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THE GROWTH OF THE BERGMAN KERNEL

ON PSEUDOCONVEX DOMAINS

OF HOMOGENEOUS FINITE DIAGONAL TYPE

GREGOR HERBORT

Introduction

In this article we continue the investigations on invariant metrics on a certain

class of weakly pseudoconvex domains which we began in [H 1]. While in that

paper the differential metrics of Caratheodory and Kobayashi were estimated pre-

cisely, the present paper contains a sharp estimate of the singularity of the Berg-

man kernel and metric on domains belonging to that class.

The boundary behavior of the Bergman kernel KD and the Bergman metric Bj>

of a smooth bounded pseudoconvex domain D c: Cn is completely understood near

the strictly pseudoconvex boundary points ([Di 1], [Di 2], [F], and [B-S]). Contrary

to the strictly pseudoconvex case, much less is known about the growth of the

Bergman kernel and metric for weakly pseudoconvex domains. Results for the

Bergman kernel were obtained by Bonami-Lohue in [B-L] on the "ellipsoids"

Sai,...,an = iz ^ Cn I Z \zi \2ai < 1 } , at > 1, for 1 < i < n,

t=i

and by the author in [H 2] on certain generalizations of these ellipsoids, as well as

by Ohsawa in [Oh] for smooth bounded pseudoconvex domains, and by

Diederich-Herbort-Ohsawa in [D-H-O] on uniformly extendable pseudoconvex do-

mains. The Bergman metric was estimated in [D-F-H] and recently in [N 2] on

pseudoconvex domains with a subelliptic 9-Neumann operator. In [Ca] Catlin tre-

ated completely the case of two-dimensional pseudoconvex domains of finite type.

McNeal extended and generalized Catlin's result to the situation of boundary

points of pseudoconvex domains of finite type in Cn, in case that the defining

function is decoupled, [N 1].

We will in this article, using the method of interior domains of comparison,

study the boundary behavior of the Bergman kernel within the class of pseudocon-
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2 GREGOR HERBORT

vex domains of homogeneous finite diagonal type (this notion will be explained at

the beginning of Section 1 below). This class contains also domains which do not

admit holomorphic supporting functions, in particular, it contains the example of

Kohn-Nirenberg, [K-N]. We will also discuss the order of growth for the Bergman

kernel of domains which can be mapped by polynomial mappings of the type

for z — (zi,zf), and zr = (z2, * * *, zn), and nonzero multiindices a{t) ^ No""1, onto

domains of homogeneous finite diagonal type; the result is given in Theorem 1 and

Corollary 3 in Section 1 below. In particular Theorem (5.3.1) in [H 2] will be

generalized.

The plan of this paper is as follows: In Section 1 we state all the results, in

Section 2 we recall some important geometric tools developed in [H 1] and con-

struct the relevant interior domains of comparison for the Bergman kernel. Sec-

tions 3 and 4 contain the proof of Lemma 2 of Section 1 and Theorem 1. Finally,

in Section 5 we will prove a lemma from convex geometry. Since the author is not

an expert in linear optimization he cannot exclude that this lemma can already be

found in the literature; in any case we give the proof for reader's convenience.

Notational conventions

By Afc(a, r) we always mean the polydisc in C* around a ^ Ck with radius

r. Further, dXk is to denote the Lebesgue measure in Ck. For a domain D ci Cn we

let H2(D) = {/|/holomorphic and square-integrable with respect to dXn on all of

D). If for any point z ^ D there exists a function / ^ H2(D), such that f(z) =£

0, we are given the Bergman kernel function

KD(z,z) =max{\f(z)\2\f^H2(D),\\f\\h{D) = l}.

It is smooth and positive, and log KD(z, z) is plurisubharmonic. If for any z ^ D

and X^Cn there is an / e H2(D) such t h a t / U ) = 0 and (df(z), X) * 0 then

it is even strictly plurisubharmonic and hence the potential of a Kahlerian metric,

the Bergman metric Bl of D. If we further donote by bj>{zf X) the functional

bh(z, X) = m a x { | ( d / ( s ) , X)\2\ f ^ H2(D), f(z) = 0,

\\f\\L2W) = l},z^D,X^Cn,

then we have (see [Be, pp. 198/199])
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THE GROWTH OF THE BERGMAN KERNEL 3

on D X Cn. We also note the following monotonicity properties of KD and 63 : If

Df c JD, then on D' X Cn we have

KD(z,z) <KD'(z,z)
and

bl{z,X) <bh(z,X).

§ 1. Notations and results

Let d > 2 be an integer and P — P(#2, * * ' , vd) be a real-valued plurisubhar-

monic polynomial in C d - 1 without pluriharmonic terms. Let

p(v) : = Rez;i + P(v2t--, vd).

We will say that the pseudoconvex domain

G: = {v^ Cd\p{v) <0}

is of homogeneous finite diagonal type if the following hypotheses on P are satisfied;

(1.1) For positive integers m2, * * *, md and all X > 0 we have P(X2m2v2i * * *, X2m2

Vd) =AP(v2,-'f Vd)

(1.2) For a small positive number s also the function P(V2, * * * , Vd) ~~ 2s 2?=2

\vj\2mi is plurisubharmonic on C4"1.

