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Abstract
Research in behavioral decision-making has produced many models of decision under risk. To improve our
understanding of choice under risk, it is essential to perform rigorous model comparisons over large sets of decision
settings to find which models are most useful. Recently, such large-scale comparisons have produced conflicting
conclusions: A variant of cumulative prospect theory (CPT) was the best model in a study by He, Analytis, and
Bhatia (2022), whereas variants of the model BEAST were the best in two choice prediction competitions. This
study delves into these contradictions to identify and explore the underlying reasons. We replicate and extend
the analysis by He et al., this time incorporating BEAST, which was previously excluded because it cannot be
analytically estimated. Our results show that while CPT excels in systematically hand-crafted tasks, BEAST—
originally designed for broader decision-making contexts—matches or even surpasses CPT’s performance when
choice tasks are randomly selected, and predictions are made for new, unknown decision makers. This success
of BEAST, very different from classical decision models—as it does not assume, for example, subjective
transformations of outcomes and probabilities—puts into question previous conclusions concerning the underlying
psychological mechanisms of choice under risk. Our results challenge the field to expand beyond established
evaluating techniques and highlight the importance of an inclusive approach toward nonanalytic models, like
BEAST, to achieve more objective insights into decision-making behavior.

Research in judgment and decision-making often observes clear deviations from the predictions of
normative models of choice under risk and uncertainty like expected utility theory. This has led to
the development of many so-called descriptive models, meant to describe how people actually make
choices in risky and uncertain situations (e.g., Kahneman & Tversky, 1979; Tversky & Kahneman,
1992; Savage, 1954; Bell, 1982). As these models proliferate, determining their relevance in various
decision contexts emerges as a pivotal challenge, underscoring the need for systematic model
evaluations and comparisons.

One effective way to perform such systematic evaluations is to compare models based on their
predictive accuracy in large sets of human choice problems, preferably answered by large samples of
participants. The methodology of comparing models based on prediction accuracy on common data
draws from a large literature in computer and data science, facilitates comparison between models
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with different numbers of parameters, and increases the chances that diverse models will be developed
(Plonsky & Erev, 2021a).

In a recent impressive study, He, Analytis, and Bhatia (2022), hereafter HAB, performed a large-
scale comparison of dozens of models of decision-making under risk. They grouped 19 datasets from
multiple published studies with more than 1800 choice tasks, each a one-shot decision between two
fully described gambles with up to two possible outcomes. They analyzed both datasets with tasks
involving only potential gains (hereafter the gain domain) and datasets with tasks involving both gains
and losses (hereafter the mixed domain). This paradigm of choice between gambles has been a prevalent
research tool in behavioral economics since its inception, enabling researchers to gain valuable insights
into human preferences and attitudes in a wide range of decision-making contexts (e.g., Allais, 1953;
Erev et al., 2017, Ert & Erev, 2013; Kahneman & Tversky, 1979; Stewart et al., 2015). HAB compared
58 published models of risky choice to examine which of these offers the best predictions of individual
decision makers’ choices for this large data. The results revealed that a variant of cumulative prospect
theory (CPT; Prelec, 1998) was the best predictive model in both the gain domain and the mixed
domain.1

However, in two other recent large-scale model comparison studies, Choice Prediction Competitions
(CPC) 2015 (Erev et al., 2017) and 2018 (Plonsky et al., 2024), CPT did not fare as well. In these
competitions, any model, including CPT, could be independently submitted and evaluated for its
prediction accuracy. The results of the competition showed that the model BEAST (Best Estimate and
Sampling Tools; Erev et al., 2017), which is very different from mainstream models like CPT, emerged
as the one with the most accurate predictions.2 It is thus of interest to investigate the reasons behind
these differing results.

1.1. Overlooking nonanalytic models

Aside from the different winning models, several differences exist between the study conducted by
HAB and the two CPCs. The most significant difference is HAB’s decision to exclude a certain category
of models from their large-scale analysis. Specifically, they chose to exclude models that could not
be fitted easily using analytical likelihood functions (hereafter nonanalytic models), like those that
require running simulations to make predictions. This choice, incidentally, implied the exclusion of
the model BEAST from the analysis. The decision to exclude nonanalytic models reflects a general
practice in the field that tends to focus on models that are amenable to estimation and those with
easily identifiable parameters. The focus on such models diminishes modeling effort, allows building
directly on previous classical models (like expected utility and prospect theory), and is likely more
easily justifiable to reviewers and readers (Plonsky & Erev, 2021a). However, there is no apriori reason
to assume that a theoretical “ideal model” of decision-making must necessarily fall within the space
of models that are easily estimable. Ignoring nonanalytic models may hinder progress and suppress
our understanding of human decision-making (Bugbee & Gonzalez, 2022). This potential problem
may be particularly concerning as models that utilize simulations to generate predictions—and that are
therefore not easily estimable using traditional fitting practices—have a strong track record of providing
highly useful predictions of behavior (Erev et al., 2010; Erev et al., 2017; Plonsky et al., 2024).

