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Abstract

The negative binomial distribution model is reformulated and used to
demarcate a host population at a specific level of infection by defining an
attribute spanning a range of parasite aggregations. The upper limit of the range
specifies the boundary for the classification of the host population and provides
a technique to determine the cumulative probability at any level of parasite
infection to a high degree of accuracy. This approach also leads to the evaluation
of the k parameter, i.e. an inverse measure of dispersion of parasite aggregation,
for each fraction of the host population with a discrete level of infection. The
basic mathematical premise of the negative binomial function is unaltered in
developing this reformulation which was applied to data on the distribution of
the trichostrongylid nematode Heligmosomoides polygyrus in populations of the
field mouse, Apodemus sylvaticus.

Introduction

Empirical distributions have been extensively rep-
resented by the negative binomial probability function for
the past 60 years or so. However, in a critical report, Smith
et al. (1991) pointed out that the aggregated nature of
parasite frequency distributions have been dealt with in
an approximate or superficial way. The present study
attempts to address this issue through a reformulation of
the negative binomial probability function.

Crofton (1971) raised the question of a probabilistic
distribution model which was subsequently addressed by
May (1977) in the development of deterministic models
involving the dynamics of host–parasite interactions. In
May’s model the dynamics are formulated as a set of
differential equations involving birth and death processes
of host–parasite systems. In the process of solving these
equations, approximations to the time independent
negative binomial distribution (NBD) were introduced
(May, 1977; Anderson & May, 1978).

Phenomenologically parasite distribution is character-
ized by the aggregation of parasites of variable numbers

among hosts. Analyses on observed data from field/
laboratory studies are performed using four single valued
summary indices including the mean intensity of
infection m, variance v, prevalence p. The fourth index k
is used as an inverse measure of parasite aggregation.
Despite the inherent variability of parasite aggregation,
the choice of this single valued measure is based on the
fact that k varies slowly with the mean intensity for a
sample of size N of the host population and is sensitive to
the actual frequency distribution (Pielou, 1977).

The primary aim of the present paper is to reformulate
the NBD function without altering its basic mathematical
tenet. The reformulated model provides techniques to
evaluate the k index of parasite dispersion in host
populations at discrete levels of aggregation.

Materials and methods

Reformulation of the negative binomial

In general terms, the binomial distribution determines
the probabilities of fractions of a random population that
possesses a specific attribute. In parasite frequency
distribution studies, the application of the NBD is
focused on evaluating the probability of an uninfected
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fraction of a host population of size N. In the process, the
population is demarcated into two classes by the attribute
of infection, i.e. hosts with zero and non-zero infections.

The probability of the zero infected class is readily
calculated through the well known zero order NBD
equation whereas subsequent probabilities with respect
to non-zero parasites at successive levels of infection are
calculated in sequence. These step by step calculations are
subject to a propagation of errors at each step.

In reformulating the NBD probability, an attribute a is
set to span a defined range 0 # a # i*, where the number
of parasites is limited between the lower and upper limits
of 0 and i* respectively. The upper limit of the range sets
the reference line for the level of infectivity and divides
the host population into two sub-populations: (i) hosts
infected with any number of parasites between 0 and i*,
and (ii) hosts infected with parasites greater than i*.

The NBD function is expressed in terms of the attribute
a in a form similar to the conventional representation as
follows:

N0#a#i*
N

� �
¼ ½1 2 pa� ¼ 1 þ

m

ka

� �2ka

ð1Þ

In equation 1, ka represents the inverse of parasite
dispersion of greater than i* and pa is the prevalence of
infection in the host population.

The left hand side of equation 1 is a cumulative fraction
of a attributed hosts (the first sub-population) infected
with parasite numbers in the range between 0 and i* as
follows:

N0#a#i*
N

� �
¼

N0 þ N1 þ · · · þ Ni*
N

ð2Þ

Equation 1 is a general expression which reduces to the
zero order negative binomial expression at a ¼ 0; as
follows:

N0

N

� �
¼ ½1 2 p� ¼ 1 þ

m

k

h i2k

ð3Þ

In this case the p and k parameters are left
unsubscripted. At a ¼ 0, the population of N hosts is
divided in two classes: (i) an uninfected class with 0
parasites, comprising N0 hosts and (ii) an infected class
with non-zero parasites, comprising N 2 N0 hosts and
this defines the prevalence of infection.