We are interested in a sharp estimation of the growth of the Bergman kernel

on domains G of homogeneous finite diagonal type and certain "covering" domains

Q of G in case that P has the special form

(1.3) P(v2, •••,vd) = Z P,{v,) + S P,dvj, vk).
j=2 )<k

In order to be able to describe our estimates we introduce the functions

(1.4) A,j(v') = max{| j^(v')\\ v, a > 1, v + fi = I)

for v' = (v2, • • •, vd) e C"1 , 2 < £ < 2mh 2<j<d, and for t > 0 :

(1.5) £,(!;,*) = S

We first estimate the Bergman kernel KG(z, z) of G from above.

LEMMA 1. Assume, for the polynomial P the conditions (1. 1), (l . 2) and (l. 3)

are fulfilled. Let as abbreviate for (v, X) e G X Cd

FG(v,v) =\p(v)\-2n<gj(v, \p(v)\)2

;=2
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4 GREGOR HERBORT

and

MUv, X) = l ( y > ; * ) | + 2 Vj(v, I p(v)\y I Xj I2

Then, with a universal positive constant C\ we have for any v ^ G Pi Arf(0, 1)

(1.6a) KG(v, v) < ci FG(v, v)

and for X e Cd:

(1.6b) b%(v, X) < FG(v, v)MUv, X).

We will also study the situation where G is covered by means of monomial

holomorphic mappings. To make this precise we let A c No"1\(O} for w > 2 be a

set of d — 1 multiindices a(;) = (aj>;), • • •, a«;)), 2 < j < d. Further we denote by

eu) GNO" 1 that unit multiindex with 1 at the (i — l).th position and 0 elsewhere,

and let A = A U ieU)\2 < i < n, e(t) $A}. Then let us consider the holomorphic

mappings

fA : C - 1 > Cd~\ zf = (z2, '-,zn) > (z'a(2\ • • •, zfa{d))

a n d

FA(z) = (zufA(z')),forz^ C\

We want to estimate the singular boundary behavior of the Bergman kernel of

the domain

For the domain G we can, given a point v ^ G near 0 €= 9G, find an optimal

interior domain of comparison for the Bergman kernel, on which \p | does not

change by more than 0(1^(^)1). This comparison domain induces on ̂  also a good

comparison domain at any z ^ £2 near 0 ^ d&. This is the content of

LEMMA 2. Let r= p° FA and Q = {z^ Cn\ r(z) < 0} Pi [C x An_!(0,l)].

TTî n, w;î /i universal positive constants C2, c$, and C4, we have for all z ^ Q sufficient-

ly close to 0 ^ d£2, ^ a ^

(1.7) CtKE'Ca{Mz', n ^ I r(z)|2 KQ(z, z) < jr KB^Z', Z),

where
d 2mj

^ n - i ( 0 , 1 ) | 2 2 -A/ , / ( £ ( z ' ) ) l w'aU) ~~ z'a{3) \li < c\ r(z)\}.
j=2 lj=2

From this we will obtain an estimate for KG(Z, Z) by estimating the Bergman
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THE GROWTH OF THE BERGMAN KERNEL 5

kernel of E'c^{z'). In order to be able to state the estimate we need some prepara-

tions:

On R n - 1 we define the aim functional L(xf) = x2 + • * • + xn forx r = (x2,

- —, xn) ^ R""1. Let M ^ GL(n — 1,Q) be a matrix, the rows of which belong to

A and IM be the set IM = {2 < i < n\e(i)M ^ A}. For z ^ / ^ there is a unique

j(M, i) e {2,- • •, d} with e(l)Af = a<>("''». We call a matrix ^ e GL(*z - 1, Q)

a minimum matrix for A, if one has

(Ml) The rows of M belong to A

(M2) The simplex

ZM : = (.r' G R""1!^ > 0 for i <£IM and e{t)MxfT > l/2mj{M,i) for z e /^}

has a minimun corner x ^ with respect to L (i.e. a corner where L attains its

minimum on 2 ^ ) .

For reasons of dimensions the corner x'ji is uniquely determined, and

= S ^ ( ^ ( l ) ) r

(for a row vector y we denote by yT the corresponding column vector). Finally, let

for 2 < i < n : <5,(J0 = L{M~\e{i)T). Then, for all such t we have 5{{M) > 0,

because x(l) = x'M + M~l(e{l))T belongs to S j / , and thus 5i(M) = L(x{t)) —

L{xf
M) > 0.
The corner x'M is the common intersection point of n— 1 edges (of dimension

one) of 2 ^ namely, the Et = M~l(e{t))T\ the numbers <5,C/W) are, intuitively speak-

ing, a measure for the angle included by the xfM + Ei, and the affine plane

{L = L(xfM)) at x'M' Because of

(52(M),--, 5n(M))M= ( I , - - - , 1)

the number d{M) of all numbers z ̂  {2, • • •, n) for which d\{M) = 0 must be

less than n—1. With all these notations we can state our result as follows .'

THEOREM 1. Let £2 be as in Lemma 2. Then, with a suitable positive constant C3

we have for any z ^ ^ sufficiently close to 0:

K0(z, z)>c3\ r(z)\~2 2 n,«
,«cjfu> dog Z,eiM'$(M, i; z))

d(M)

where M (A) is the set of all minimum matrices for A and

For suitable choices of the set A we obtain from this:
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6 GREGOR HERBORT

COROLLARY 1. Suppose G = {p < 0} is as in Lemma 1. Then, with a suitable

positive constant c4 we have, near 0 ^ G:

KG(v,v) > Ci I p(v)\~2 ft «,(t/, I p(w)|)2.
y=2

We let A = {e{i)\ 2 < i < n), so that i ^ = idG. The only contribution

to the right side of (1.8) will then come from the unity matrix 8n-i. Obviously

di(8n-i) = 1, for all i and d(8n-0 = 0. Here, n = d.