Furthermore, nonanalytic models are often implemented in ways that are not amenable to easy
estimation because they assume psychological processes that are hard (or impossible) to implement
analytically. Disregarding the potential of nonanalytic models thus may lead to wrong conclusions
about the underlying psychological processes that are important for choice prediction. For example,
(He et al., 2022) concluded that subjective nonlinear payoff and probability transformations are

1When the prediction error was defined as the mean squared error, the measure we focus on in this study.
2Three variants of CPT were submitted to CPC15 (Erev et al., 2017), all of which predicted significantly worse than BEAST,

with the best of the three achieving 187% the error of BEAST. No CPT variants were submitted to CPC18 (Plonsky et al., 2024),
but the organizers fitted and evaluated CPT (on the subset of the data that includes only choice under risk without feedback) and
found that its error is roughly twice that of BEAST.
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essential mechanisms for choice prediction accuracy. However, BEAST does not assume either of these
mechanisms. Rather, it uses simulations to derive the predictions of a process of mental sampling of
potential outcomes which is sensitive to anticipated regret. Hence, evaluating BEAST can help shed
light on the usefulness of assuming very different psychological processes than mainstream models
assume.

In this paper, we seek to reconcile the inconsistent results between the two CPCs, where BEAST
emerged as the superior predictive model, and HAB’s comparison, where CPT was identified as the
leading model. To do so, we apply identical methods to those used by (He et al., 2022) and examine the
predictive power of BEAST, which was excluded from their analysis, on their data. Notably, HAB’s
data includes only one-shot binary decisions under risk with up to two outcomes, whereas BEAST
was originally developed to capture choice in a much wider class of tasks (including decisions under
ambiguity and decisions under risk with repeated feedback). The wide applicability of BEAST has
led its developers, concerned with overfitting issues, to introduce several arbitrary implementation
assumptions that restrict the model in ways that are not necessarily implied by the underlying theory,
but save free parameters. In the simple domain of choice under risk with up to two outcomes, BEAST
requires less free parameters. This allowed us to also develop and test a version of BEAST that relaxes
some of the original restrictive implementation assumptions. This version, which we call AdaBEAST,
maintains the underlying psychological rationale of BEAST but allows for increased adaptability
to different study contexts. Our study thus investigates how two nonanalytic models, BEAST and
AdaBEAST, fare in comparison to dozens of analytic choice models in one of the most basic decision
tasks, and explores what can be learned from this comparison.

2. The structure of BEAST and its distinction from classical models

Before presenting the analysis, it is useful to clarify the main theoretical underpinnings of BEAST, its
main mechanistic structure, and the main differences from mainstream choice under risk models like
CPT. (Implementation details are left for the Methods section and the Supplementary Material.)

BEAST belongs to a class of models that rely on the conjecture that judgment and decision-making
reflect cognitive strategies or tools that have been effective in past experiences perceived as similar to
the current situation (e.g., Plonsky et al., 2015). A key assumption, which builds on Skinner’s notion of
“contingencies of reinforcement” (Skinner, 1953), is that people act as “intuitive classifiers” (Erev &
Marx, 2023). They use environmental cues to intuitively determine the class that the current situation
belongs to, and then rely on strategies that previously worked well in this class of situations. This
subjective imperfect classification process is often effective, but can also lead to behavioral biases:
When people misclassify a situation to a class that only appears similar, they rely on strategies that can
be counter-productive in the current context (Erev et al., 2017).

This cognitive process that relies on potentially intricate subjective similarity relationships can be
highly complex, and extant models (including BEAST) often do not represent it explicitly. Rather,
models that rely on this conjecture aim to approximate the main implications of the complex process.
Past research shows that this can be done by surprisingly simple models (Erev & Roth, 2014; Erev
et al., 2023) that assume people behave as if they take small mental samples of potential outcomes
of the possible actions and tend to choose the action with the best average outcome in the sample
(cf., e.g., Juslin et al., 2007; Vul et al., 2014; Zhu et al., 2020). Many of the previous models in this class
were developed to capture repeated choice behavior. Hence, it was natural to assume that the sampled
outcomes are drawn from the payoffs observed in previous experiences with the same task. BEAST, in
contrast, aims to (also) capture initial (pre-feedback) choice behavior. The sampled outcomes are thus
assumed to reflect the results of cognitive strategies that worked well in situations outside the current
experimental context. These strategies are implemented as potentially biased “sampling tools.”

To evaluate a choice option, BEAST agents mentally sample possible payoffs from either the
objectively described payoff distribution—using the so-called unbiased sampling tool—and/or from
transformed (i.e., biased) versions of that distribution. The use of the three biased sampling tools in
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BEAST— contingent pessimism, uniform, and sign —aims to capture reliance on past experiences
where the information provided was not accurate and objective but biased or irrelevant. Specifically,
the contingent pessimism tool implies sampling (with certainty) the worst payoff described. Its use
may reflect a subjective perception of a task as similar to situations where an adversary could
influence the agent’s realized payoff. A tendency to perceive tasks pessimistically can help explain
behavioral phenomena like loss aversion (Samuelson, 1963), the Allais paradox (Allais, 1953), and the
St. Petersburg paradox (Bernoulli, 1954). The uniform sampling tool implies an equiprobable sampling
of one of the described payoffs. Its use may reflect subjectively classifying a task as similar to situations
where ignoring probability information (which, unlike payoff information, is often unverifiable even
after the fact) was beneficial. A tendency to rely only on payoff information in this manner can
help explain phenomena like overweighting of rare events (Friedman & Savage, 1948) and the Allais
paradox. Finally, the sign sampling tool involves unbiased sampling of payoffs after they have been
transformed using the sign function. Its use may reflect a subjective perception of a task as similar
to contexts where the main goal was to avoid losses (e.g., the initial rounds of survival tournaments
where the worst performers are eliminated). A tendency to focus on the payoff sign can help explain
phenomena like the reflection effect (Markowitz, 1952).3