The left hand side of equation 3 represents the fraction
N0/N of the host population. The right hand side is
indexed by k operating on the mean intensity of infection
and provides a measure of the distribution of parasite
(non-zero) aggregation in the host population. Small
values of k imply a high level of aggregation among few
hosts (overdispersion) whereas large k values indicate a
low level of aggregation (underdispersion). As k increases,
the dispersion tends to form a random pattern (Poisson).

The reformulated NBD equation 1 within a specified
range of the attribute can be applied to demarcate a host
population at any level of infection. In the range
0 # a # 1, the host population is divided into two classes
comprising (i) hosts infected with 0 or 1 parasite and (ii)
the remainder with 2 or more parasites. Therefore the
cumulative NBD probabilities of the orders 0 and 1 are

lumped into one sub-population and the remaining
probabilities into the other sub-population.

Furthermore, using the reformulated NBD equation, it
is possible to systematically determine the aggregation
index which in turn provides a measure of dispersion of
parasites above the i* threshold of the a range within the
population. The process can be sequentially extended by
increasing the i* value and the host population
fractionated at successive levels of infection. Thus the
parameter ka corresponding to each level of infection
above the a range is determined. This leads to a
complete decomposition of the k parameter. Thus the
distribution is quantified by a set of ka components
corresponding to discrete levels of parasite aggregation
in a host population.

Evaluation of k

By taking the natural log of both sides, equation 1 is
transformed into the following quasi-linear form:

ln
N0#a#i

N

� �
¼ 2ka ln 1 þ

m

ka

� �
ð4Þ

The left hand side of equation 4 is determined by
inserting the ratio ½N0#a#i* =N� corresponding to the a
range. With the observed mean m on the right hand side,
the value of ka is systematically varied until the two sides
are equal.

Using standard numerical techniques, ka can be
calculated for any desired fraction. The resulting ka
value is a measure of parasite aggregation above the
upper limit of the a range.

The conventional approach calculates an estimate of k
using the mean m and variance v of the observed data set
with the following relationship:

k ¼
m 2

v 2 m
ð4aÞ

A comparison of k values calculated from equations 4a
and 3 respectively shows a marked divergence. A re-
calculation of the prevalence value using the k estimate
from equation 4a gives a discrepancy in the prevalence
value relative to the observed infection in a host
population. A further correction can be made (Gregory
& Woolhouse, 1993) by subtracting the standard error of
the mean from the numerator of equation 4a as follows:

k ¼
m 2 2 v=N

v 2 m
ð4bÞ

Traditionally, the k value calculated from equation 4a is
modified by employing a maximum likelihood procedure
(Bliss & Fisher, 1953) and a significance analysis is
performed through the chi-square test between each
observed frequency and the associated NBD probability.
Even after refining the k index either by equation 4b or by
the maximum likelihood procedure, the discrepancy in
the prevalence is slightly improved. Using conventional
methods, the computation of the cumulative NBD
probability at successive non-zero levels of infection is
cumbersome. In addition, any numerical error introduced
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at the zero level of infection is propagated in these
subsequent calculations.

In the reformulated NBD approach, any non-zero level
of infection is reached by specifying the upper boundary
of the a range and the corresponding ka parameter can be
calculated using a numerical search with minimum error.
By adding increments to the demarcation threshold, i.e.
the upper limit of the a range, this technique can be
repeatedly applied to determine ka components at any
level of infection in the host population.

