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Abstract

We prove a global Torelli theorem for pairs (Y,D) where Y is a smooth projective
rational surface and D ∈ |−KY | is a cycle of rational curves, as conjectured by Friedman
in 1984. In addition, we construct natural universal families for such pairs.
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1. Introduction

We work throughout over the field k = C. We work in the algebraic category unless explicitly
stated otherwise.

Definition 1.1. A Looijenga pair (Y,D) is a smooth projective surface Y together with a
connected singular nodal curve D ∈ |−KY |. Note pa(D) = 1 by adjunction, so D is either
an irreducible rational curve with a single node, or a cycle of smooth rational curves. We fix an
orientation of the cycle D, that is, a choice of generator of H1(D,Z) ∼= Z, and an ordering
D = D1 + · · ·+Dn of the irreducible components of D compatible with the orientation.

By an isomorphism of Looijenga pairs (Y 1, D1), (Y 2, D2) we mean an isomorphism f : Y 1
→

Y 2 such that f(D1
i ) = D2

i for each i = 1, . . . , n and f is compatible with the orientations of D1

and D2. We write Aut(Y,D) for the group of automorphisms of a Looijenga pair (Y,D) in this
sense.

By the birational classification of surfaces, Y in Definition 1.1 is necessarily rational.
Looijenga pairs were introduced in [Loo81] as natural log analogs of K3 surfaces. Looijenga

studied the cases n 6 5 in detail. Here we consider moduli of Looijenga pairs with no restriction
on n. We prove the global Torelli theorem, conjectured by Friedman in [Fri84] (see Theorem 1.8).
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We construct natural universal families (§ 5), give a precise description of the moduli stack of
Looijenga pairs (Theorem 6.1) and identify the monodromy group (Theorem 5.15).

The motivation for studying Looijenga pairs comes from several directions. Our initial interest
arose from the construction of [GHK11]. There we construct a mirror family to any Looijenga
pair (Y,D). If the intersection matrix of the components of D is not negative semi-definite, then
our construction yields an algebraic family. We call this the positive case. In the sequel [GHK] to
that work, we will apply the Torelli theorem to show that in the positive case the mirror family
is the universal family of Looijenga pairs constructed here. This has a striking consequence: our
construction of the mirror family endows the fibres with a canonical basis of functions. We call
elements of this basis theta functions, as a related construction yields theta functions on abelian
varieties. Realizing this as the universal family now endows each affine surface U = Y \D in the
family with canonical theta functions. Though these include some of the most classical objects
in geometry, e.g. (Y,D) could be a cubic surface with a triangle of lines, in which case U is what
Cayley called an affine cubic surface, we do not believe this canonical basis has been previously
observed, or even conjectured.

A second application of the universal families is given in [GHK13], where we show that
Looijenga pairs are closely related to rank 2 cluster varieties, and realize the Fock–Goncharov
fibration of the cluster X -variety (in the rank 2 case) as a natural quotient of our universal
families. (See [FG06], [FZ02] for the definitions of cluster varieties.) In any event, Looijenga
pairs appear in a number of other settings, such as the study of degenerations of K3 surfaces:
the central fibres for maximal degenerations, type III in Kulikov’s classification, are normal
crossing unions of such pairs.

Looijenga pairs have an elementary construction, as follows.

Definition 1.2. Let (Ȳ , D̄) be a smooth projective toric surface, where D̄ := Ȳ \G2
m is the toric

boundary, i.e. the union of toric divisors of Y . Let π : Y → Ȳ be the blowup at some number of
smooth points (with infinitely near points allowed) of D̄. Let D ⊂ Y be the strict transform
of D. Then (Y,D) is a Looijenga pair, and we call π : Y → Ȳ a toric model for (Y,D).

Essentially all Looijenga pairs arise in this way (i.e. have a toric model). Indeed, define a
simple toric blowup (Y ′, D′) → (Y,D) to be the blowup at a node of D, with D′ the reduced
inverse image of D. A toric blowup is a composition of simple toric blowups. Note (Y ′, D′) is
again a Looijenga pair, and the log Calabi–Yau surface is the same, i.e. Y ′\D′ = Y \D. We then
have (see [GHK11, Proposition 1.3]) the following easy fact.

Lemma 1.3. Given a Looijenga pair (Y,D) there is a toric blowup (Y ′, D′) such that (Y ′, D′)
has a toric model.

For any question we consider, passing to a toric blowup will be at most a notational
inconvenience.

To give a precise statement of our results, we first give a number of basic definitions.

Definition 1.4. Let (Y,D) be a Looijenga pair.

(i) A curve C ⊂ Y is interior if no irreducible component of C is contained in D.

(ii) An internal (−2)-curve means a smooth rational curve of self-intersection −2 disjoint
from D.

(iii) (Y,D) is generic if it has no internal (−2)-curves.

Any Looijenga pair is deformation equivalent to a generic pair (see Proposition 4.1). Note
that, by adjunction, any irreducible interior curve with negative self-intersection number is either
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a (−1)-curve meeting D transversely at a single smooth point, or an internal (−2)-curve. Note
also that if (Y,D) is generic and π : Y → Ȳ is a toric model, then the blown up points are
necessarily distinct (as opposed to infinitely near).

We next consider the notion of periods of Looijenga pairs. We first note (see Lemma 2.1)
that the orientation of D determines a canonical identification Gm = Pic0(D), where the latter
is the connected component of the identity of Pic(D).

Definition 1.5. Let
D⊥ := {α ∈ Pic(Y ) | α · [Di] = 0 for all i}.

Restriction of line bundles determines a canonical homomorphism

φY : D⊥ → Pic0(D) = Gm, L 7→ L|D. (1)

The homomorphism φY ∈ TD⊥ := Hom(D⊥,Gm) is called the period point of Y .

Note Y \D comes with a canonical (up to scaling) nowhere-vanishing 2-form, ω, with simple
poles along D. One can show that φY is equivalent to the data of periods of ω over cycles in
H2(Y \D,Z) (see [Fri84]). This motivates the term ‘period’.

As well as the notion of periods, we also need the following additional notions to state the
Torelli theorem.

Definition 1.6. Let (Y,D) be a Looijenga pair.

(i) The roots Φ ⊂ Pic(Y ) are those classes in D⊥ ⊂ Pic(Y ) with square −2 which are
realized by an internal (−2)-curve C on a deformation equivalent pair (Y ′, D′). More precisely,
there is a family (Y,D)/S, a path γ : [0, 1] → S, and identifications (Y,D) = (Yγ(0),Dγ(0)),
(Y ′, D′) = (Yγ(1),Dγ(1)), such that the isomorphism

H2(Y ′,Z) → H2(Y,Z)

induced by parallel transport along γ sends [C] to α.

(ii) Let ∆Y ⊂ Pic(Y ) be the set of classes of internal (−2)-curves.

(iii) Let ΦY ⊂ Φ ⊂ Pic(Y ) be the subset of roots, α, with φY (α) = 1. Note that ∆Y ⊂ ΦY ⊂ Φ.

(iv) Let W ⊂ Aut(Pic(Y )) be the subgroup generated by the reflections

sα : Pic(Y ) → Pic(Y ), β 7→ β + 〈α, β〉α

for α ∈ Φ. Let WY ⊂W be the subgroup generated by sα with α ∈ ∆Y .

It is clear from the definitions that Φ is invariant under parallel transport, and ∆Y ,ΦY ,Φ
are all invariant under Aut(Y,D). Further, the sets Φ, ΦY , W , WY are easily seen to be invariant
under toric blowup. Indeed, let τ : (Y ′, D′) → (Y,D) be a blowup of a node of D. Then under
pull-back τ∗ of divisors, D⊥ is isomorphic to (D′)⊥ as lattices.

We will show that ΦY = WY ·∆Y (see Proposition 3.4).
When n 6 5 and the intersection matrix (Di · Dj) is negative semi-definite, Φ contains a

natural root basis, which is central to much of Looijenga’s analysis. No such basis exists in
general.

Definition 1.7. Let (Y,D) be a Looijenga pair.

(i) The cone {x ∈ Pic(Y )R | x2 > 0} has two connected components. Let C+ be the connected
component containing all the ample classes.
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(ii) For a given ample H let M̃ ⊂ Pic(Y ) be the collection of classes E with E2 =KY ·E =−1,
and E ·H > 0. Note M̃ is independent of H (see Lemma 2.13). Let C++ ⊂ C+ be the subcone
defined by the inequalities x · E > 0 for all E ∈ M̃.

(iii) Let C++
D ⊂ C++ be the subcone where additionally x · [Di] > 0 for all i.

By Lemma 2.13, C+, C++, C++
D and M̃ are all independent of deformation of Looijenga pairs

(i.e. preserved by parallel transport).
Our main result is then the following theorem.

Theorem 1.8 (Torelli theorem). Let (Y1, D), (Y2, D) be Looijenga pairs and let

µ : Pic(Y1) → Pic(Y2)

be an isomorphism of lattices.
Global Torelli: µ = f∗ for an isomorphism of pairs f : (Y2, D) → (Y1, D) if and only if all the

following hold:

(i) µ([Di]) = [Di] for all i;

(ii) µ(C++) = C++;

(iii) µ(∆Y1) = ∆Y2 ;

(iv) φY2 ◦ µ = φY1 .

If f exists, the possibilities are a torsor for Hom(N ′,Gm) where N ′ is the cokernel of the map

Pic(Y ) → Zn, L 7→ (L ·Di)16i6n.