The mental sampling mechanism in BEAST implies a very different process than mainstream models
of choice under risk, like CPT, and has very different implications. Mainstream models, like CPT,
capture deviations from expected value (EV) maximization like those mentioned above by assuming
they reflect subjective transformations of each possible payoff. These are then weighted together by
subjective transformations of their respective probabilities, thus creating a subjective utility of a given
choice option. Most commonly, these transformations are nonlinear but monotonic, such that higher
and more probable payoffs necessarily contribute more to the subjective utility. In contrast, in BEAST,
due to the inherent stochasticity in the mental sampling process, it is plausible that some payoffs may
be overweighted, underweighted, or even neglected entirely. Furthermore, depending on the sampling
tool that is applied, higher or more probable payoffs might contribute similarly or less to the decision
than other payoffs.

Moreover, in most mainstream choice models, including CPT, the evaluation of each choice option,
and its subjective utility, is formed independently of the alternative options. In contrast, the use of
sampling tools in BEAST is a function of the choice task, not of particular choice options. For example,
if a task is perceived as (also) similar to adversarial situations, then the contingent pessimism tool
will be used on all options. Furthermore, the outcomes are sampled from the choice options in a
correlated manner and are often directly influenced by the properties of the alternative choice options.
This correlated sampling process implies that BEAST in essence includes a mechanism of anticipated
regret from choosing one option over the other: The attractiveness of one choice option is a function
of the expected attractiveness of the other choice option. This type of context dependence was recently
suggested to be crucial for useful choice prediction (Peterson et al., 2021; Plonsky & Erev, 2021b), but
is absent in many classical models.

3. Method

The current study includes four sets of analyses that aim to replicate and extend the analyses conducted
by (He et al., 2022). First, we replicate HAB’s use of an ensemble of choice datasets to examine how
well dozens of models of decisions under risk predict the decisions made by familiar individuals in

3In addition to the assumption of mental sampling, BEAST assumes choice is sensitive to the difference between the options’
expected values. This assumption was introduced to the model based on empirical evidence, but it is not easily justifiable under
a framework of intuitive subjective classification. In the modified version of BEAST that we propose in this article, we remove
this assumption.
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new (out-of-sample) choice tasks. The term “familiar” is used here to highlight that the models were
evaluated based on choice data from the same individual decision makers on whom the models were
also estimated (but using different choice tasks). Importantly, we now add to this examination two
nonanalytic models, BEAST and its modified version, AdaBEAST. Second, as HAB, we analyze the
psychological mechanisms that are embedded in the most successful models, aiming to understand
better the underlying choice processes. Third, we investigate the predictive power of the different
models in each of the different datasets that are part of the ensemble used in the main analysis. The
aim here is to identify whether specific features of the dataset are associated with greater success
of specific models. Finally, we extend the analysis by evaluating the predictive power of the models
on “unknown” (rather than “familiar”) out-of-sample individuals. Specifically, we assess the models’
ability to predict the choices—in new choice tasks as before—of decision makers whose data was not
included in the model estimation phase. Under this approach, neither the participants nor the tasks that
models are required to predict are seen by the models during the model fit, testing the models’ ability
to generalize to new decision makers and new decision contexts.

3.1. Models

Details for all 58 “analytic” models in the model comparison and their estimation procedures can be
retrieved from (He et al., 2022). As mentioned, we add to the comparison two nonanalytic models:
BEAST and AdaBEAST.

3.1.1. BEAST
The following describes the main implementation assumptions of BEAST that are relevant to the
current investigation. More complete details can be found in the supplementary material (SM) as well
as in Erev et al., 2017.

In binary decision under risk problems, BEAST implies option A is preferred over option B if:

[EVA − EVB] + [STA − STB] + e > 0

where EVA − EVB is the advantage of option A over option B based on their EVs, STA − STB is the
advantage of option A over option B based on mental sampling using sampling tools, and e is a normally
distributed error term with a mean 0 and standard deviation σi, where i represents an individual. If one
option stochastically dominates the other, it is assumed e = 0.

ST is the average of 𝜅i outcomes that are each mentally sampled using one of four possible sampling
tools. In each of the 𝜅i independent sampling instances, two outcomes, one from each option, are
sampled using the same sampling tool, and under the assumption that the payoff distributions from
which sampling takes place are positively correlated (a “luck level” procedure – see SM for details).
This implies high sensitivity to the anticipated regret, defined as the difference between the outcome
sampled in one option and the one sampled from its alternative.

Sampling tool unbiased implies unbiased draw from the options’ described distributions. The
remaining three sampling tools imply biased sampling. The sampling tool uniform ignores the described
probabilities and samples as if all potential outcomes are equally likely (Thorngate, 1980). Sampling
tool contingent pessimism yields the worst possible outcome (Edwards, 1954) under some lexicographic
conditions (Brandstätter, Gigerenzer & Hertwig, 2006) that depend on some value 𝛾i and on the ratio
between the worst outcomes of the two options (see SM for details). The sampling tool sign is similar
to the unbiased tool, but samples only the sign of the outcome, ignoring magnitudes (Payne, 2005).
BEAST assumes that the probability to use each of the three biased sampling tools is the same and
that the probability of using the unbiased tool is 1 −

𝛽i
𝛽i+1 .