We therefore gain an exact description of the singular behavior of the Berg-

man kernel KG of G. It has been announced in [H 1].

COROLLARY 2. On G the Bergman metric B% of G can be estimated near 0 ^

dG as follows:

X) <
, X)

for X ^ Cd. Here the constant c5 > 0 is again universal, and MQ is defined as in

Lemma 1.

Proof Let CaraG denote the pseudodifferential metric of Caratheodory on G.

In [ H I , Theorem 1], it was shown that Caral ^ a constant times M%. This, com-

bined with the well-known inequality B% > Cara|, (see [Ha] implies the lower

estimate. The upper estimate is obtained by using (1.6b) and Corollary 1 together

with B2
G(v, X) = bUv, X)/KUv,v).

COROLLARY 3. There exist positive constants C6, Ro and a number d\ ^ {0, * * •,

n—2), such that for any z e Q f) Aw(0, Ro) one has

(1.9) K0(z,z) > c61 log I r(z)\\-d> \(z)\-2~2^.

Here HA denotes the minimum of L on the simplex

I,A = W e R"- 1 1 t a^Xi > -J"-, 2<j<d, and xz,---,xn> 0 } .
i=2 ^"*/

In the appendix we will show

LEMMA 3. If XQ is a minimum corner for L on 2 ^ , then there exists a minimum

matrix M for A with x'M ~ #o-

Proof of Corollary 3. For any ; G {2, • • •, d} and v ^ G we have

I p(v) I) > c7\ p(v) |~2^7, c7 > 0 independent of v. If M is chosen according to

Lemma 3 for Xo, we obtain from (1.8) (with some constant c'3 > 0):

K0(z,z) > c's I r(z)\~21 log I r(z)\\-d(M) U %j(M, i)(FA(z), \ r(z)\)2di(M)
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>CsC3\log\r(z)\\-d{M)\r(z)\-2-»',

where p' = 2*e/i /~ di(M). To see that />' = 2 ^ we let % denote the diagon-

al matrix # = diag(c2, * * *, c»), where d = 2mjU4i t), for i e /^ , and c* = 1 other-

wise, and let e = (£2,* *', £«) be the vector with Si — 1, if i e /^ , and £,• = 0

otherwise.'Then

/>' = 2(52(M),- •,

On the other hand

and thus x'M = Mr^'H7. This yields />' = 2L(xf
M) = 2L(x0) = 2 ^ .

Remarks, a) This corollary generalizes Theorem (5.3.1) of [H 2]. In that paper

the estimate (1.9) was obtained for P = | v21
2 + * * • + | ^ |2 under the assump-

tion that A — A and Lemma 3 is true.

b) The growth exponent /1A from (1.9) cannot be improved (cf. [H 2, Satz

(5.2.12)]). The estimate (1.9) is sharp under nontangential approach of z towards 0

K0(z,z) <c'6\r(z)\-2-2»A,

when z~>0 e 9£2 nontangentially; Ce > 0 is universal). In general, one also can-

not get rid of the log-term on the right side of (1.9). This was observed in [H 3].

c) The domains of Theorem 1 need neither be of finite type in the sense of

d'Angelo, [A], nor be uniformly extendable in a pseudoconvex way. If, for inst-

ance, Po is a subharmonic homogeneous polynomial in the plane without harmonic

terms, of degree 2k, then the class of domains covered by Theorem 1 contains the

domain

Q = {z e C x A ^ t f ) , 1)| Re zx + P0(z2 • •. • • *„) < 0}.

Here KQ grows at least like dist( *, 9Q)~2~r | log | r(z) \\2~n near 0. The method

applied in [D-H-O] would lead to a growth order of only 2 + , , _ i \ •

§ 2. The upper estimate for KG(v, v)

We recall some observations made in [H 1, Sec. 1]. Here we always assume

that (1.1), (1.2), and (1.3) are fulfilled for P. Let Qr e Cd~l be such that Q =

(— P(Q'), Q') is a boundary point of G within Arf(0, 1). By Taylor expansion of
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8 GREGOR HERBORT

P around Q' we see that, with a holomorphic polynomial h(Q\ C ) °f the form

(2.1) h(Q', O = 2 J^«?0£ + 0(1 C I2)

our P can be written as

(2.2) POO = P(Q') + Re W , w' - 00

+ £ i W , ! / , - Q,) + 2 PAQj, Qk;vj -Qh vk - Qk).
j~2 j<k

Here the Pj and Pik are real-valued polynomials without pluriharmonic terms, and

PAQi, Qt;b, G) = 0( lGl lC*l ) ,

for; < fe. Therefore, the mapping F(Q', '):Cd > Cd, given by

F{Q\ 0 = (Ci + i W ) + ^(O7, C -CO, C - QO

defines a biholomorphism F(Q',') of G onto the domain

G<r = {£ e C" I pO'(?):= Re?! + £ Py(Q', ft) + 2 Prt(Q, <?t; &, ft) < 0).

We next represent Py(Q', • )as P, = ZfOiPtAQ', ft), where Py,/(O', • )is a
homogeneous polynomial of degree /. If we agree upon the further notations

II Pj,i(Q't ') II = maximum of the absolute values of the coefficients appearing in

P,,i((?',•), and

for 2 < j < d, we can state the following bumping lemma, which is shown in Lem-

ma 3 of [H 1].