Weak Torelli: There is an element g in the Weyl group WY1 such that µ ◦ g = f∗ for an
isomorphism of pairs f : (Y2, D) → (Y1, D) if and only if µ satisfies conditions (i), (ii), and (iv)
of the global Torelli theorem. If g exists, it is unique.

Remark 1.9. We show that for a Looijenga pair (Y,D) the nef cone Nef(Y ) is the subcone of

C++
D defined by x · α > 0 for all α ∈ ∆Y . See Lemma 2.15. Thus the global Torelli theorem can

be restated as follows: given Looijenga pairs (Y1, D) and (Y2, D) and an isomorphism of lattices
µ : Pic(Y1) → Pic(Y2), there is an isomorphism f : (Y2, D) → (Y1, D) of Looijenga pairs such
that µ = f∗ if and only if µ(Nef(Y1)) = Nef(Y2) and µ([Di]) = [Di] for each i.

Remark 1.10. In a preliminary version of this note we claimed the Torelli theorem with (ii)
replaced by the conditions µ(C+) = C+ and µ(Φ) = Φ. Friedman showed us counterexamples to
this statement [Fri13]. We note the weaker condition µ(C+) = C+ is sufficient if D supports a
divisor of positive square, or if µ(H) is ample for some ample H, as either condition is easily seen
to imply M̃, and thus C++, is preserved. In [Fri13] Friedman gives various sufficient conditions
under which (ii) may be replaced by the conditions µ(C+) = C+ and µ(Φ) = Φ (all have the
flavor of guaranteeing that Φ is sufficiently big).

The proof of the global Torelli theorem is carried out in § 2. The key point there is the notion
of a marked Looijenga pair and periods for marked Looijenga pairs.

Definition 1.11. Let (Y,D) be a Looijenga pair.

(i) A marking of D is a choice of points pi ∈Do
i for each i, where Do

i denotes the intersection
of Di with the smooth locus of D. This is equivalent to the choice of an isomorphism i : Dcan

→D
of D with a fixed cycle of rational curves Dcan. The possible markings of D are a torsor for
Aut0(D) = Gn

m, the connected component of the identity of Aut(D).
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(ii) Fix (Y0, D) generic. A marking of Pic(Y ) is an isomorphism of lattices µ : Pic(Y0) →

Pic(Y ) such that µ([Di]) = [Di] for each i and µ(C++) = C++.

(iii) Markings pi, µ determine a marked period point

φ((Y,D),pi,µ) ∈ TY0 := Hom(Pic(Y0),Gm)

by

φ(L) := (µ(L)|D)−1 ⊗OD
(∑

(L ·Di)pi

)
∈ Pic0(D) = Gm. (2)

The global Torelli theorem is proved by first showing that given a toric model for (Y,D), the
marked period point determines the location of the blowups, and hence determines Y : this is
essentially the content of Proposition 2.9. A bit more work leads to the global Torelli theorem.

2. The global Torelli theorem

Lemma 2.1. Let D be a cycle of n rational curves, with cyclic ordering of the components. This
cyclic ordering induces:

(i) an identification Pic0(D) = Gm, where the former is the group of numerically trivial line
bundles;

(ii) an identification Aut0(D) = (Gm)n, where the former is the identity component of the
automorphism group of D.

Proof. For identification (i), the fact that there is an abstract isomorphism Gm
∼= Pic0(D) is well

known, and the automorphism group of Gm as a group is {1,−1}, so there are only two choices of
identification. Here is an explicit construction of an identification determined by the orientation,
which will be used throughout. We assume n > 3, leaving the straightforward modifications
for n = 1, 2 to the reader. For L ∈ Pic0(D), there is a nowhere-vanishing section σi ∈ Γ(L|Di).
Let λi := σi+1(pi,i+1)/σi(pi,i+1) ∈ Gm, where pi,i+1 := Di ∩ Di+1. Obviously λ(L) :=

∏
i λi is

independent of the choice of σi. The map L 7→ λ(L) gives the canonical isomorphism.
For identification (ii), let (xi, yi) be the homogeneous coordinates on Di with xi = 0 being

the point Di−1 ∩Di. Then we take the ith copy of Gm to act on Di by (xi, yi) 7→ (xi, λyi) for
λ ∈ Gm. The ith copy of Gm acts trivially on Dj for j 6= i. 2

Recall from Definition 1.2 the notion of a toric model of a Looijenga pair.

Definition 2.2. An exceptional configuration for generic (Y,D) means an ordered collection
Eij ∈ Pic(Y ) of classes of exceptional divisors for a toric model. (Here for each i the Eij are the
exceptional divisors meeting the component Di of D.) This is an ordered collection of disjoint
interior (−1)-curves. If (Y,D) is not necessarily generic, then by a limiting configuration in Pic(Y )
we mean the parallel transport (for the Gauss–Manin connection in a family of Looijenga pairs)
of an exceptional configuration on a generic pair.

We say that two exceptional configurations {Eij}, {Fij} for (Y,D) have the same
combinatorial type if for each i the number of divisors meeting Di is the same.

More generally, we extend the notion of exceptional or limiting configuration to mean the
data of a toric blowup (Y ′, D′) → (Y,D) together with an exceptional or limiting configuration
on (Y ′, D′).

For generic pairs, limiting and exceptional are the same (see Lemma 4.6).
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Definition 2.3. A toric model π : (Y,D) → (Ȳ , D̄) is an iterated blowup at some collection
of (not necessarily distinct) points qij ∈ D̄o

i (where D̄o
i
∼= Gm is the complement of the nodes of

D̄ along D̄i). As such, the connected components of the exceptional locus are disjoint unions
of chains E1 + · · ·+Er of smooth rational curves with self-intersections −2,−2, . . . ,−1 (or just a
single (−1)-curve), where the length, r, is the number of times we blow up at the corresponding
point. This chain supports a unique collection of r reduced connected chains, C1, . . . , Cr, each
of self-intersection −1, ordered by inclusion,

C1 = Er, C2 = Er + Er−1, . . . Cr = Er + Er−1 + · · ·+ E1.

Following Looijenga, we refer to these chains as the exceptional curves for this toric model. Each
such curve is determined by its class, and they are partially ordered by inclusion. Note if we
produce a family (Y,D)/S of Looijenga pairs by varying the points qij and choosing an order
with which to make the iterated blowups, so that in the general fibre we blow up distinct points,
then each of these exceptional curves on Y is the limit of a unique smooth exceptional (−1)-curve
on the general fibre.

Remark 2.4. Note that the isomorphism class of a toric Looijenga pair (Ȳ , D̄) is determined by
the intersection numbers D̄2

i . Indeed, the isomorphism type of a smooth projective toric surface is
determined by the self-intersection numbers of the components of the boundary divisor (because
these determine the fan of the surface, see e.g. [Ful93, § 2.5]).

Note (Y,D) together with the classes {Eij} of exceptional curves do not determine by
themselves the points qij ∈ Ȳ . Indeed, the classes determine a birational contraction p : (Y,
D) → (W,D), and (W,D) is abstractly isomorphic to (Ȳ , D), but further data is needed to
specify an identification: this is the data of a marking of D. In the next couple of lemmas we
show that the positions of the qij are determined by the marked period point. From this the
global Torelli result contained in Theorem 1.8 will follow.

Lemma 2.5. Let (Y,D) be a Looijenga pair. For α ∈ Aut0(D) and L ∈ Pic(D) let

ψα(L) = L−1 ⊗ α∗(L) ∈ Pic0(D)

This gives a homomorphism ψ : Aut0(D) → Hom(Pic(Y ),Pic0(D)) via

ψ(α)(L) = ψα(L|D).

Under the identifications Aut0(D) = Gn
m, Pic0(D) = Gm of Lemma 2.1,

ψ(λ1, . . . , λn)(L) =
∏
i

λ
degL|Di
i

for L ∈ Pic(D).

Proof. It is enough to compute ψ(1, . . . , 1, λ, 1, . . . , 1)(OD(q)) for q ∈ Do
j , where λ is in the ith

place. Clearly this is λδij , as required. 2

Proposition 2.6. There is a long exact sequence

1 → ker[Aut(Y,D) → Aut(Pic(Y ))] → Aut0(D)

ψ
→ Hom(Pic(Y ),Pic0(D)) → Hom(D⊥,Pic0(D)) → 1

where ψ is the map of Lemma 2.5 and the other maps are the canonical restrictions.
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Proof. It is easy to see that if (Y ′, D′) → (Y,D) is a toric blowup, then the result for (Y ′, D′)
implies the result for (Y,D), so by Lemma 1.3 we can assume (Y,D) has a toric model π : Y → Ȳ .

We have the following commutative diagram of exact sequences.

0

��

0

��
0 //

��

Pic(Ȳ ) //

π∗

��

⊕
i ZD̄i

//

=

��

N //

��

0

0 // D⊥ //

��

Pic(Y ) //

��

⊕
i ZDi

//

��

N ′ //

��

0

0 //
⊕

ZEij
= //

⊕
ZEij //

��

0 // 0

0

Here N is dual to the character lattice, M , of the structure torus of Ȳ . The first row is the
standard description of A1(Ȳ ), identified with Pic(Ȳ ) by Poincaré duality, with the map from
Pic(Ȳ ) given by C 7→

∑
i(C · D̄i)D̄i. The map to N takes D̄i to the first lattice point vi along

the ray of the fan corresponding to D̄i. This exact sequence is the dual of the standard exact
sequence describing Pic(Ȳ ) (see e.g. [Ful93, § 3.4]). The Eij are the exceptional curves of π. The
map Pic(Y ) →

⊕
i ZDi is similarly given by C 7→

∑
i(C ·Di)Di.