Finally, an individual decision maker i’s parameters are assumed to be drawn from uniform
distributions as follows: 𝜎i ∼ U [0, 𝜎], 𝜅i ∼ U (1, 2, . . . , 𝜅), 𝛾i ∼ U [0, 𝛾] , 𝛽i ∼ U [0, 𝛽] with 𝜎, 𝜅, 𝛾, 𝛽
free parameters to be estimated.
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3.1.2. AdaBEAST
The original BEAST was designed to capture behavior under diverse conditions, including decisions
under risk with multiple outcome gambles, decisions under ambiguity, and decisions from experience.
To deal with this complexity and avoid overfitting, its developers made several rather arbitrary
implementation assumptions that heavily restrict the model but save free parameters. Since here
we focus on one-shot decisions under risk with up to two outcomes without feedback (the setting
investigated by (He et al., 2022)), we developed a modified, more adaptable version of the model,
AdaBEAST, which relaxes some arbitrary restrictions yet preserves the main logic and mechanisms
underlying BEAST. The following presents details on the changes from BEAST.

One highly restrictive (and theoretically arbitrary) assumption embedded in BEAST is that each of
the biased sampling tools is used with the same probability. Clearly, however, different choice contexts
may lead decision makers to perceive the choice tasks as more similar to some situations than to others,
which implies different likelihoods for using different sampling tools. To capture possible idiosyncratic
contextual effects of different datasets, AdaBEAST relaxes this restrictive assumption. In AdaBEAST,
the probability of using each of the biased sampling tools is a free parameter. Specifically, Wuf,Ws and
Wcp represent the probability of using the uniform, sign, and contingent pessimism tools respectively.
The probability to use the unbiased sampling tool is then simply Wub =1 −

(
Wuf + Ws + Wcp

)
.

Another restrictive assumption originally implemented in BEAST is that the difference in averages
of the mental samples taken (STA − STB) is equally weighted with the difference between the options’
EVs (EVA − EVB). Sensitivity to the difference between EVs was originally introduced to BEAST
based on empirical evidence that choice is highly correlated with EV maximization. Yet, it is not clear
how it fits within a framework of intuitive subjective classification that BEAST derives from. Further,
even if good models of choice under risk should reflect sensitivity to EV difference, the choice to
weight it equally to the output of the mental sampling process is highly restricting and rather arbitrary
(but saves a free parameter). To preserve the model’s possibility to account for high rates of EV
maximization, remain within the general framework of mental sampling as a reflection of intuitive
subjective classification, and increase the model’s adaptability, we chose to make two changes when
developing AdaBEAST.

First, the size of the mental sample taken from each option, 𝜅i, is assumed to be drawn from a
Geometric distribution with parameter p (free parameter). That is, Pr (κi = k) = (1 − p)k−1p. This
change is based on the observation that most decision makers behave as if they rely on small samples
(e.g., Plonsky et al., 2015), but allows for some to behave as if they rely on large ones (Erev et al., 2023).
Second, we completely removed the fixed dependence on EV difference. That is AdaBEAST implies
option A is preferred over option B if [STA − STB] +e > 0. Note that because the weight of the unbiased
sampling tool in AdaBEAST (Wub) can now range from 0 to 1 and 𝜅i can be large (which is more likely
when p is small), it is possible for AdaBEAST to rely on an approximation of the EV: a large unbiased
sample from the outcome distribution. Hence, AdaBEAST can still capture the behavior that appears
as sensitivity to the differences between EVs without having to assume such sensitivity explicitly.

The differences between BEAST and AdaBEAST are at the level of implementation assumptions,
not at the level of the underlying mechanisms and logic. AdaBEAST preserves the idea of subjective
intuitive classification explained above, as well as the idea that in choice under risk, the implications
of this intuitive classification process can be summarized by the use of four sampling tools. Yet,
AdaBEAST arguably implements the process in a more natural and cognitively plausible manner as
it allows the environment to influence the likelihood for each classification and avoids explicit compu-
tations of the EVs. Python code for AdaBEAST can be found in the SM (see https://osf.io/ca6bn/).

3.2. Data

The original data analyzed by (He et al., 2022) included 19 distinct datasets. However, upon inspection,
we found that four of these were not usable for this analysis. Three of the datasets, all from the same
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experiment (Pachur et al., 2018), had discrepancies between the raw data used by HAB and the actual
choice rates as reported in the original article by Pachur et al. (2018; Table A3). The source of these
discrepancies lies in inconsistencies between task IDs in the raw data and the original task IDs, which,
unfortunately, led to distorted computed model performances in HAB’s analysis. In a fourth dataset
(from Stewart et al., 2015), participants faced a substantial proportion of the choice tasks twice in the
same session, which implied those tasks appeared in both the training and test samples, leading to data
leakage. We thus excluded these four datasets from our analysis, leaving 15 datasets that include a total
of 1565 choice tasks published in: Erev et al. (2017), Fiedler & Glöckner (2012), Pachur et al. (2017;
2018), Rieskamp (2008), and Stewart et al. (2015; 2016).4

Each dataset includes choice data from a different experimental context. Participants (sample sizes
range from 30 to 208) in each context made multiple one-shot binary choices between lotteries with up
to two possible outcomes each. The lotteries’ payoff distributions were fully and accurately described
and participants did not receive any feedback on their choices. Number of tasks per dataset (and
participant) ranged from 50 to 150. Figure S1 in the SM shows an example of a choice task from one
experiment.