LEMMA 2.1. There exists a radius r0 > 0, a constant A > 0, and for any Q' ^

Ad-iCO7, 2) a continuous function 0 = 0Q' on Cd, which is plurisubharmonic on the

tube Tro = C X Arf.^O' r0) satisfying

(2.3) - 4 Z SAC, £,) < 0(f) - pQ>(S) < - \ A t %(Q', ft)
7 1 ;=2 ^ ;=2

The bumping lemma will be crucial for the proof of Lemma 2 of this paper. In

[H 1, Lemma 2] we showed how the coupling terms PjkiQj, Qk) ft> ?*) appearing

in (2.1) can be estimated in absolute value by the $,((?', ft), 2 < j < d. This

gives us also

LEMMA 2.2. With a certain positive constant Ai we have for any Qf €E A^^O' , 2)
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and ? e Cd:

;=2

We are now ready for the

Proof of Lemma 1. Let v ̂  G be a point in Ad(0,l), such that t = — p(v) ^

(0,1) (Otherwise there is nothing to be shown). Also we can assume Im^i = 0.

With Qf: = v' we then have v = Q - fei, where Q = (- P(Q'), Q') as before,

and e\ = (1, 0, • • •, 0) ̂  Cd. Since F(Q', •) takes # into — tei we see from the

transformation rule for the Bergman kernel that KG(v, v) = KGQX~~ teu — td).

Because of Lemma 2.2 the Reinhardt domain

is contained in GQ>. This implies

i
(2. 4) KGOX— teu — fei) < KDrt(— fei, - fei) =

It is easy to see that, with a universal positive constant A2 the estimates

( 2-5 ) A2 ~ Au(v') ~Az

and

(2.6) %j(Q', ^ ) < 2m^2 * max [#,(», Ol & II'
2$ls2

hold. If we choose r,- = o ^ , . . ,, 2 < j < d , then the polydisc
zyl-rm;, A1A2U

Dr. , = A l ( - *, | ) X A l ( 0 , ^ L _ ) X ••• X A l (Of

is a subset of DQJ and thus

This, combined with (2.4), implies the estimate (1.6a).

For the proof of (1.6b) we introduce for any X e Cd the vector Y= Ff{Q\v)

XT. Since

and h is of the form (2.1), we must have

Y= «dp(v),X),X2,-',Xd).
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The transformation rule for the functional b% now yields !

bl(v, X) = blQ,(- teu Y) < bD<yj(- teu Y)

= 8(r2- -rdr
2t-2 n Vj(v, 0 - 2 ( | a p ( ^ Z ) | 2 + £ Vj(v, ty\ Xj I2),

j=2 X r ;=2 '

since ZV,* is a polydisc; so we obtain (1.6b).

§ 3. The comparison lemma for the Bergman kernel

In this section we want to prove Lemma 2 of Section 1. The idea of the proof is

similar to that in the proof of Theorem (6.1) of [Ca]. It is based on the 9-technique

for the construction of holomorphic L2 functions. We begin with the computation

of a Levi form. Let us fix a point Q' ^ A^.^O, 1).

LEMMA 3.1. Let G be a domain of homogeneous finite diagonal type as described

in Section 1. Suppose S is a real-valued C2-function on Cd~l satisfying Re V\ ^ S(v2,

' ' *> vd)for any v = (i>i, • • •, Va) €= GQ'. For t > 0 we define on GQ? the function

Then

3)The Levi form ofWtf
 on GQ' is given by

(3.1) ddVt(X,X) =

-^(1 X, |2 - 2Re(3 + \ViJf^Vs{vy2(vi ~ t - S(v'))• (9'5, X^

+ 2[( 1 +

+ Re(t;i - t - SivWffStX, X')}).

1 ~
b) If S > 0, both S and log S are plurisubharmonic, and Re V\ < y S (vf) on GQ>,

then

(3.2) 2dBVt(X, X) > I2 -^

Here d' (resp. d') is the operator d (resp. d) in Cp\, X e C, X' = (X2, • • •, Xd).

so that X= (XUX').
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THE GROWTH OF THE BERGMAN KERNEL 1 1

Proof Part a) follows from a direct computation. For the proof of part b) we

estimate

|2Re(3 4

< io|o's,;nll*il <5o|(9's, jnl2 + 7H*il2

Furthermore

t2

and

This implies for X e Cd:

ddv,(x,x) > ̂ i[\ x, |2 -120 \{drs, xr)\2 -

From the hypotheses Re Vi < -^Siv^for v ^ GQ', we get

= t/\ vi - t - S(v')\ < t/t + ±S(v'),

and thus

(3.3) S(v') < 2 t

Next we use the plurisubharmonicity of log S, and can estimate

1ZU I \O O, A J| _i: L'WJ TT O O O \y\. , -A ) .

So we obtain

2ddvt(X,X) > ̂ l xx I
2 - 2sovt

3/2d^S(f'xr),
t l

t2

Now the claim follows, since Vt = i „ , /x.o ^ 1.
I Wi - t-S(v')\2

LEMMA 3.2. For ©' e A^.^O,!), t> 0 let

t2 I
Then, given an s > 0 £/i<?re wisfe a positive constant j8 tf;/iic/i depends only on e (and

not on t) and a continuous plurisubharmonic function Wt on GQ' Pi Tro satisfying

Wt<\ onGqr Pi r ro and
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12 GREGOR HERBORT

1) On Ee,t := l(pt < e) we have - 4 < ¥t - j81og& < 4

2) 77i£ function Wt — ft (pt is plurisubharmonic on Ee,t.