The kernel of N → N ′ is easily seen to be the subgroup S ⊂ N generated by the rays in the
fan for Ȳ corresponding to boundary divisors D̄i along which π is not an isomorphism.

Note that N = Hom(N,
∧2N) via n 7→ (n′ 7→ n′∧n) and the orientation gives a trivialization∧2N = Z, thus an identification N = M . Thus

Hom(N/S,Gm) ⊂ Hom(N,Gm) = Hom(M,Gm)

is the subgroup of homomorphisms to Gm whose restriction to S is trivial. Equivalently, these
are the automorphisms in Aut(Ȳ , D̄) = Hom(M,Gm) fixing pointwise those D̄i along which π is
not an isomorphism. It is easy to see this is identified with

ker(Aut(Y,D) → Aut(Pic(Y ))).

The result follows by applying Hom(·,Pic0(D)) to the row of the above commutative
diagram describing Pic(Y ). The fact that the middle map coincides with ψ then follows from
Lemma 2.5. 2

We next show that for a toric Looijenga pair, any possible marked period point can be
realized by a particular choice of marking of D.

Lemma 2.7. Let (Ȳ , D = D1 + · · · + Dn) be a toric Looijenga pair, including an identification
of the torus T acting on Ȳ with its open orbit. Let φ̄ ∈ Hom(Pic(Ȳ ),Pic0(D)). Then there are
points pi ∈ Do

i ⊂ Ȳ such that for any L ∈ Pic(Ȳ ),

φ̄(L) = (L|D)−1 ⊗
n⊗
i=1

OD((L ·Di)pi).

Moreover, T acts simply transitively on the possible collections of pi.
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Proof. Start with an arbitrary choice of pi ∈ Do
i . The exact sequence of Proposition 2.6

reduces to
1 −→ T −→ Aut0(D)

ψ−→ Hom(Pic(Ȳ ),Pic0(D)) −→ 1.

Denote the map L 7→ (L|D)−1 ⊗
⊗n

i=1OD((L ·Di)pi) by φ̄′ ∈ Hom(Pic(Ȳ ),Pic0(D)). Given any
α ∈ Aut0(D), using Lemma 2.5, consider the map

L 7→ (L|D)−1 ⊗
n⊗
i=1

OD((L ·Di)α
−1(pi))

= φ̄′(L)⊗ ψα
( n⊗
i=1

OD((L ·Di)pi)

)
= φ̄′(L)⊗ ψ(α)(L).

So this map coincides with φ̄′⊗ψ(α). Thus, by replacing pi with α−1(pi) for some suitable choice
of α, we obtain φ̄ = φ̄′. Furthermore, the possible choices of pi are a torsor for the kernel of ψ. 2

Lemma 2.8. Let (Ȳ , D) be as in Lemma 2.7. The structure of Ȳ as a toric variety together with
the orientation of D gives a canonical identification of Do

i with Gm. Let mi ∈ Do
i correspond to

−1 ∈ Gm under this identification. Define

pi : Aut0(D) → Do
i , α 7→ α−1(mi).

(i) We have

ψ(α)(L) = (L|D)−1 ⊗
n⊗
i=1

OD((L ·Di)pi(α)) ∈ Pic0(D)

for all α ∈ Aut0(D) (ψ as in Lemma 2.5).

(ii) Noting ψ is surjective, let γ : Hom(Pic(Ȳ ),Pic0(D)) → Aut0(D) be a section of ψ. Let
p̄i : Hom(Pic(Ȳ ),Pic0(D)) → Do

i be the composition pi ◦ γ. Then for each φ̄ ∈ Hom(Pic(Ȳ ),
Pic0(D)), the points p̄i(φ̄) satisfy the conclusion of Lemma 2.7 for φ̄.

Proof. Result (i) amounts to showing that

L|D =
n⊗
i=1

OD((L ·Di)mi).

It is enough to do this for an ample line bundle, so we can assume (Ȳ , L) is the polarized toric
surface given by a lattice polygon. In that case take the section of L given by a sum of monomials
corresponding to all lattice points on the boundary, with coefficients chosen so that the restriction
of the section to Di

∼= P1 takes the form (x+ y)L·Di . Its zero scheme is exactly
∑

(L ·Di)mi.
For result (ii), note

φ̄(L) = ψ(γ(φ̄))(L) = (L|D)−1 ⊗
n⊗
i=1

OD((L ·Di)p̄i(φ̄))

by result (i), as desired. 2

The following contains most of the ideas needed for global Torelli, showing that the marked
period point determines a marked Looijenga pair.
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Proposition 2.9. Let (Y,D) be a Looijenga pair and {Eij} ⊂ Pic(Y ) the classes of exceptional
curves for a toric model of type (Ȳ , D). Let φ ∈ Hom(Pic(Y ),Pic0(D)).

(i) There is an inclusion Pic(Ȳ ) ⊂ Pic(Y ) given by pull-back. Let φ̄ : Pic(Ȳ ) → Pic0(D) be
the restriction φ|Pic(Ȳ ). Let pi ∈ Do

i ⊂ Ȳ be given by φ̄ from Lemma 2.7. There are unique points

qij ∈ Do
i ⊂ Ȳ such that

φ(Eij) = OD(qij)
−1 ⊗OD(pi).

Let (Z,D) be the iterated blowup along the collection of points (possibly with repetitions)
qij ⊂ Do

i ⊂ Ȳ . There is a unique isomorphism µ : Pic(Y ) → Pic(Z) preserving boundary classes,
and sending Eij to the class of the corresponding exceptional curve. Under this identification, φ
is the marked period point of ((Z,D), pi, µ), as defined in (2).

(ii) Suppose there is a marking ri ∈ Do
i ⊂ Y so that φ is the marked period point for

((Y,D), ri). Then µ is induced by a unique isomorphism of Looijenga pairs between (Y,D) and
(Z,D) which sends ri to pi.

Proof. Result (i) follows immediately from the construction. So we assume we have the marking
ri ∈ Do

i as in result (ii). By assumption there is a birational map π : Y → Ȳ with exceptional
curves {Eij}, and π∗ : Pic(Ȳ ) → Pic(Y ) is the inclusion of result (i). Now by definition of the
marked period point, the points π(ri) satisfy the conclusions of Lemma 2.7 for φ̄. Thus by
the uniqueness statement in that lemma, we can change π (composing by a translation in the
structure torus of Ȳ ) and assume π(ri) = pi. The points π(Eij ∩ Di) satisfy the conditions on
the qij , so by uniqueness π(Eij ∩Di) = qij . Thus π is exactly the same iterated blowup as Z, and
so clearly (Y,D) and (Z,D), together with the markings of their boundaries, are isomorphic, by
an isomorphism inducing µ. This isomorphism is unique by Proposition 2.6. 2

Corollary 2.10. Let (Y,D), (Y ′, D) be Looijenga pairs (respectively pairs with marked
boundary), having toric models of the same combinatorial type. Let φ, φ′ be the period
points (respectively the marked period points). Then there is a unique isomorphism of lattices
µ : Pic(Y ) → Pic(Y ′) preserving the boundary classes and the exceptional curves for the toric
models. The isomorphism µ is induced by an isomorphism f of Looijenga pairs (respectively
pairs with marked boundary) if and only if φ′ ◦ µ = φ, and in that case the possible f form a
torsor for

ker(Aut(Y,D) → Aut(Pic(Y )))

(respectively f is unique).

Proof. The marked case follows immediately from Proposition 2.9. For the unmarked case, write
φ̄, φ̄′ for the period points defined by (1), and assume φ̄′ ◦ µ = φ̄. Choose arbitrary markings
of the boundaries of Y, Y ′, with marked period points φ, φ′. Now by Proposition 2.6 we can
adjust the marking of the boundary of Y so φ′ ◦ µ = φ. The final torsor statement is clear from
Proposition 2.6. 2

For a Looijenga pair (Y,D), we define the monodromy group as follows. For (Y,D)/S an
analytic family of Looijenga pairs over a connected base S, a base point s ∈ S, an identification
(Ys,Ds) = (Y,D), and a path γ : [0, 1] → S with γ(0) = γ(1) = s, we obtain a monodromy
transformation ρ(γ) ∈ Aut(Pic(Y )) by parallel transport along the loop γ. The monodromy group
of (Y,D) is the subgroup of Aut(Pic(Y )) consisting of all monodromy transformations.

Remark 2.11. We show in Theorem 5.15 that the full monodromy group is realized by an analytic
family over a smooth base.
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Lemma 2.12. Let (Y,D) be a Looijenga pair, Φ the associated set of roots, and W the Weyl
group of Φ. Then W is contained in the monodromy group of (Y,D).

Proof. Given α ∈ Φ, by definition there exists a family of Looijenga pairs (Y,D)/S, a path
γ : [0, 1] → S, and an identification (Y,D) = (Yγ(0),Dγ(0)), such that the parallel transport of the
class α ∈ Pic(Y ) = H2(Y,Z) is realized by an internal (−2)-curve C on (Y ′, D′) := (Yγ(1),Dγ(1)).