3.3. Estimation and cross-validation

Fitting the models to the new data requires the estimation of the parameters 𝜎, 𝜅, 𝛾, 𝛽 for BEAST
and the parameters p, 𝜎,Wuf,Ws,Wcp for AdaBEAST. Because the models are simulation-based and
do not have a differentiable likelihood function, we performed a grid search to find the best set of
parameters. Specifically, in each dataset, we first generated the models’ predictions for each choice
task and each profile of parameters implied by the grid. We then estimated the models using a cross-
validation technique similar to that used for the other 58 models in the original study by (He et al.,
2022). Each participant’s choice data was split into the same exact 10 folds of choice tasks as in HAB.
In each cross-validation iteration, we chose the profile of parameters that best fits 9 of these folds
(training data, representing 90% of the choice tasks in each dataset), based on the maximum likelihood
criterion (Cousineau & Allen, 2015), and then elicited the fitted models’ predictions for the held-out
fold (test data, 10% of the choice tasks in each dataset). This process was repeated 10 times for each
participant, with each of the 10 folds serving as the held-out fold once, which implies each observation
is predicted once out of the sample. The SM includes further details on the grid search fitting procedure.

3.4. Analysis

3.4.1. Prediction error
Similar to (He et al., 2022), we focus on the prediction of the choices of individual decision makers
in each task. In the main analysis, for each individual i, each model m is fitted to the training choice
data of that individual and generates a prediction ŷi,m,t for each out-of-sample task t. We then compute,
for each individual, the mean squared error (MSE) of the individually fitted model across all tasks:
MSEm,i = 1

NΣ
N
t=1

(̂
yi,m,t − yi,t

)2 where yi,t represents the observed choice of individual i in task t and N
is the number of tasks the individual faced. Finally, we compare models based on their average MSE
across all individuals (i.e., giving each individual equal weight regardless of the number of tasks he or
she faced).

To extend the previous analysis, we performed an additional comparison aimed at assessing the
prediction error models make for an unknown, out-of-sample individual inew. Here, models are not
trained on any of the choice data produced by this individual. To create a model m’s prediction for

4Although the exclusion of the four unusable datasets means that the original comparison of the 58 models as
reported by He et al. (2022) is also partly flawed, the authors fortunately provided a detailed replication package (see
https://pubsonline.informs.org/doi/suppl/10.1287/mnsc.2021.4090) that allows recalculating all scores without the four flawed
datasets. The results we report here concern performances on the 15 remaining datasets.
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inew in task t, we average the predictions the model makes for all other participants in the dataset who
faced the same task, excluding the target individual inew. That is: ŷinew ,m,t = 1

n−1
∑

i≠inew ŷi,m,t, with n the
number of participants in the dataset.5 The MSE for each out-of-sample individual is then calculated as
before, and we report the average of these MSEs.

To check for statistical significance between the prediction errors of any two behavioral models, we
implemented (using packages lme4, Bates et al., 2014, and lmerTest, Kuznetsova et al., 2017, in R) a
linear mixed-effects statistical model with a fixed effect for the behavioral model and random intercepts
for participants and for cross-validation fold of a dataset. We use the Satterthwaite approximation
(Satterthwaite, 1946) to compute degrees of freedom.

3.4.2. Psychological mechanism classification
As part of the large-scale comparison of risky choice models, (He et al., 2022) classified the evaluated
models as having or not each of nine different psychological mechanisms: payoff transformation, prob-
ability transformation, attention, sampling, regret, disappointment, ranking, threshold, and dispersion.
We use HAB’s classification for all models that they evaluated. BEAST and AdaBEAST we classify as
involving both sampling and regret but none of the other mechanisms. The inclusion of sampling and
regret follows from the description of the models provided above. Concerning the exclusion of other
mechanisms, it may be argued that since the uniform sampling tool assumes outcomes are sampled
uniformly, the models include a mechanism of probability transformation (e.g., to 0.5 in 2-outcome
gambles). Indeed, this tool allows BEAST to capture the behavior that appears as if small probabilities
are overweighted nonlinearly. Yet, the essence of a nonlinear probability transformation mechanism,
as understood in almost every case, is the consistent nonlinear treatment of described probabilities. In
contrast, in BEAST and AdaBEAST, the uniform sampling tool, which may not even be used in the
decision process, never even considers the objective probabilities, let alone transforms them (indeed, it
operates identically even when probabilities are unknown to the agents). Hence, in our analysis, we do
not consider these models as involving a nonlinear probability transformation mechanism.

4. Results

4.1. Replicating He, Analytis, & Bhatia (2022)

To assess the effectiveness of BEAST, we first repeated the primary analysis in (He et al., 2022) by
comparing the predictive performance of the models on datasets containing only choice tasks in the gain
domain separately from datasets containing tasks in the mixed domain (Figure 1). Our results indicate
that relative to all other behavioral models, the original BEAST model (thin arrow) demonstrated decent
predictive performance in the mixed domain (Figure 1a) but poor predictive performance in the gain
domain (Figure 1b).