Proof. Let 4̂ (resp. Ai) denote the constants from Lemma 2.1 (resp. Lemma

2.2). We may assume that A < A\. We know from Lemma 2.2 that

Refi < &-(£) +A,t «,«?',£,) on G .̂
;=2

Consequently, Lemma 3.1 applies to the function S(£') = 2 ^ Z>=2 $>«?',&). The

function Vt defined by this choice of S now satisfies

(3.4a) 0 < V, < 1

(3.4b) 2ddV,(X,X) > f2
 o / .A \Xy\

2-

for any X ^ Cd. Let A be a smooth monotone function on R such that h{x) =

x, for x <e/2, h(x) = 1, for x > 3 s / 4 and | W |, | A" | < 16/£2 . Furthermore,

let 0Q' be the function from Lemma 2.1. Then we choose

and, with a positive constant /3 which we will choose later we define

Wt = O, -

Then ^ / is plurisubharmonic on G^ Pi Tro, and on Ee,t also 0t — ycpt is plur-

isubharmonic, if 0 < j < 1/(2(1 + Ai)e + I /A) 4 . This follows easily from

(3.4b). Further we have on E£> t

(3.5) - (1+ Al e +e/A) < ®t < 2 + 2(A + Ai)e.

Now, on Ee,t U [Cd\E3e/4tt] the function log h ° 0 f is plurisubharmonic, and on

4,t\ E£/2,t its Levi form is

1000^7 A ^7 ^ 1000 ^ T
0 J J 0 0 ^

If we choose 0 </3 <£ n / 4000 , then ?P*/ will satisfy all the requirements.

We can now give the

Proof of Lemma 2. Choose T\ SO small that for any q' ^ A^.^0, 2n) we have

(with Tr0 as in Lemma 2.1)

C x *„_!«), 2n) c {F(Q',-)> FAyl(Tn),
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where Qf = fA(q'). Now Q = {r < 0} Pi [C X A ^ C l ) ] is biholomorphic to a

bounded domain. By the localization lemma of [Oh, p. 898] we have therefore

for z e Q Pi [C X AM_1(0, n)L Here c'2 > 0 is a universal constant and Q' = Q

H [C X Aw_!(0, 2 n ) ] . Let us from now on fix a point z e Q f| [C X A ^ O ,

ri)]. Since £2 is invariant under translation in Im 2i-direction we may assume that

Im zi = 0. We let t = - r(*),tf' = (z2, * * * > *n), and Q' = fA(q'). Then we have

0 = ( - P(Q'), Q') ^ 9G, and z = q- teh where ? = ( - / W ) , ?'). For

£ > 0 we denote by EE,t the ellipsoid from Lemma 3.2 and define further the

"pre-image" Pe.t = (F(Q' , • ) • FA)-1(E£,) f| [C x A ^ ^ O J ) ] . Our goal is to

compare the Bergman kernel functions of £2' and P£,t at(2, >?).

To this end let g ^ H2(PEtt), g =£ 0, be arbitrarily chosen. If x is a smooth

cut-off function with x(x) = 1» if ^ ^ 1/2, and %(x) = 0, if x > 1 and

1 x'(x)\ < 4, for all 1 6 R , then the (0,1) form

is well-defined on Q', with smooth coefficients. Here (pt '•— (pt ° F(Q\ • ) ° i7^,

where 0/ is defined as in Lemma 3.2. Further we have supp(f) c PEft\PLt. Let us

define for a positive integer iV the following function U on Q':

(3.6) U(w) =N-Wt* F(Q',')oFA(w) + Uo,

where Uo is a strictly plurisubharmonic function on £2' with 0 < Uo ̂  1, (note

that such a function exists, since £2' is biholomorphic to a bounded domain!) and

Wt is as in Lemma 3.2. By our choice of n the function U is continuous and plur-

isubharmonic on £2'. Also the function U — (pt, where

(3.7) $t(w) =PN-<pt(w) + Uo,

for w ^ £2', is plurisubharmonic on P£,t, and

(3.8) U> - j + pN'logf

on supp(f). This follows from Lemma 3.2, part (1). The length | v\dE$t of 0 with

respect to the Kahler metric with potential (pt on £2' is bounded above by

X' ("f") I 7 I g\\ d(pt |aa« < 7 C S M +I v \au,

since 990^ > d(pt A d$t/$t + f/o, and, on supp(tz) one has the estimate 0 ,

1 + ej3N. We then can estimate the L2-integral
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= I \v\ 2dd^e~u

as follows:

I(v) < ̂ WNe + l)2ef (f)'" || g || W

Let us abbreviate c2"( € ) = -y-(j8tf€ + l)2ei(j)'N.

In this situation we can imitate the proof of Lemma (4.4.1) [Hor, p.92] (any

problems coming from lack of differentiability of the function U can be overcome

by a standard smoothing argument). We obtain a smooth solution u of the equation

du = v on £2' satisfying

(3.9) f) u \h-udX2n < 2 c2" (e)|| g || W

Now by Lemma 3.2 the weight function e~u is not locally integrable at z, if iV is

large enough. So (3.9) implies that u(z) = 0. Because Wt ^ 1, our function U is

bounded above by N, and therefore, by (3.9) we see that u ^ Lh' and

and the function g = x(0*/e) ' g — u belongs to H2(Q'). Further we have

= g(z), and

As ^ was chosen arbitrarily, we obtain (setting c% = 1 /4(1 + C2r(e)eN)

(3.10)

On the other hand, for small enough e (independent of z) we can arrange that Ee, t

c GQ', and thus P£, * c: Q. This gives

Let us now estimate KPit(z,z). We define the following biholomorphism of C" into

itself:

H(w) = (wy + P(Q') + h(Q', fA(w') - Q'), w').