Let (Ȳ ′, D̄′) denote the contraction of C. Let (Y ′,D′)/(0 ∈ T ) and (Y ′,D′)/(0 ∈ T̄ ) denote the
versal deformations of (Y ′, D′) and (Ȳ ′, D̄′) respectively. Then (0 ∈ T ) and (0 ∈ T̄ ) are smooth
germs, the locus H ⊂ T̄ of singular fibers is a smooth hypersurface, and there is a finite morphism
T → T̄ of degree 2 with branch locus H and a birational proper morphism Y ′ → Y ′×T̄ T which
restricts to the minimal resolution of each fiber. See [Loo81, II.2.4]. The monodromy of the family
around H is given by the Picard–Lefschetz reflection in the class of [C]. Now, using the path γ,
we deduce that the reflection sα lies in the monodromy group of (Y,D). 2

Lemma 2.13. Let (Y,D) be a Looijenga pair. Let E ∈ Pic(Y ) be a class with E2 = KY ·E = −1.
The following are equivalent:

(i) E ·H > 0 for some nef divisor H;

(ii) E is effective.

The cones C++ and C++
D defined in Definition 1.7 are invariant under parallel transport for

deformations of Looijenga pairs, and under the action of WY .

Proof. Obviously statement (ii) implies statement (i). The Riemann–Roch formula gives that
statement (i) implies statement (ii).

Given a family of Looijenga pairs over a base scheme S, working locally analytically on S we
can choose an ample divisor, H, on the total space and then compute C++ on each fibre using
the restriction of H. From this deformation invariance is clear. Invariance under WY follows from
Lemma 2.12. 2

Lemma 2.14. Let (Y,D) be a Looijenga pair. Let M ⊂ Pic(Y ) denote the set of classes of
(−1)-curves not contained in D.

(i) Let C ⊂ Y be an irreducible curve. Either C2 > 0 or [C] ∈ Pic(Y ) is in the union of M,
∆Y and {[Di] | 1 6 i 6 n}.

(ii) Let H ∈ Pic(Y ) be an ample class. Then the closure of the Mori cone of curves NE(Y )
is the closure of the convex hull of the union of

C+ := {x ∈ Pic(Y )⊗Z R | x2 > 0, x ·H > 0}

together with ∆Y ,M and {[Di] | 1 6 i 6 n}. Equivalently, by Lemma 2.13, NE(Y ) is the closure
of the convex hull of the union of C+, ∆Y , M̃, and {[Di] | 1 6 i 6 n}, where

M̃ = {E ∈ Pic(Y ) | E2 = KY · E = −1 and E ·H > 0}

for some ample divisor H (as in the definition of C++).

Proof. For result (i), let C ⊂ Y , C 6⊂D, be irreducible. If C2 < 0 then C ∈∆Y ∪M by adjunction.
For result (ii), note C+ ⊂ NE(Y ) by Riemann–Roch and if C is effective with C2 > 0,

then C is contained in the closure of C+. The description of the Mori cone then follows from
result (i). 2
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Lemma 2.15. Let (Y,D) be a Looijenga pair and H ∈ Pic(Y ) an ample class. Then Nef(Y ) ⊂
H2(Y,R) is the closure of the subcone of C++

D defined by the inequalities x ·α > 0 for all α ∈∆Y .

Proof. Since Nef(Y ) is the dual cone to NE(Y ), this follows immediately from Lemma 2.14(ii).
2

Proof of the global Torelli theorem, Theorem 1.8. If µ = f∗ for an isomorphism f then µ
obviously satisfies the conditions, and the possibilities for f are a torsor for ker(Aut(Y,D) →

Aut(Pic(Y ))), as in Corollary 2.10. This is identified in the proof of Proposition 2.6 with
Hom(N ′,Gm).

Now assuming we have such a µ, we show it is induced by an isomorphism of pairs. We can
replace Y1 by a toric blowup and Y2 by the corresponding toric blowup, and so by Lemma 1.3
we can assume Y1 has a toric model. Then µ(Nef(Y1)) = Nef(Y2) by Lemma 2.15. Thus the
same is true of the Mori cones of curves by duality. Note also that µ(KY1) = KY2 since D is
anti-canonical.

The exceptional locus of a toric model Y1 → Ȳ1 is a disjoint union of chains of interior
smooth rational curves F1, . . . , Fr with self-intersection numbers −2,−2, . . . ,−2,−1, such that
Fj is disjoint from D for j < r and Fr meets D transversely in one point. (Such a chain is the
exceptional locus over a point p ∈ D which is blown up r times.) By assumption µ(∆Y1) = ∆Y2 ,
so µ sends internal (−2)-curves to internal (−2)-curves. Also, the class x of a (−1)-curve is
characterized by x2 = −1, x ·K = −1, and x generates an extremal ray of the Mori cone. Thus
µ sends interior (−1)-curves to interior (−1)-curves. Also, since µ preserves the intersection
product, the curves in Y2 corresponding to the exceptional locus of Y1 → Ȳ1 intersect in the
same way, that is, they form a disjoint union of chains. Hence there is a birational morphism
(Y2, D) → (Ȳ2, D̄) which contracts these curves, and is given by a sequence of blowups of the
same combinatorial type as (Y1, D) → (Ȳ1, D̄).

We claim that the surface (Ȳ2, D̄) is toric. Let (Y,D) be a Looijenga pair, and write e(X) =∑
(−1)i dimH i(X,R) for the Euler number of a topological space X. If (Y ′, D′) → (Y,D) is

a toric blowup then Y ′\D′ = Y \D so in particular e(Y ′\D′) = e(Y \D). If (Y ′, D′) → (Y,D)
is a birational morphism of Looijenga pairs given by blowing up a smooth point of D (and
defining D′ to be the strict transform of D) then e(Y ′\D′) = e(Y \D) + 1. If (Y,D) is toric
then e(Y \D) = e((C×)2) = 0. Now it follows from the existence of toric models (Lemma 1.3)
that a Looijenga pair (Y,D) satisfies e(Y \D) > 0 with equality if and only if (Y,D) is toric. In
our situation we have e(Ȳ1\D̄) = e(Ȳ2\D̄) (because e(Y1\D) = e(Y2\D) and the toric models
(Y1, D) → (Ȳ1, D̄) and (Y2, D) → (Ȳ2, D̄) have the same number of exceptional curves). Thus
(Ȳ1, D̄) toric implies (Ȳ2, D̄) toric.

Next observe that the toric pairs (Ȳ1, D̄) and (Ȳ2, D̄) are isomorphic. Indeed, the self-
intersection numbers D̄2

i for Ȳ1 and Ȳ2 coincide because the self-intersection numbers D2
i for

Y1 and Y2 coincide and the toric models (Y1, D) → (Ȳ1, D̄) and (Y2, D) → (Ȳ2, D̄) have the same
combinatorial type. So (Ȳ1, D̄) and (Ȳ2, D̄) are isomorphic by Remark 2.4.

Now we may apply Corollary 2.10. 2

3. The weak Torelli theorem

The following result is due to Friedman.

Theorem 3.1 [Fri13, Theorem 2.14]. The set Φ of roots coincides with the set of classes α ∈
Pic(Y ) such that α2 = −2, α · Di = 0 for each i, and the associated hyperplane α⊥ meets the
interior of C++

D .
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We recall the following statement about the action of Weyl groups.

Theorem 3.2. The arrangement of hyperplanes

α⊥ ⊂ C++, α ∈WY ·∆Y

is locally finite. The group WY acts simply transitively on the Weyl chambers, and each chamber
is a fundamental domain for the action of WY on C++. One chamber is defined by the inequalities
x · α > 0 for all α ∈ ∆Y (and for each α ∈ ∆Y the equation x · α = 0 defines a codimension one
face of this chamber). The analogous statements hold for the Weyl chambers of C++

D .

Proof. The analogous statement for chambers in C+ is a basic result in the theory of hyperbolic
reflection groups (see [Dol08, Theorem 2.1]). This immediately implies the result for the chambers
in C++ or C++

D , as these full-dimensional subcones of C+ are preserved by WY (see Lemma 2.13).
The closure of the chamber in C++

D defined by x · α > 0 for each α ∈ ∆Y is identified with the
nef cone of Y by Lemma 2.15. By definition the elements of ∆Y are the classes of (−2)-curves
on Y and thus define codimension one faces of the nef cone. 2

Lemma 3.3. Let (Y,D) be a Looijenga pair. Let L be a line bundle on Y such that L2 = −2
and L|D ' OD. Then h0(L) > 0 or h0(L−1) > 0.

Proof. Suppose H0(L) = 0. Using the exact sequence

0 → L⊗OY (−D) → L → OD → 0

we see that H0(L ⊗ OY (−D)) = 0 and H1(L ⊗ OY (−D)) 6= 0. Equivalently, by Serre duality,
H1(L−1) 6= 0 and H2(L−1) = 0. Now by the Riemann–Roch formula

h0(L−1) > χ(L−1) = χ(OY ) + 1
2L
−1 · (L−1 −KY ) = 0. 2

Proposition 3.4. Let (Y,D) be a Looijenga pair. Then ΦY = WY ·∆Y .