Application of the reformulated NBD

The reformulated negative binomial distribution
approach has been applied systematically to a range of
macroparasites in populations of the field mouse
Apodemus sylvaticus, collected from a woodland site in
Surrey, southern England (grid reference, 993693) during
the months of September 1999 and 2001 (Behnke et al.,
1999). Nematodes, and in particular the trichostrongylid
Heligmosomoides polygyrus, are dominant members of
the intestinal helminth community of A. sylvaticus
(Lewis, 1987).

The present reformulation was used to: (i) evaluate k in
the overall distribution of H. polygyrus in the mouse
population; and (ii) decompose k as a function of the
mouse population fractions infected with H. polygyrus.

Results and Discussion

Comparison of k and p values

A direct comparison between conventional and
reformulated methods was made by calculating k and p
values using equations 4a,b and 3, respectively.

The number of H. polygyrus found in mouse popu-
lations examined in 1999 and 2001 are shown in tables 1
and 2, respectively.

With a 55% prevalence value of H. polygyrus in 1999
(table 1), the k value evaluated after reformulation is
lower than that calculated conventionally. With a 100%
prevalence in 2001 (table 2), the reformulated value is
higher than that obtained by conventional methods,
whereas in 1999 and 2001 conventional methods
respectively produced discrepancies of 7% and 3% in
prevalence values, relative to observed data.

Decomposition of the k parameter

From the 1999 and 2001 data sets, the k parameter was
decomposed by systematically fractionating the mouse
population at every level of infection (table 3).

The decomposed k values are plotted as a function of
prevalence (see fig. 1) and in both 1999 and 2001, the data
exhibit a non-linear relationship. The non-linearity
becomes pronounced at higher prevalence levels of

Table 1. Frequency distribution of Heligmosomoides polygyrus (Hp) in a sample of Apodemus sylvaticus
from a woodland site in Surrey, September 1999.

Mice 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Hp 0 0 0 1 14 0 1 31 0 2 0 3 5 18 9 0 0 0 14 61

No. of mice ¼ 20 Hp ¼ 159
Mean, m ¼ 7.95 Variance, v ¼ 223.94

Equation 4a Equation 4b Equation 3
Observed

k p k p k p prevalence

0.29 62% 0.24 57% 0.22 55% 55%

The comparison shows a discrepancy of 7% in the calculated prevalence using the estimated k value
from equation (4a) compared with the observed prevalence of 55%. Similarly a discrepancy of 2% is
found using the k value from equation (4b).

Table 2. Frequency distribution of Heligmosomoides polygyrus (Hp) in a sample of Apodemus sylvaticus
from a woodland site in Surrey, September 2001.

Mice 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Hp 34 34 8 19 17 15 4 2 6 11 9 23 29 54 3 8 3 32 5 4

No. of mice ¼ 20 Hp ¼ 320
Mean, m ¼ 16.0 Variance, v ¼ 201.16

Equation 4a Equation 4b Equation 3
Observed

k p k p k p prevalence

1.38 97% 1.33 96.7% 4.61 100% 100%

The comparison shows a discrepancy in the calculated prevalence of 3% using the estimated k value
from equation (4a) and a discrepancy of 3.3% using the k value from equation (4b), compared with
an observed prevalence of 100%.
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90–100%. The continuity of the trajectories in both years
is interrupted where parasite data are missing.

The decomposition of the k parameter with respect to
discrete fractions of a host population provides a new
approach to distribution patterns of parasite aggregation.
At a high level of prevalence, a wide range of parasite
aggregation is expected among a large proportion of hosts
and therefore the decomposed ka component is relatively
large (fig. 1). Conversely, as the host population narrows
to a smaller fraction, a relatively reduced range of
aggregated parasites prevail in the fewer hosts and the
corresponding ka components are small (fig. 1).

Therefore, although parasite aggregation is a conse-
quence of host parasite interactions and observations of
parasite aggregation at the host population level are
essentially random events, an implicitly non-random
pattern exists in the distribution of these random events.

Inverse or reciprocal values of the k components
plotted against the host population fraction illustrate
the dispersion of parasite aggregation in mice in both
1999 and 2001 (fig. 2). Continuity in the dispersion
trajectories of both years is broken where observations
are missing.

