(B; R) ·	e−−→ H∗−n(B; R) π∗
−→ H∗(E; R)→ · · · ,

where e ∈ Hn+1(B; R) is called the Euler class of the orbibundle, it is the pullback of the
Thom class of the associated (Rn+1, 0)-orbibundle, and the natural morphism π∗ : H∗(B; R)→
H∗+n(E; R) is called the Gysin morphism.
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