Proof (cf. [Fri13, Proof of Theorem 2.14]). Note that W preserves Φ by Lemma 2.12 and WY

preserves the period point φY : D⊥ → Gm. It follows that WY · ∆Y ⊂ ΦY . Conversely, given
α ∈ ΦY , we show α ∈ WY · ∆Y . By Theorem 3.1 there exists a class x in the interior of C++

D

such that x ·α = 0. In particular x · [Di] > 0 for each i. We may assume x is an integral class, say
x = [H]. By Lemma 2.15 and Theorem 3.2, replacing x and α by wx and wα for suitable w ∈WY ,
we may assume x lies in the nef cone of Y . Also x2 > 0 (because α2 = −2 < 0 and x · α = 0).
So H is nef and big. By Lemma 3.3, replacing α by −α if necessary, we may assume that α is
effective, say α =

∑
ai[Ci] for some irreducible curves Ci ⊂ Y and ai ∈ N. Now α ·H = 0 implies

Ci ·H = 0 for each i. In particular no Ci is a component of D, so α ·D = 0 implies Ci ·D = 0
for all i. Also, the span of the classes of the Ci is negative definite. Now by adjunction each Ci is
a (−2)-curve, and

⋃
Ci is a configuration of (−2)-curves with dual graph a Dynkin diagram of

type A, D, or E. (Note that
⋃
Ci is connected because it is the support of the cycle

∑
aiCi with

square −2.) Finally, the Weyl group of a root system of type A, D, or E acts transitively on the
set of roots (and the roots are precisely the elements β of the root lattice such that β2 = −2).
So α ∈WY ·∆Y . 2

Corollary 3.5. Let (Y,D) be a Looijenga pair. Then (Y,D) is generic if and only if φY (α) 6= 1
for all α ∈ Φ.
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Proof. By definition (Y,D) is generic if and only if ∆Y = ∅. This is equivalent to ΦY = ∅ by
Proposition 3.4. 2

Proof of the weak Torelli theorem. Note that WY1 fixes φY1 and the [Di] by the definitions, and
preserves C++ by Lemma 2.13. So the conditions on the isomorphism µ of lattices are necessary.
Conversely, suppose we are given µ satisfying the hypotheses. The isomorphism µ satisfies
µ(Φ) = Φ by Theorem 3.1 and hence µ(ΦY1) = ΦY2 by condition (iv) of the statement of the
weak Torelli theorem. Also ΦYi = WYi ·∆Yi for each i = 1, 2 by Proposition 3.4. Thus µ sends
the WY1-Weyl chambers of C++

D ⊂ Pic(Y1)R to the WY2-Weyl chambers of C++
D ⊂ Pic(Y2)R. Since

WY1 acts simply transitively on the WY1-Weyl chambers of C++
D , there exists a unique g ∈ WY1

such that µ ◦ g satisfies µ(∆Y1) = ∆Y2 . Now the global Torelli theorem applies. 2

4. First properties of the monodromy group

Proposition 4.1. Let (Y,D) be a Looijenga pair. Let (0 ∈ Def(Y,D)) denote the versal
deformation space of the pair and T ′Y = Hom(D⊥,Gm).

(i) The local period mapping

φ : (0 ∈ Def(Y,D)) → (φY ∈ T ′Y )

is a local analytic isomorphism.

(ii) The locus of generic pairs in Def(Y,D) is the complement of the inverse image under φ
of the countable union of hypertori

T ′α = {ψ ∈ T ′Y | ψ(α) = 1}

for α ∈ Φ.

In particular, every Looijenga pair is a deformation of a generic pair.

Proof. The period mapping is a local isomorphism by [Loo81, II.2.5].
Statement (ii) follows from Corollary 3.5. 2

Definition 4.2. Let (Y,D) be a Looijenga pair. Let AdmY denote the subgroup of
automorphisms of the lattice Pic(Y ) preserving the boundary classes [Di] and the cone C++

(see Definition 1.7). We say an automorphism θ of Pic(Y ) is admissible if θ ∈ AdmY .

Lemma 4.3. Let (Y,D) be a Looijenga pair. The group AdmY contains the monodromy group
of (Y,D) and preserves Φ.

Remark 4.4. In fact we show in Theorem 5.15 that AdmY is equal to the monodromy group.

Proof. The monodromy group preserves the cone C++ by Lemma 2.13, so it is contained in
AdmY . The group AdmY preserves Φ by Theorem 3.1. 2

Lemma 4.5. Let (Y,D) be a generic Looijenga pair and θ : Pic(Y ) → Pic(Y ) an isomorphism of
lattices such that θ([Di]) = [Di] for each i. The following conditions are equivalent:

(i) θ ∈ AdmY ;

(ii) θ(Nef(Y )) = Nef(Y );

(iii) there exists H ∈ Pic(Y ) such that H and θ(H) are ample.
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Proof. By definition θ ∈ AdmY if and only if θ(C++) = C++, and Nef(Y ) = C++
D by Lemma 2.15

because (Y,D) is generic. So (i) implies (ii). Clearly (ii) implies (iii) (because the ample cone is

the interior of the nef cone). Finally, suppose θ satisfies (iii). Then θ preserves the set M̃ and

hence the cone C++ (see Definition 1.7). So (iii) implies (i) and the equivalence of the statements

is proved. 2

Lemma 4.6. Let (Y,D) be a generic Looijenga pair. Then any limiting configuration on Y is an

exceptional configuration.

Proof. By definition, a limiting configuration on Y is the parallel transport of an exceptional

configuration on a generic pair (Y0, D). Note that Nef(Y0) and Nef(Y ) are identified under parallel

transport (because for a generic pair the nef cone coincides with C++
D by Lemma 2.15, and this

cone is invariant under parallel transport by Lemma 2.13). The elements of the exceptional

configuration on Y0 define codimension one faces of Nef(Y0). Hence the elements Eij of the

limiting configuration define codimension one faces of Nef(Y ). Now by Lemma 2.14, result (i) and

the intersection numbers it follows that the Eij are a collection of disjoint interior (−1)-curves.

As in the proof of the global Torelli theorem, contracting these curves yields a toric pair (Ȳ , D̄),

so {Eij} is an exceptional configuration. 2

Theorem 4.7. Let (Y,D) be a Looijenga pair. The group AdmY acts simply transitively on the

set of limiting configurations of (any given) combinatorial type.

Proof. We may assume that (Y,D) is generic by Proposition 4.1.

We show that if π : (Y ′, D′) → (Y,D) is a toric blowup, then we have a natural identification

AdmY ′ = AdmY . Note that (Y,D) generic implies (Y ′, D′) generic by the definition of generic, so

we may use the equivalent conditions above. We may assume that π is a simple toric blowup, with

unique exceptional divisor E. Given θ ∈AdmY , we define a homomorphism θ′ : Pic(Y ′) → Pic(Y ′)

by θ′(π∗α) = π∗θ(α) and θ′([E]) = [E]. We claim that θ′ ∈ AdmY ′ . It is clear that θ′ is an

isomorphism of lattices and θ′([D′i]) = [D′i] for each component D′i of the boundary D′ ⊂ Y ′.

Letting H ∈ Pic(Y ) be ample, then θ(H) is also ample on Y . Now for N ∈ N sufficiently large,

H ′ := Nπ∗H − E and θ′(H ′) are ample on Y ′. So θ′ ∈ AdmY ′ . The map AdmY → AdmY ′

defined in this way is clearly a group homomorphism. Conversely, given θ′ ∈ AdmY ′ , we have

θ′([E]) = [E]. Thus we can define θ : Pic(Y ) → Pic(Y ) by restricting θ′ to E⊥ and using the

identification E⊥ = Pic(Y ) given by π∗. Then θ is an isomorphism of lattices and θ([Di]) = [Di]

for each i. Now letting H ′ be ample on Y ′, then θ′(H ′) is also ample on Y ′. Hence H := π∗H
′ and

θ(H) = π∗(θ
′(H ′)) are ample on Y , so θ ∈ AdmY . This defines a homomorphism AdmY ′ → AdmY

which is clearly the inverse of the homomorphism described above.

Let θ ∈ AdmY , and let {Eij} be an exceptional configuration on a toric blowup (Y ′, D′) of

(Y,D). We show that {θ(Eij)} is another exceptional configuration of the same combinatorial

type. Using the identification AdmY = AdmY ′ proved above, we may assume Y = Y ′. We have

θ(Nef(Y )) = Nef(Y ), so the θ(Eij) define codimension one faces of Nef(Y ). We can now finish

as in the proof of Lemma 4.6 above.

Conversely, let {Eij}, {Fij} be two exceptional configurations on (Y,D) of the same

combinatorial type. Clearly there is a unique isomorphism of lattices θ : Pic(Y ) → Pic(Y ) such

that θ([Di]) = [Di] for all i and θ([Eij ]) = [Fij ] for all i and j. We must show that θ ∈ AdmY .

Let π : (Y,D) → (Ȳ , D̄) denote the contraction of the {Eij}, and π′ : (Y,D) → (Ȳ , D̄) the

contraction of the {Fij}. (Note that the toric pairs (Ȳ , D̄) obtained by the contractions are
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(non-canonically) isomorphic because the exceptional configurations have the same combinatorial
type.) Let H̄ =

∑
aiD̄i be ample on Ȳ . Then for N ∈ N sufficiently large both H =Nπ∗H̄−

∑
Eij

and θ(H) = N(π′)∗H̄ −
∑
Fij are ample on Y . So θ ∈ AdmY . 2

5. Automorphisms, universal families, and the monodromy group

Given (Y0, D) a generic Looijenga pair, let (Ye, D) be a Looijenga pair deformation equivalent to
(Y0, D) with period point φYe given by φYe(α) = 1 for all α ∈ D⊥ ⊂ Pic(Ye). (Note that existence
of (Ye, D) follows from the construction of Proposition 2.9, and (Ye, D) is uniquely determined
up to isomorphism by the weak Torelli theorem.)