This plot is almost a mirror image of the ka profile.
Here the inverse of ka components are plotted against

prevalence of infection to show the dispersion profile,
which represents an aggregated distribution of
H. polygyrus in the mouse population under investigation.

The aggregation of parasites can be interpreted in
terms of the attribute range of the reformulated model.
The upper limit of the specified attribute range divides
the host population into two classes. When this limit is
low, the two classes include: (i) a small fraction of hosts
with a relatively narrow range of parasite aggregation;
and (ii) a large proportion with a wide variation of
aggregation. This is characterized by the relative
homogeneity within the host population. (underdisper-
sion) so that the corresponding dispersion measure has a
low value (fig. 2).

As the upper limit is increased, the proportion of hosts
infected with a high degree of aggregation decreases, i.e.
only a few hosts are infected with large numbers of
parasites. Taking the entire host population into con-
sideration, hosts with high aggregation levels are seen to
be thinly distributed (heterogeneous) resulting in over-
dispersed values (fig. 2). Also aggregations of 61 and 54
parasites found in 5% of the mouse populations in 1999
and 2001 respectively reflect high dispersion values.

Table 3. Decomposed k components corresponding to prevalence levels of infection of Apodemus
sylvaticus with Heligmosomoides polygyrus from a woodland site in Surrey, September 1999 and 2001.

1999 2001

Prevalence
fraction (%)

Parasite
burden k

Prevalence
fraction (%)

Parasite
burden k

55 ka. 0 0.221 99.9 ka. 0 4.61
45 ka. 1 0.119 95 ka. 2 1.088
40 ka. 2 0.097 85 ka. 3 0.560
35 ka. 3 0.076 75 ka. 4 0.364
30 ka. 5 0.055 70 ka. 5 0.301
25 ka. 9 0.045 65 ka. 6 0.252
15 ka. 14 0.022 50 ka. 9 0.146
10 ka. 18 0.013 30 ka. 19 0.065
5 ka. 31 0.0055 20 ka. 32 0.037

5 ka. 34 0.0066

Fig. 1. The relationship between decomposed components of the
ka parameter and cumulative prevalences of infection of
Heligmosomoides polygyrus in Apodemus sylvaticus from a

woodland site in Surrey, September 1999 (A) and 2001 (B).

Fig. 2. The dispersion / aggregation of Heligmosomoides
polygyrus as a function of prevalence of infection in Apodemus
sylvaticus from a woodland site in Surrey, September 1999 (A)

and 2001 (B).
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In general, dispersion values tend to decrease sharply
in 0.1–20% of the host population. In the 20–60% region,
this decrease becomes gradual and the distribution
pattern changes from overdispersion to underdispersion.
Between the 60–100% prevalence levels, the cumulative
parasite aggregation is underdispersed where a large
proportion of hosts carry a wider range of parasite
numbers. Inherent in this pattern lies the scope of
assigning appropriate thresholds to demarcate a host
population into risk and non-risk sub-sets in terms of
infection.

In conclusion, the reformulated negative binomial
approach provides an exposition of the one-to-one
correspondence between fractions of the host popu-
lation and parasite aggregation levels associated with
them. Consequently the two populations (hosts and
parasites) are broken down into multi-valued com-
ponents. By using the attribute definition, the basic
tenet of the negative binomial model is unaltered.
Numerical calculations of distribution parameters
consistent with fractions of the host population are
highly accurate through this mathematically tractable
procedure.

Practical implications of decomposing the k par-
ameter lie in the fact that a set of equations are
formed, which include population fractions together
with their respective k indices for different mean
intensities of infections. This leads to the development
of theoretical predictor models. A comprehensive
model is currently being developed to connect the
micro-elements of the summary indices used in the
study of parasite frequency distribution at the host
population level. These micro-elements are the ka
components, which correspond to fractions of the host
population at the level of mean intensity of infection
and this can, in addition, apply to both macro and
microparasites.
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