Then we have PtJ = [C x 4 ,^(0 , 1)] ClH-HUi I 0i(Ci, / A ( O " 0') < «»• Re-
call that for c > 0 we defined the sets

E'c(z') = iu>' e A^^O, 1)| t 2 Ahi(fA(z'))\ w'aU>-z'al"\" < c \ r(z)\).
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With our definitions of Q' and t we obtain by means of (2.5):

(3.12) H-H^d-t, *ft) x E

crHA.t-^O x

Since detH' = 1 the transformation rule for Bergman kernels gives

i—er'KE'^Mz', Z) < KPJZ, z) < (icetz)-1KS'^w)(zr, 2%

Combining this with (3.11) we obtain the desired estimate (1.7), if the constants

c2i c3, and c4 are suitably chosen.

§ 4. Proof of Theorem 1

Let 2 G Q be a point sufficiently close to 0 ^ dQ, such that Lemma 2 applies.

With universal positive constants c2j c3 we have

(4.1) Ka(z, z)>c2\ r(z)\-2KEi3^(z', -T).

Let us use the abbreviations t — | r(z) \ and Qr — fA(zf) again. If we write m —

m2+ + md, we can choose for any ; e {2,...., d) a number I] e {2,..., 2m;}

such that

(4.2) 2 m ( A / ^ (
/

Q / ) ) 7 7 7 > ^ ( Q , 0 .

For any w' e E'Ci(z
r) we have the estimate

for 2 < j < d and therefore

(4.3) £ #y(Q,f)21 wmU) - Q', |2 < (2mymdc3.
;=2

So let us consider the domain

Ui = (M; e C x A ^ o , 1)| R e ^ + S«i(Q,021 tf^-Q', I2 < 0}.
;=2

With the notation m' = (2m)4m dc3, we see that /) =A 1 ( — m' — 1, 1) x Er
cz(z')

c [/, and consequently

(4.4) ^^croCz ' , / ) = TTKD((- m',zr),(- m\ ? ) ) > ^ ( ( - m ' , / ) , ( - m\ ? ) )

In order to estimate Kui((~~m\ z'),( — rn', z')) from below fix a minimum matrix

M for A Recall that M e GL(n~l, Q), the rows of ̂  belong to A =

, and on the simplex
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16 GREGOR HERBORT

EM = ix' = (x2,...,Xn) e Rnl \xi > 0 for i

x and e{i)Mx'T > 2n^ , for i e 7^}

there exists a corner j ; ' ^ , where the aim functional L(x') = x2 + ' ' ' + xn,

attains its minimum value (IM and j(M,i) are defined as in Section 1). We write <5*

= di(M), for i — 2,..., n, and arrange (by permuting the rows of M, if necessary)

that {i\ 5i = 0} = {2,..., d'}, where dr = d ( ^ ) + 1, and with suitable integers

d\ k, satisfying 2 < d" < max Id', 2}, and dr < k < n, the set IM equals Id",...,

A:} (the case 7^ = 0 corresponds to M = unity matrix <?«-i, /c = d' = 1, d" — 2.

Let us further abbreviate ji = j(M, i). Then we can represent the matrix M as

follows

[ e(i2) 1

a0""'

L e " - ' J

where l^,-.-, ^V'-i, 4+i,..., in) c (2,..., n}. Our goal is to estimate the L2-norm of

the function g — (wi — l)~2w over U\ following an idea in the proof of [H 2,

Theorem (5.3.1)]. In our situation a simplified version of [H 2, Lemma (5.3.3)] will

suffice. We have g(—m\ zf) = (m! + l)~2w. So we must show that

(4.5) \g | |h m ) < constant ( ft #*(Q, 0"2*) (lo« 2 «/,«?,

In order to do so we want to work with a coordinate tranformation O in the

of the form

where the ^S(I), 2 <i < n, are (n—l)-multiindices with nonnegative integers as

entries, which are related to M. In order to be able to define 3> and to estimate

reasonably the norm of g over Ui, we need to modify M in the first d'—\ rows. By

the Steinitz exchange process we find {hy-, Id') c (2,..., w}\(4+i,..., 4 ) , such

that the matrix
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aUk)

L * « « > J

is invertible. We also have (<52,* • *, dn)M = (0,- * •, 0, dd'+i,'' ', 5n)M
r — (1, 1,

• • *, 1). So, at the same time it follows that dr < k, otherwise one would have

(1, 1, * * *, 1) M — (1, 1,* * *, 1), since all the alpha's would have been eliminated

from M. We now define the mappings

where we choose fiil) = e{t)M\ 2 < i < n, and

¥(w) = (wu

Then ¥ is a holomorphic mapping of Cn into itself, and outside the analytic set B

= {w ^ Cn \ Wi wn = 0} the Jacobian determinant det Wf of W has no zero.