Analysis of the distribution of fitted parameters (see Figure S2 in SM) suggests that in the
gain domain, the best fit of BEAST often reflects a maximal attempt to account for deviations
from maximization (𝛽 ≈ 0), under the original constraint that the difference between EVs receives
considerable weight (50% weight in the original BEAST). AdaBEAST relaxes this extreme constraint
(as detailed in the methods section) and improves the prediction accuracy. Linear mixed-effects
modeling (see Table S3 in the SM) showed that the difference in MSEs between AdaBEAST and
BEAST is significant in both the gain domain, β = −0.0892, t(5,536) = −37.6, p < .001, and the mixed
domain β = −0.0084, t(6,841) = −5.478, p < .001. This improvement of AdaBEAST can be attributed
to the relaxation of the stringent constraints in the original BEAST, providing it with more context

5Our prediction for the unknown person’s choice in task t assumes he or she is similar to one of the people who are in-sample
and will thus behave similarly to that person also in task t. Yet, because the unknown person is equally likely to be similar to
any of the individuals in the sample, the best prediction for the unknown person is the average prediction in that task across
the sample (or the prediction of an “average new person”). Note this approach does not ignore potential individual differences.
Rather, it uses the only available source of heterogeneity for this prediction task, the heterogeneity in the observed sample.
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Figure 1. Average prediction error (MSE) for in-sample individuals, for the (a) mixed domain and
(b) gain domain. Bar colors indicate the usage of nonlinear payoff and probability transformations
by each of the models. Arrows mark the relative ranking of BEAST (thin arrow) and AdaBEAST
(thick arrow).

adaptability compared to the original BEAST. For example, the distributions of fitted parameters
(Figure S3) for AdaBEAST show that often the weights given to the different biased sampling tools are
very different than one another, an aspect that cannot be accounted for in the original BEAST.6

6Moreover, a t-test reveals that the weights given to the unbiased tool are higher in the mixed [M = .517, SD = .259] domain
compared to the gain domain

[
M = .368, SD = .291; T(5,981.994) = 21.772, p < .001, Cohen′s d = 0.546

]
. Because relying on

many mental draws through the unbiased tool is similar to giving large weight to the EV, these results help explain why the
predictions made by the original BEAST (which implied significant weight to the EVs) are far more accurate in the mixed
domain datasets compared to the gain domain datasets.
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Overall, AdaBEAST is ranked 5th amongst the behavioral models in the mixed domain and 10th

amongst the models in the gain domain (Figure 1, thick arrow). Statistical comparison of AdaBEAST
with CPT that uses Prelec (1998) functions, the best behavioral model in this analysis, shows that
CPT predicts significantly better than AdaBEAST in the mixed domain, β = 0.0054, t(6,842) = 3.129,
p = .002, but the difference in the gain domain is only marginally significant, β = 0.0029, t(5,532) =
1.712, p = .087.

4.2. Psychological mechanisms

A major focus in the analysis done by (He et al., 2022) was on the exploration of the assumed
psychological mechanisms embedded in successful predictive models. The assumption was that if an
assumed mechanism consistently appears in the models that predict best, then it is likely an essential
mechanism for useful predictions of choice behavior, possibly as it reflects an actual human choice
mechanism. In their analysis, HAB observed a clear pattern concerning two specific psychological
mechanisms: nonlinear payoff transformation and nonlinear probability transformation. Specifically,
they found that all top-performing models integrate both payoff and probability transformations while
those at the lower spectrum of performance generally exclude them. This pattern is evident in Figure 1.
These results might suggest that for a model to attain top-tier predictive performance of choice under
risk, the integration of both of these mechanisms is crucial.

However, this clear pattern is challenged when the nonanalytic BEAST models are included in
the comparative assessment. While these models do not assume nonlinear transformations of either
payoff or probability, AdaBEAST exhibits strong performance and is ranked among the top models.
Intriguingly, AdaBEAST stands as the only model to achieve such top performance without assuming
these mechanisms, thereby putting in question the previous pattern that these transformations are
indispensable for accurate prediction.

To gain further insight into the success of BEAST, we repeated this qualitative analysis, this time
focusing on the psychological mechanisms BEAST incorporates (see Figure S3 in SM). Intriguingly,
we found that BEAST and AdaBEAST are the only models among those examined that assume both a
regret and a sampling mechanism, pointing to a possible reason that may help explain why AdaBEAST
is the only model that performs well despite not assuming either payoff or probability transformations.

Specifically, models that include regret but not sampling normally go over all the possible states of
the world, compute the expected regret in each state of the world, and then compute a weighted average
of these. BEAST, in contrast, incorporates regret within a sampling framework. In each sample, a single
state is “realized” and is incorporated into the decision. Hence, it is quite plausible that not all states of
the world will be considered. Consequently, in models with regret but no sampling, it is possible that
high regret in a single state of the world will result in an extreme prediction for choice: all decisions are
influenced by all states of the world. In BEAST, behavior that does not consider even extreme regret in
some states is plausible and expected.