We analyze the relationship between the Weyl group W , the group AdmY0 , and the
automorphisms groups of Looijenga pairs deformation equivalent to (Y0, D).

Theorem 5.1. Let (Y0, D) be a generic Looijenga pair and define (Ye, D) as above. Then W ⊂
AdmY0 is a normal subgroup and there is an exact sequence

1 → Hom(N ′,Gm) → Aut(Ye, D) → AdmY0/W → 1 (3)

where N ′ is the group defined in Theorem 1.8.
More generally, for (Y,D) an arbitrary Looijenga pair deformation equivalent to (Y0, D), let

HodgeY ⊂ AdmY0 denote the stabilizer of the period point φY (for some choice of marking of
Pic(Y )). Then we have an exact sequence

1 → Hom(N ′,Gm) → Aut(Y,D) → HodgeY /WY → 1 (4)

Proof. Note WY ⊂ AdmY0 and AdmY0 preserves Φ by Lemmas 2.12 and 4.3. Now, since

ΦY = {α ∈ Φ | φY (α) = 1},

the group HodgeY preserves ΦY and WY ⊂ HodgeY is normal. The image of Aut(Y,D) in
Aut(Pic(Y0)) has trivial intersection with WY , since it preserves the Weyl chamber Nef(Y ) ⊂
C++
D , while the Weyl group acts simply transitively on the chambers. Take g ∈ AdmY0 .

Composing g with an element of WY we can assume g preserves the Weyl chamber Nef(Y ),
and thus ∆Y (as each α ∈ ∆Y corresponds to a codimension one face of the chamber). Now
g is in the image of Aut(Y,D) if and only if it fixes the period point φY by the global Torelli
theorem. Thus the homomorphism Aut(Y,D) → HodgeY /WY is surjective. Now the exactness
follows from Proposition 2.6.

Finally, for Ye the period point equals the identity element of Hom(D⊥,Gm), so HodgeYe =
AdmY0 and WYe = W by Proposition 3.4. 2

Remark 5.2. Note that the description of the automorphism groups of certain Looijenga pairs
in [Loo81, Corollary I.5.4], is incorrect as stated. (The assumption that the automorphism acts
trivially on D⊥ should be added to the statement. Moreover, the group Z/sZ × Z/2Z in the
statement should be replaced by the dihedral group of order 2s.) The group N ′ is trivial in
the cases studied by Looijenga so Aut(Y,D) = HodgeY /WY .

Example 5.3. We give an example where AdmY0 /W is nontrivial (in fact, infinite). Let D be
a cycle of seven (−2)-curves. Then one can show that Aut(Ye, D) is infinite. (Indeed, since
OYe(D)|D ' OD, there is an elliptic fibration f : Ye → P1 with f−1(∞) = D. Moreover, the
fibration f is relatively minimal because KX = −D. So there is an action of the Mordell–Weil
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group MW(f) of sections of f on (Ye, D) given by translation by the section on the smooth
fibers of f . Finally, MW(f) is infinite by [MP86, Theorem 4.1] (or a short root theoretic
calculation, cf. Example 5.6 below).) The group N ′ is finite because [D1], . . . , [Dn] ∈ Pic(Y0)
are linearly independent. Hence AdmY0 /W is infinite by Theorem 5.1.

We note by way of comparison the following lemma.

Lemma 5.4. In the cases Looijenga considers in [Loo81] we have AdmY = W .

Proof. We use [Loo81, Proposition I.4.7, p. 284]. By definition Cr(Y,D) is the group of
automorphisms of the lattice Pic(Y ) preserving the ample cone of Y and the boundary divisors
D1, . . . , Dn. We may assume (Y,D) is generic, that is, in Looijenga’s notation Bn = ∅. Then
AdmY = Cr(Y,D) = W by Lemma 4.5 and [Loo81, I.4.7]. 2

Example 5.5. We describe an example of a Looijenga pair (Y ′e , D
′
e) such that the set ∆ of internal

(−2)-curves on Y ′e is infinite.
Let (Ye, De) be the Looijenga pair of Example 5.3. Then there is an elliptic fibration

f : Ye → P1 with D = f−1(∞) and such that f has infinitely many sections. Each section
C ⊂ Ye is a (−1)-curve (because −KYe · C = D · C = 1). Any two sections meeting the same
component of D intersect D at the same point (because φYe is trivial by definition). So there is a
point p in the smooth locus of De such that there are infinitely many (−1)-curves on Ye passing
through p. Now let (Y ′, D′) denote the blowup of p ∈ Ye together with the strict transform of De.
Then clearly φY ′ is also trivial, so (Y ′, D′) = (Y ′e , D

′
e). Now Y ′ contains infinitely many internal

(−2)-curves given by the strict transforms of the (−1)-curves in Ye passing through p.

Example 5.6. We describe an example of a Looijenga pair (Y,D) such that W is trivial and Adm
is infinite.

Let (Ȳ , D̄) be the toric Looijenga pair given by F1 together with its toric boundary. Label
the boundary divisors D̄1, . . . , D̄4 so that D̄2

1 = −1, D̄2
2 = 0, D̄2

3 = 1, and D̄2
4 = 0. Let (Ȳ ′, D̄′) be

the toric pair obtained from (Ȳ , D̄) by the following sequence of toric blowups. We first blowup
D̄1 ∩ D̄2, D̄2 ∩ D̄3, and D̄3 ∩ D̄4, then blowup the intersection point of the strict transform of
D̄4 with the exceptional divisor over D̄3 ∩ D̄4. Now let (Y,D) be the Looijenga pair given by
performing an interior blowup at a point of each of the (−1)-curves contained in D̄′. Then D is
a cycle of eight (−2)-curves. One can check that D⊥ does not contain any classes α such that
α2 = −2. Thus Φ = ∅ and W is trivial for (Y,D). Moreover, choosing the positions of the interior
blowups appropriately (so that (Y,D) = (Ye, De)), there is an elliptic fibration f : Y → P1 with
f−1(∞) = D. There are no reducible fibers of f besides D (because Φ = ∅ and f is relatively
minimal). It follows that the Mordell–Weil group of f is infinite. (Indeed, writing η ∈ P1 for the
generic point, the Mordell–Weil group of sections of the elliptic fibration f is given by

MW(f) = Pic0(Yη) = 〈D〉⊥/〈Γ | f∗Γ = 0〉
= 〈D〉⊥/〈D1, . . . , D8〉.

In particular, rk MW(f) = 1.) Thus the group Aut(Y,D) is infinite. Now by Theorem 5.1 we find
that Adm is infinite.

Recall from Definition 1.11 that if ((Z,D), pi) is a Looijenga pair with marked boundary,
and µ : Pic(Y ) → Pic(Z) is a marking of Pic(Z), the marked period point of ((Z,D), pi, µ) is a
point in

TY := Hom(Pic(Y ),Pic0(D)).
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Construction 5.7. Universal families. Let (Y,D) be a Looijenga pair, and π : Y → Ȳ a toric

model, with exceptional divisors {Eij} which are disjoint interior (−1)-curves. Varying φ ∈ TY ,

the construction of Proposition 2.9 produces sections pi : TY → TY × Do
i ⊂ TY × Ȳ , and then

unique sections qij : TY → TY ×Do
i such that

φ(Eij) = OD(qij(φ))−1 ⊗OD(pi(φ)) ∈ Pic0(D) = Gm.

Explicitly, let pi be the section p̄i of Lemma 2.8 (this involves choosing the right inverse γ of ψ,

but see Remark 5.8), then qij(φ) ∈ Gm is the point

φ(Eij)
−1 · pi(φ) ∈ Do

i ,

where Pic0(D) = Gm acts on Do
i using the convention of Lemma 2.1.

Let Π : (Y{Eij},D) → TY × Ȳ be the iterated blowup along the sections

qij ⊂ TY ×Do
i ⊂ TY × Ȳ .

This comes with a marking µ : Pic(Y ) → Pic(Y) preserving boundary classes, and sending Eij
to the corresponding exceptional divisor Eij . This induces a marking of Pic(Z) for each fibre Z.

We call λ : (Y{Eij}, pi, µ) → TY a universal family. See Theorem 6.1 for justification of this term.

If τ : Y → Y ′ is a toric blowup, with exceptional divisor E, and Y has a toric model as above,

then there is a divisorial contraction τ̃ : Y{Eij} → Ỹ ′{Eij} which blows down the (−1)-curve µ(E)

in each fibre; this is a family of toric blowups. Observe that identifying Pic(Y ), Pic(Y ′) with

A1(Y ), A1(Y ′) respectively, we have a map τ∗ : A1(Y ) → A1(Y ′), and hence a transpose map

TY ′ = Hom(A1(Y ′),Gm) → Hom(A1(Y ),Gm) = TY , an inclusion of tori. This identifies TY ′ with

the elements of TY which take the value 1 on exceptional divisors of τ . We define λ′ : Y ′{Eij} → TY ′

to be the restriction of Ỹ ′{Eij} to TY ′ ⊂ TY . This inherits markings of the boundary and the Picard

group. In this way we have a universal family associated with each configuration of exceptional

curves for a toric model of some toric blowup.