Indeed, W is a proper mapping from UAW'HB) onto U2 = ¥(UAW^iB)), with

a finite number ?% of sheets. On C/2 the function Q\ : C/2 >R+,

is continuous, and for M; G f/i\ip 1(B), we have

this implies

(4.6) IMIiaWi) = \\g\\b(Ui\¥-i(B))

Now we compute || ̂ i || h(w(U2)) by integrating at first with respect to V\ and then

with respect to vf — (^2, * * *, vn). We obtain, using the notation

/ > ( » ' ) = i «y<(©, t)*\vl-Q',,\z,
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18 GREGOR HERBORT

that

(4.7) \gi\\l2mUl))=f

Here we used that C/2 c [ / 3 : = {(*; = (vu v') e Cw | Re ^ + £(*/) < 0}. By ex-

plicit computation we find that

(4.8)

where Cio = / R(1 + s2)~2nds. Next we estimate

(4.9) (1 + p{v'))in > ft (1 + ty«(Q, t)2 I Vi ~ Qu \2)4,
i=d'+l

and substitute this into (4.6). So we get

(4.10) || 0 i || h(W(Ui)) ^ C10f ft hiiVi) \ j { v d ' + W '-, Vn)dAn-d'.
J (Vdf+i,'",vn) <=An-d'(0, 1) ^i=df + l J

where

\2di~2a
I2 5 '"2

, t)2 v2 - Qu \
2y4, iord' + l<i<k

for k + 1 < i < n,

and

i,..., vn) = / v2

The integral is extended over the domain

1 " 2

i,..., Vn) := {(v2,..., vd>) e A ^ . ^ O , 1) :

|(z;2,..., vd', vd'+1,..., vn) G 4>(Aw_!(0, 1))}.

In order to estimate J(Vdr+\,..., vn) we observe that we have for each v

(4.11) For any 2 < / < rfr there exists an index A (I) e W + 1,..., /c} indepen-

dent of v such that | V\ \ ^ | Vxu)\. To see this, we note that there exists a number
r + 1,..., ft;} with a/ = e{m)M(e{il))T > 0. Otherwise one would have

1 = (1 , . . . , l)(e(tl))T = (0, 0,..., 0, <W, . . . , dn)M((e{il))T

= E
v=d'+l

= o .

5ve
iv)M'(eUl))

Here the second last equality follows from the fact that e(v)M'(eUl))T = 0 for k+1
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< v < n. We now choose a pre-image w' G A^.^O, 1) for v' under O. Then

I vm\ = I w«*m ft I wP r n ^ > » T < I Wil \" <\wu\ = \ v, I.
/>=2

Using this and integrating | v2 \~
2' " ' '\vd' \~2 ove r S(vd'+i,..., vn) we obtain

/ ( tWi, . . . , ^) ̂  (2TT)W-^ ft
Here the i^ are certain integers in {0,..., d' — 1} for which i^r+i + * * * + Vk =

df — 1. We substitute this into (4.9). Also the integration over the i>*+i,...,
^-variables can be carried out without any difficulties, since the <5* are positive
for k + 1 < i ^ n. We then are left with an integral to which Fubini's theorem
applies and gives us

(4.13) II 0i II i»<rwi» ^ Cn I! STi9

i=dr + l

where

ST,= f ^ (vd (logrKYd*! (»,).
•̂  | y« l< l \ I Vi I /

Now let us set Q* = Qj$ji(Q,t) and introduce the new variable ut = ^ji(Qjt)Vi
Then

X

If / is small enough, we have 'SziQ, t) ^diQ, t) > 3. Then we can estimate

(4.15) 0 < log-T^r < ( log^ ) ( l + maxfloffr^T, 0 » .

Substituting this into (4.13) we obtain

where i
- (1 +max{logT^- r ,0})w

^'/c1"'1'""' a + k-'ai')- dMui)-
Obviously we have for all d' + 1 < i < k:

Ti< j I u, |M'-2(1 + Xogy^Y'dXxiud + f (1 + I u, ~ Q,..

< 2n J x2di~K\og{e/x))Vidx

https://doi.org/10.1017/S0027763000003986 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003986


20 GREGOR HERBORT

So by virtue of (4.13), (4.14) we get the estimate

I Uwiuo) ̂  Cn ( A ^(0,0"M')(log Z VJAQJ))*''1

(since vd'+1 + • * * + vk = df — 1). This, combined with (4.6) implies (4.5). The

theorem now follows since M was chosen arbitrarily in GL(n — 1, Q) such that

(M 1) and (M 2) are satisfied.

§ 5. Appendix: Proof of Lemma 3

We will argue in a more general setting. Let m, N be positive integers, N >

m, and a(1),..., a{N) ^ R m \ { 0 ) be vectors with nonnegative entries, and bi,...,

bN G R+. We consider the simplex

2 = {x e Rm\(au\ x) > bh l<i< Ni,

where ( • , • ) denotes the euclidean scalar product in Rm, and fix a linear func-

tional L : Rm ^R such that Lo = min{L(x)| x e 2 ) > — °° exists. Further we

define the set

where for 1 < i < m we denote by e,- the / th unit vector in Rw. For each M e
«$̂o we denote by v(M,i) the unique number in {1,..., M such that etM =

a(y(M>f)), then we will derive Lemma 3 from the following lemma:

LEMMA 4. Assume x° €= 2 is a corner and it is the only one where L attains its

minimum value LoonJl. Then there exists an invertible matrix M satisfying

(5.3) L(M-le$ > Ofor 1 < i < m.

Here yT is the column vector associated to y ^ Rw.

After renumbering the a(f) 's we can assume that with a number

S €= {1,..., M we have (a tf), x°) = 6y for 1 < ; < S , and (ay ) , J:0) > b, if >

> S + 1. We set

d = {M e ^o I The rows of M belong to {a(/)| 1 < i < S)}.