4.3. Dataset-specific analysis

To discern the specific settings in which BEAST performs well or poorly, we analyzed the model’s
effectiveness across various individual datasets (see Figure 2). Our findings showed that the poor
performance of the original model in the gain domain was largely driven by datasets published by
Stewart et al. (2015; 2016). The sets of choice tasks in these studies were specifically designed to
elicit within-individual-context effects and aimed to demonstrate how careful task design can alter
decision-making behavior in predicted ways. Conversely, most other datasets (e.g., Rieskamp, 2008)
derive from studies that mostly incorporated choice tasks that were randomly selected from a large
space of tasks, and arguably provide a less biased framework to evaluate models more broadly. Our
examination yielded an intriguing revelation: AdaBEAST outperformed all 58 behavioral models in
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Figure 2. Prediction error (MSE) for in-sample individuals, by dataset. Each bar represents the
prediction error for one of the models, with BEAST and AdaBEAST highlighted. Names of the datasets
follow (He et al., 2022), and background colors correspond to the domain of choice tasks.

HAB’s comparison in the only two datasets (Erev et al., 2017; Rieskamp, 2008) that exclusively
involved randomly selected choice tasks.

Overall, the nonanalytic BEAST models seem to display a bi-modal performance profile. They tend
to falter in cases where choice tasks are systematically generated to elicit idiosyncratic context effects
but excel in cases where choice tasks are elicited randomly to cover some large space. This trend
underscores the models’ potential aptitude for predicting decisions in broader settings.

4.4. Predicting out-of-sample individual decision makers

One of the goals in comparing the predictive performance of models is to enhance our ability to predict
the behavior of people in the real world. For example, highly accurate predictive models of human
choice can be used to simulate humans when training artificial agents that would later be deployed in
real-world environments (e.g., Moisan & Gonzalez, 2017; Raifer et al., 2022). However, in the study
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Figure 3. Average prediction error (MSE) for out-of-sample individuals in the (a) mixed domain and
(b) gain domain. Bar colors indicate the usage of nonlinear payoff and probability transformations by
each of the models. Arrows mark the relative ranking of BEAST (thin arrow) and AdaBEAST (thick
arrow).

conducted by (He et al., 2022), models were trained and tested on the same sample of participants
(although predicting behavior in choice tasks on which models were not trained on). This raises the
question of the generalizability of the results to new samples or the population at large. Hence, our
subsequent analysis focuses on assessing the predictive power of these models for “unknown”, out-of-
sample individuals (see methods).

Upon extending our analytical focus to assess predictive accuracy for out-of-sample individuals,
the performance landscape showed notable changes (Figure 3; see also Table S4 in the SM). Our
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analysis yielded not only a remarkable enhancement for the original BEAST model but also a notable
change in the rank of AdaBEAST. Specifically, BEAST has now moved up in ranking significantly
and, together with AdaBEAST, is among the top three models on HAB’s data in the mixed domain
(Figure 3a). A linear mixed-effects model with random factors for participants and cross-validation fold
of the dataset shows that the performance of both AdaBEAST, β = 0.0016, t(6,841) = 1.147, p = .251,
and the original BEAST model, β = 0.0014, t(6,841) = 0.986, p = .324, does not differ from that of
the most accurate model in the mixed domain (CPT with Prelec functions). Similarly, the difference
between AdaBEAST and the most predictive model in the gain domain under this analysis (Salience;
Bordalo et al., 2012) was also not significant, β = 0.0021, t(5,528) = 1.455, p = .146.

5. Discussion

The current research is motivated by inconsistent results observed in prior large-scale decision-making
model comparisons and aims to understand the underlying reasons for these differences. While BEAST
emerged as the leading predictive model in two CPCs (Erev et al., 2017; Plonsky et al., 2024), a
recent analysis by (He et al., 2022) identified a variant of CPT as superior. Our research examines
several key methodological differences between these studies that may explain the divergent results.
First, in the CPCs, competition participants could submit any model they wished, whereas in HAB
the set of competitor models was limited to those adhering to specific criteria set by the authors, and
incidentally did not include nonanalytic models. Second, the CPCs featured a broader range of choice
tasks, including decision-making under multi-outcome gambles, under ambiguity, and from experience,
whereas HAB focused exclusively on decision-making under risk with up to two outcome gambles.
Third, models in the CPCs were evaluated based on their predictive accuracy in choice tasks randomly
sampled from a large space, whereas in HAB models were evaluated on mostly systematically hand-
crafted choice tasks. Lastly, models in the CPCs were required to predict the choice rates of new samples
of decision makers, whereas, in HAB, models were required to predict the behavior of individuals
already “familiar” to them from the training data. Here, through multiple analyses, we aim to deepen
our understanding of the usefulness and predictive efficacy of different models of decisions under risk
and offer insights for future studies.

While the CPCs did not apply strict criteria for participation, welcoming all models (including
CPT), (He et al., 2022) chose to exclude nonanalytic models because of their complex fitting
process. This is an understandable and legitimate criterion since the necessary computational and time
resources required for fitting nonanalytic models can be very demanding. However, the exclusion of
nonanalytic models may hinder our understanding and can lead to overestimated implications about
the psychological mechanisms that help predict decision-making behavior. In their paper, (He et al.,
2022) marks nonlinear payoff and probability transformations as essential mechanisms for predictive
performance. For example, they write: “Subjective payoff and subjective probability transformation
mechanisms stood out as key mechanisms for improving predictive performance in risky choice.” (p.
3656). Yet, our analysis demonstrates that accurate predictions of risky choices are possible without
relying on nonlinear payoff and probability transformations. BEAST, and more so AdaBEAST predict
choice well despite not including these transformations, relying instead on mechanisms like sampling
and regret.