Remark 5.8. Note in the construction we made a choice of right inverse γ : TȲ → Aut0(D) of ψ.

By Proposition 2.6, any two choices differ by a homomorphism h : TȲ → Aut(Ȳ , D). One can

check that h together with the action of Aut(Ȳ , D) on Ȳ induces a canonical identification of

the universal families constructed.

Remark 5.9. There are in general infinitely many universal families of a given combinatorial type.

For a given pair (Y,D) with exceptional divisors Eij for a toric model, the above construction

gives a finite number of families, as there is a choice of order of blowup. However, there may be

an infinite number of sets of exceptional divisors of the same combinatorial type, giving rise to

distinct families. We will see that any two are birational, canonically identified by a birational

map; see Theorem–Construction 5.12.

By construction we have the following lemma.

Lemma 5.10. For φ ∈ TY , the marked period point of the fibre ((Y,D), pi, µ)φ of a universal

family is φ.

In particular, the fiber of a universal family (Y,D)/TY0 over the identity e ∈ TY0 is the pair

(Ye, D) defined above.
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Corollary 5.11. The locus of generic pairs in a universal family (Y,D)/TY is the complement
in TY of the countable union of hypertori

Tα = {φ ∈ TY | φ(α) = 1}

for α ∈ Φ.

Proof. This follows from Corollary 3.5. 2

We construct a birational action of AdmY0 on a universal family. This action is used to
identify AdmY0 with the monodromy group (see Theorem 5.15).

Theorem–Construction 5.12. Let (Y0, D) be a generic Looijenga pair. Let {Eij}, {Fij} be
two exceptional configurations for (Y0, D), not necessarily of the same type. Then there is a
canonical birational map

Y{Eij} 99K Y{Fij},

commuting with the projections to TY0 . This birational map restricts to an isomorphism over a
Zariski open set of TY0 containing the locus of generic pairs, and respects the markings of the
Picard group and the boundary of each fiber over this locus.

Proof. Suppose first the configurations are on Y0 (rather than on possibly different toric blowups
of Y0). Let U ⊂ TY0 be the maximal open subset such that each Fij ⊂ Y0 deforms to a family
of (−1)-curves Fij ⊂ Y{Eij}|U over U . The Zariski open set U contains the locus of generic
fibers by Lemma 4.6. Write Y ′ = Y{Eij}|U . The Fij restrict to an exceptional configuration

on each fiber of Y ′ over U , and we have a birational morphism (Y ′,D′) → (Y ′,D′) given by
blowing down these families of curves. Let π : (Y0, D) → (Ȳ0, D̄) be the toric model obtained

by contracting the Fij . Then (Y ′,D′) is a fiber bundle over U with fiber (Ȳ0, D̄). Also, Y ′ → Y ′

restricts to an isomorphism D′ → D′, so the markings pEi : TY0 → Y{Eij} induce markings of

D′ ⊂ Y ′. Let pFi be the sections of the trivial family U × (Ȳ0, D̄) given by Construction 5.7 for

Y{Fij}. By construction, the marked period points of the fibers of the families ((Y ′,D′), pEi ) and

(U × (Ȳ0, D̄), pFi ) over each φ ∈ U coincide. So, by Lemma 2.7, there is a unique isomorphism

f : ((Y ′,D′), pEi ) → (U×(Ȳ0, D̄), pFi ) over U . Each of Y ′ and U×Ȳ comes with sections qij (given
in the first case by the images of the exceptional divisors Fij , in the second by Construction 5.7
for Y{Fij}), which are identified under the isomorphism f . Thus after performing the iterated

blowup of the qij on Y ′ and U × Ȳ0 respectively, f induces an isomorphism Y ′ → Y{Fij}|U . That
is, we obtain a birational map Y{Eij} 99K Y{Fij} which is an isomorphism over U .

If the configurations are on toric blowups of Y0 we make the obvious modifications: we replace
Y0 by a toric blowup τ : Z0 → Y0 on which they both appear and carry out the above. Then we
restrict the birational maps to the subtorus Hom(Pic(Y0),Gm) ⊂ Hom(Pic(Z0),Gm), and obtain
induced birational maps between the universal families (which we recall are obtained from the
restricted families via the families of toric blowdowns determined by τ). 2

Construction 5.13. Let (Y0, D) be a generic Looijenga pair. Observe that Aut(Pic(Y0)) acts by
precomposition on TY0 :

g(φ) := φ ◦ g−1.

If g is admissible and {Eij} is an exceptional collection, then {g(Eij)} is an exceptional collection
necessarily of the same combinatorial type as {Eij}. This induces, by the construction of the
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universal families, a commutative diagram

Y{Eij}

��

// Y{g(Eij)}

��
TY0

φ 7→φ◦g−1
// TY0

where the horizontal maps are isomorphisms. Composing Y{Eij} → Y{g(Eij)} with the canonical
birational map Y{g(Eij)} 99K Y{Eij} gives a birational map

ψg : Y{Eij} 99K Y{Eij}

which is an isomorphism over a Zariski open set containing the locus of generic pairs. In particular
this gives a canonical action of AdmY0 on Y{Eij} by birational automorphisms. By construction
the composition

Pic(Y0)
r−1

// Pic(Y{Eij})
ψg∗ // Pic(Y{Eij})

r // Pic(Y0)

is g ∈ Aut(Pic(Y0)) (here r is the restriction).

Example 5.14. Consider the pair (Y,D) obtained by blowing up one general point on each
coordinate axis of P2, with D the proper transform of the toric boundary of P2. Write the
generators of Pic(Y ) as L,E1, E2, E3 with L the pull-back of a line in P2 and the Ei
the exceptional divisors. Then {E1, E2, E3} is an exceptional configuration, as is {F1, F2, F3}
where Fi = (L − E1 − E2 − E3) + Ei. We obtain universal families Y{Eij},Y{Fij} → TY . The
birational map constructed above f : Y{Eij} 99K Y{Fij} is an isomorphism away from the locus

where the three blown-up points lie on a line L. Over such a point, the curve of class Fi
decomposes as a union of irreducible curves of class α := L − E1 − E2 − E3 and Ei. The curve
of class α is the proper transform of L and is common to all three curves, hence the three curves
cannot be simultaneously contracted. The proper transform of L must be flopped before this
contraction can be performed.

Note in this example that D⊥ is generated by α, and Φ = {±α}. The reflection sα satisfies
sα(Ei) = Fi. It is an admissible automorphism, and W = {id, sα}. Since the only nontrivial
automorphism which preserves the boundary classes and the intersection pairing is sα, it is clear
that W = AdmY .

Using the construction of universal families together with the AdmY action, we show that
AdmY is equal to the monodromy group.

Theorem 5.15. Let (Y,D) be a Looijenga pair. The group AdmY is the monodromy group in
the following sense. Let (Y,D) → S be a family of Looijenga pairs over a connected base S
together with a point s ∈ S and an identification

(Y,D)
∼−→ (Ys,Ds).

Then the monodromy map

ρ : π1(S, s) → Aut(Pic(Y ))

has image contained in AdmY . Furthermore, in the analytic category, there exists a family as
above such that S is smooth and the image of ρ is equal to AdmY .
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Proof. We have already established that the monodromy group of any family is contained

in AdmY . See Lemma 4.3. It remains to show that there is a family with smooth base and

monodromy group equal to AdmY .

Let λ : (Y,D) → S be a choice of universal family, with marking

µ : Pic(Y )× S → R2λ∗Z

and action ψ of AdmY . Here S = Hom(Pic(Y ),Gm). Let A ⊂ Pic(Y )R be a connected open cone

on which AdmY acts properly discontinuously. For example we can take A = C+. Working in

the analytic topology, let Ω ⊂ S denote the tube domain associated to A. That is

Ω = (Pic(Y )R + iA)/Pic(Y ) ⊂ (Pic(Y )⊗Z C)/Pic(Y ) = S,

an open analytic subset of S. (Here we have used the identification Pic(Y ) = Pic(Y )∗ given by

Poincaré duality.) Then AdmY acts properly discontinuously on Ω. (Indeed, the real analytic

morphism

Ω → A

given by projection onto the imaginary part is AdmY equivariant and AdmY acts properly

discontinuously on A.) Let

Ωo := Ω

∖ ⋃
g∈AdmY

Fix(g)

denote the complement of the fixed loci of the elements of AdmY . Note that⋃
g∈AdmY

Fix(g) ⊂ Ω

is a locally finite union of analytic subvarieties because the action is properly discontinuous.

Hence Ωo ⊂ Ω is a connected open analytic subset. Note also that Ωo is contained in the locus of

generic pairs. Indeed, the locus of generic pairs is the complement of the union of the hypertori

Tα for α ∈ Φ by Corollary 5.11, and Tα = Fix(sα) where sα ∈ W ⊂ AdmY is the reflection in

the root α. Let

U := Ωo/AdmY

be the quotient of Ωo by AdmY , a complex analytic manifold. Let (YU ,DU ) → U be the family

of Looijenga pairs over U given by the quotient of the restriction of the family (Y,D) → S to

Ωo. (Note that the birational action of AdmY on the universal family is biregular over the locus

of generic pairs and hence over Ωo. See Construction 5.13.) Let t ∈ Ωo be a basepoint, and u ∈ U
the image of t. The Galois covering map Ωo

→ U with group AdmY corresponds to a surjection

π1(U, u) → AdmY .