Since x° is a corner of 2 , the set d is not empty, and S ^ m. The following num-

ber p is positive:
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p = min{| M(xV - 2

We can then choose a positive number 5 < p /227=i I # ( / ) | so small that i ° is the
only corner of 2 within the ball Bm(x°,2d). Also let y be a positive number for
which L{x) > Lo + 7 for x e 2 , Bm(x°, 25). For positive numbers £i,...,£#,
which will be chosen later appropriately, we define the simplex

Z' = te e R* I (aU), x) > T^L—'1 ^J^N}
1 ~r £;

and let £0 = max {ei, • • • , eN}. Since 6; > 0 for all 1 < j < N we have (1 +
£o)x G 2 whenever x G 2 ' , and hence Lo : = min(Z{x)|x e 2 ' } ^ Zo/(1 + £o).
Since 2 ^ 2 r , also Lo ̂  Lo. Now we define the £i,..., £Â . For each pair (i,M) ̂
5" = {{1,- • •, S) x ^ with i&{v(M, 1),- • •, v(M, m)} let us consider the real
linear form XI,M on R s:

^ijrUi,' ••, fe) = btti - 2 ^(M^la

(Note that for M ed always {y(M, /) | 1 < / < m) c {1, • • • , S) ! } . For any

0 < € < 1 we can find 0 < £1?- • •, es < e' for which

(5.4)

for any pair (i, M G ^ . If S=^V, let

(Here we set b = b\ + * • * + 6#). If S < N we choose 0 < £r < r?, such that

(5.5) £r 2 2 6 ; II a(i)M~l \\Rm < ht
;=s+l;=l ^

for a n y M e i , | e { S + l , - " , M .

Let xa) be a corner of 2 ' with L(xa)) = Li Then there is a matrix M

such that

(5.6) M(xa))T = 2 4r^4
oa) £B(x° wWe claim that M ̂  d.li not, we would have xa) £Bm(x°, wd). Otherwise

N

2-A II oc II Rm ^ || M yx x ) \\R

.jtf-Mx'l - 2

> p - m ̂  o > jp,
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a contradiction. Since £0 < d/2 + 25 + \\xQ ||R«, we have (1 + eo)x
a) e Z fl

Rm\£wCzo,<5). So this implies Lo > L'o = y ^ — Z ( ( l + So)xa)) > r f r d o +

7*) > Lo, since e0 < 7 / I + I Lo I; so we can conclude that Me d, and, in particu-
lar, (5.1) is satisfied by M. As M even belongs to d it satisfies also (5.2), and we
see from (5.6) that we can write xa) as

„(!.) _ ~0 V £»(MJ) L Mi/jT
X — X ZJ -I I _ OV(M,j)M Cj-

In order to check property (5.3) we observe at first that for all / &{v(M,j)\j
= 1,..., m) the inequality (a{i\ x{l)) > b{/\ + € f holds. To see this we disting-
uish two cases .' Let i ̂  (1,..., S}. Then, as xa) ^ Z!':

0 < (a(t) r{1)) — = i - ̂ ( — • • • ~ ^
U S ^ a ,x ) 1 + £ i *uMi1 + ei, >i + S s > '

But since the right side is nonzero, it must be positive.
Let i e {S + l,..., N}. In this case the assertion follows from the choice of

the Ss+u ' ' ' , sN. So for a small enough positive number r the point x (1) +

TM-leT, belongs to X' for 1 < i < m, and therefore L(M"VD = ^(L(x(1) +

zM^e^) — L(xa)) > 0. The proof of Lemma 4 is now complete.
We can now easily prove Lemma 3.
Let us keep up the notations from Section 1. In the situation of Lemma 3 we

have m = n — 1, and iV = (number of elements of A) +1. Let us suppose at first
that L is a real linear form on Rw~\ such that x° is the only minimum corner for
L on EA. Then we write A = {a(2\..., a{d)) and A\A = k(d+1),..., a W ) }. Since

a(« G Nr^iO) , the numbers c,- = r](a(i\ e), where ^ = (1, 1,..., 1), are all posi-
tive, if 77 > 0. Now let us set

[ cu for d+I <i<N.
Therefore x° + rje is the only minimum corner for L on 2 = {x ̂  R^"1 \(a(i),x)
> bi, for 2 < i < N}. By Lemma 4 there exists a matrix M ̂  GL(n~ 1, Q), the
rows of which belong to {a(2),..., a(iV)}, such that

+ r)e)T=
and

L(M-l(ea))T)

for / = 2,..., w. Here v(^ , /) is supposed to have the same meaning as in the
proof of Lemma 4). Then x° is a minimum corner for L on the simplex
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E i = t e e R w l \(a{i\ x) > bviM.i) - cviM.i), for 2 < i < n}.

Namely, we have

x -x° =M-\M(x + rje)T -Mix" + r]e)T)

^M'i)\x+ rje) - bv{M

j=2

and hence

L(x) -L(x°) = t\(a^Mi)\x) - (bviMti)-cviM.i))\ L(M-l{e{i))T) > 0.
y = 2 L J

Finally we approximate the aim functional L(x) = x2 + * * * + xw in the operator

norm by linear functional L>, such that x° is the only mimimum corner for Lj on

YJA- After selecting a convergent subsequence from the L / s we will find a matrix

J£ e GL(n-ly Q) satisfying (M 1) and (M 2), and for all ; > 1 and j? e EM

one has L ;(x) > L (x°) . By letting;—* °° we find that M is the desired matrix.
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