The success of our models that combine sampling and regret raises the question of how these
models differ from other models that involve either of these mechanisms. According to (He et al.,
2022), none of the other evaluated models includes both sampling and regret, making BEAST’s unique
combination of these mechanisms potentially key to its strong performance. Specifically, unlike some
other sampling models (e.g., PRT, Viscusi, 1989), BEAST assumes the mental sampling process is a
property of a choice task, rather than the choice options, allowing for context-dependent decisions.
Unlike other models that include regret (e.g., SEP, Mellers et al., 1999), BEAST’s context dependence
is also influenced by the sampled state of the world. Most regret-based models assume decisions are
influenced by all possible states, which may lead to extreme predictions due to high regret in a single
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state. BEAST, however, mentally “realizes” only one state per sample, and as a result, behavior that
overlooks even extreme regret in some states is plausible and expected.

When considering datasets primarily comprising randomly selected choice tasks, rather than choice
tasks manually crafted by the researchers, the implications of our study become increasingly relevant.
While most of the datasets in our analysis included only systematically crafted choice tasks, others
also incorporated randomly generated tasks. Analysis of specific datasets revealed that while BEAST
tends to perform poorly in contrived, context-specific scenarios, it has marked proficiency in randomly
sampled environments; indeed, its adaptable version outperforms all other models in the only two
datasets that contain strictly randomly sampled tasks. This divergence in performance foregrounds
BEAST’s enhanced aptitude for predictive fidelity in settings that potentially contain a broader coverage
of the spectrum of possible tasks. The success of our models under such conditions aligns with the
original intent for which BEAST was developed. The model was specifically designed to capture a
broad spectrum of phenomena in human choice behavior and predict human decision-making in wide
sets of environments (Erev et al., 2017).

Despite the success of the nonanalytic models in specific datasets with exclusively randomly
sampled choice tasks, our analysis still showed that in the original analysis as conducted by (He
et al., 2022), and includes all datasets combined, CPT performs better. One possible reason for this
gap may be the fact that CPT is a highly flexible model that when fitted on some choice data by
an individual in some context can accurately capture many of that individual-context idiosyncratic
interactions well. Indeed, in a recent study, Fudenberg et al. (2023) have asserted that CPT is so flexible
that it “would have performed well out-of-sample given sufficient data from almost any underlying
data-generating process that respects first-order stochastic dominance” (Fudenberg et al., 2023, p. 21).
In contrast, BEAST was designed with the intent to predict behaviors of new unknown individuals and
is congruently far less flexible. To deal with BEAST’s rigidity issues, we developed AdaBEAST which
allows for increased adaptation across contexts, without fundamentally changing the underlying theory
and main underlying assumptions. Indeed, the results showed that AdaBEAST performs better than
BEAST in both the mixed domain and the gain domain in which AdaBEAST’s prediction power was
statistically indistinguishable from that of CPT. However, the results may also suggest that AdaBEAST
remains less flexible than models like CPT and therefore does not predict the choices of familiar
individuals as well.

Accurate prediction models of human choice can be highly useful in many practical applications.
In some cases, like when gauging a patient’s adherence to treatment, developing a personalized
prediction model for a specific individual is the appropriate approach. But in many other cases,
prediction models are most useful when they can predict the behavior of unknown decision makers.
This is particularly true when making policy decisions when broad population insights are required,
for example for assessing the population response to a planned sugary drink tax or pricing strategies in
public transportation. In light of this, in our work, we found it beneficial to also assess the predictive
capabilities and generalizability of the models presented in (He et al., 2022), as well as BEAST and
AdaBEAST, when applied to new unknown individuals. Indeed, we found that under this analysis the
remaining gap between AdaBEAST and CPT (or Salience) is eliminated. These findings accentuate the
importance of BEAST’s foundational design and its robustness across varied participants.

To predict unknown individuals, we essentially create a prediction for an average new person drawn
from the population implied by the observed sample. It may thus be argued that the relative additional
success of our nonanalytic models in this task could reflect the lower sensitivity of the models to
individual differences. It is probably true that when a model’s predictions in a task are not very sensitive
to the values of the individual-level parameters its prediction for an average person in the population
(based on a sample) would be less noisy and thus better when applied to new individuals. Yet, note that
a relatively low (vs. high) sensitivity of the predictions to the choice of parameters is not necessarily
evidence against the model’s validity. That a model is highly flexible and allows any behavior given
different parameters (like CPT; Fudenberg et al., 2023) does not mean that it is necessarily a “proper”
model.
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The aforementioned analysis compared the prediction capabilities of the models for new decision-
makers in new choice tasks, but it still involved the prediction of behavior in the same experiment
and context. That is, to the extent that choice behavior in one task might be influenced by the other
tasks that people face in the same experiment (e.g., Ert & Erev, 2013; Schneider et al., 2016; Stewart
et al., 2015), training data of models in this analysis involves access to contextual features that may
impact behavior within an experiment but will be irrelevant outside of it. Going forward, aligning
with methodologies akin to the CPCs, it would be insightful to train models on datasets of specific
experiments and participant groups, followed by prediction for entirely new participant groups in new
experiments. Such an approach would further our understanding of model generalizability, bringing
both theoretical clarity and practical applicability to the fore.

The present study underscores the importance of considering a range of models, including those
that may be perceived as more difficult to estimate, as it can add valuable insights into the underlying
mechanisms of human behavior. The relative success of BEAST challenges the research community to
venture beyond traditional strategies when building models to achieve even better results.
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