Given g ∈ AdmY , let [γ] ∈ π1(U, u) be a lift of g. Then γ is a loop based at u ∈ U which lifts to a

path γ̃ in Ωo from t to g−1t. Now the monodromy transformation associated to the loop γ for the

family (YU ,DU ) → U is identified with g ∈ AdmY ⊂ Aut(Pic(Y )) via the marking isomorphism

µt : Pic(Y )
∼−→ Pic(Yt). 2
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6. Moduli stacks

We give a complete description of the moduli stacks of Looijenga pairs, with and without
markings. Note that these stacks are highly non-separated in general. The situation is very
similar to that of moduli of K3 surfaces without polarization, cf. [LP80, § 10].

We work in the analytic category. The stacks we define are stacks over the category of analytic
spaces.

Fix a Looijenga pair (Y0, D). Let M̃Y0 denote the moduli stack of families of Looijenga pairs
(Y,D) together with a marking of D and a marking of Pic(Y ) by Pic(Y0). More precisely, for an
analytic space S, the objects of the category M̃Y0(S) are morphisms

λ : (Y,D = D1 + · · ·+Dn) → S

together with an isomorphism

µ : Pic(Y0)× S ∼−→ R2λ∗Z

and sections
pi : S → Di

of Di → S such that the following hold.

(i) The morphism Y → S is a flat family of surfaces.

(ii) The analytic space Di is a Cartier divisor on Y/S for each i.

(iii) Each closed fiber (Ys,Ds, µs, {pi(s)}) is a Looijenga pair together with marking µs :
Pic(Y0) → Pic(Ys) of the Picard group and marking pi(s) ∈ Di,s of the boundary.

Furthermore, in the cases n = 1 or 2, we assume we are given an orientation of D, that is, an
identification

Z× S ∼−→ R1λ∗ZD.

The morphisms in the category from (Y,D)/S to (Y ′,D′)/S′ over a morphism S → S′ are
isomorphisms

(Y,D)
∼−→ (Y ′,D′)×S′ S

over S compatible with the markings and the orientation.
Similarly, let M̃′Y0 denote the moduli stack of Looijenga pairs (Y,D) together with a marking

of Pic(Y ) by Pic(Y0), MY0 the moduli stack of Looijenga pairs with a marking of D, and M′Y0
the moduli stack of Looijenga pairs.

We have the period mapping

M̃Y0 → TY0 ,

((Y,D), µ, {pi}) 7→ φY .

(Note: if (Y,D)/S is an object of M̃Y0 then the sections pi and the orientation of D determine a
canonical isomorphism

D × S ∼−→ D.
This is used to define the period mapping for families over an arbitrary base S.) Similarly, writing
T ′Y0 = Hom(D⊥,Gm), we have period mappings

M̃′Y0 → T ′Y0 ,

MY0 → [TY0/Adm],
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and

M′Y0 → [T ′Y0/Adm].

(Here for a group G acting on an analytic space X we write [X/G] for the stack quotient. We

also write Adm = AdmY0 for brevity.)

Let Σ denote the set of connected components of the complement

C++
D

∖ ⋃
α∈Φ

α⊥.

(So Σ is permuted simply transitively by the Weyl group W .) Let U = TY0 ×Σ. Define an étale

equivalence relation R on U as follows: (p, σ) ∼ (p, σ′) if and only if σ and σ′ are contained in

the same connected component of C++
D \

⋃
α∈Φp

α⊥, where

Φp := {α ∈ Φ | p(α) = 1}.

Let T̃Y0 denote the analytic space U/R. Thus we have an étale morphism T̃Y0 → TY0 given by

the first projection U = TY0 × Σ → TY0 , which is an isomorphism over the open analytic set

TY0\
⋃
α∈Φ(p(α) = 1). Note that T̃Y0 is not separated if Φ 6= ∅. We define T̃ ′Y0 → T ′Y0 similarly.

That is, T̃ ′Y0 = U ′/R′ where U ′ = T ′Y0 × Σ and R′ is defined by the same rule as above.

Recall the action of Aut0(D) = Gn
m on

TY0 = Hom(Pic(Y0),Gm) = Hom(Pic(Y0),Pic0(D))

from Lemma 2.5.

Let K = Hom(N ′,Gm) where N ′ is the group defined in Theorem 1.8. Every object (Y,D)/S

of M̃′Y0(S) has a canonical subgroup K × S of its automorphism group. (These are the

automorphisms acting trivially on the Picard group of the fibers.) See Theorem 5.1. Let M̃′′Y0
denote the rigidification of M̃′Y0 along K in the sense of [ACV03, § 5]. (Thus the objects of

M̃′′Y0 and M̃′Y0 coincide locally, but the automorphism group in M̃′′Y0 is the quotient of the

automorphism group in M̃′Y0 by K.) Similarly let M′′Y0 denote the rigidification of M′Y0 along K.

(Note that the monodromy group Adm acts trivially on K.) The period mappings M̃′Y0 → T ′Y0
and M′Y0 → [T ′Y0/Adm] descend to maps M̃′′Y0 → T ′Y0 and M′′Y0 → [T ′Y0/Adm].

Theorem 6.1. We have identifications

M̃Y0 = T̃Y0 ,

M̃′Y0 = [T̃Y0/Aut0(D)],

MY0 = [T̃Y0/Adm],

M′Y0 = [T̃Y0/Aut0(D)×Adm],

M̃′′Y0 = T̃ ′Y0 ,

and

M′′Y0 = [T̃ ′Y0/Adm],

compatible with the period mappings.
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Proof. The identification

M̃Y0
∼−→ T̃Y0

is obtained as follows. Given ((Y,D)/S, µ, {pi}) ∈ M̃Y0(S) we have the associated period mapping
φ : S → TY0 ; see Definition 1.11(iii). We define a lift φ̃ : S → T̃Y0 of φ by

φ̃(s) = (φ(s), σ)

where σ ⊂ µ−1
s (Nef(Ys)), for each s ∈ S. Note that µ−1

s (Nef(Ys)) is the closure of a connected
component of C++

D \
⋃
α∈Φp

α⊥ by Lemma 2.15 and Theorem 3.2. So σ is uniquely determined

up to the equivalence relation R and φ̃ is a well-defined map to T̃Y0 = U/R.
We now establish that the morphism M̃Y0 → T̃Y0 is an isomorphism. Objects of M̃Y0 have no

nontrivial automorphisms by Proposition 2.6. So the stack M̃Y0 is (represented by) an analytic
space. The period mapping M̃Y0 → TY0 is étale by [Loo81, II.2.5]. Hence also M̃Y0 → T̃Y0 is
étale. The map M̃Y0 → T̃Y0 is injective on points by the global Torelli theorem for Looijenga
pairs, Theorem 1.8. Indeed, two marked Looijenga pairs ((Y,D), µ, {pi}), ((Y ′, D′), µ′, {p′i}) are
isomorphic if and only if φY = φY ′ and µ−1(Nef(Y )) = µ′−1(Nef(Y ′)) by Remark 1.9. Also,
the map is surjective on points by the construction of universal families (see Lemma 5.10) and the
fact that connected components of C++

D \
⋃
α∈Φp

α⊥ are permuted transitively by the Weyl group

W (Φp). Hence the map M̃Y0 → T̃Y0 is an isomorphism as claimed.
The remaining identifications follow by passing to the quotients corresponding to forgetting

the marking of Pic(Y ) and/or D. Note that applying Hom(·,Gm) to the exact sequence

0 → D⊥ → Pic(Y0) → Zn → N ′ → 0

we obtain the exact sequence

1 → K → Gn
m → TY0 → T ′Y0 → 1.

Hence

M̃′Y0 = [T̃Y0/Aut0(D)] = [T̃Y0/Gn
m],

where K ⊂ Gn
m acts trivially and the quotient H := Gn

m/K acts freely. Thus rigidifying M̃′Y0
along K yields [T̃Y0/H] = T̃ ′Y0 . 2

7. Generalization of the Tits cone

In this section we explore to what extent some additional constructions from [Loo81] extend to
the more general context of this paper.

The paper [Loo81] considers Looijenga pairs (Y,D) such that the following conditions are
satisfied.

Assumptions 7.1. (i) The number n of irreducible components of D is less than or equal
to five.

(ii) The intersection matrix (Di ·Dj) is negative semi-definite.
(iii) There do not exist (−1)-curves contained in D.

(Note that condition (iii) is not essential: Under condition (ii), there is always a toric
blowdown (Y,D) → (Y ′, D′) such that (Y ′, D′) satisfies condition (iii).)
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Remark 7.2. Under assumptions 7.1, Looijenga gives an explicit description of the set ∆ and
shows that it is a basis of the lattice D⊥ := 〈D1, . . . , Dn〉⊥. In general, however, the set ∆ does
not give a basis of D⊥. In fact ∆ may be infinite (see Example 5.5). At the other extreme, there
are examples with D⊥ 6= 0 and ∆ = ∅ (see e.g. [Fri13, Examples 4.3 and 4.4]).

Under assumptions 7.1, Looijenga defines the Tits cone I ⊂ Pic(Y )R as follows. (Here we use
our notation.) Write ∆ = ∆Ye for the set of classes of (−2)-curves on Ye. Define the fundamental
chamber

C = {x ∈ C+ | x · α > 0 for all α ∈ ∆}.

The Tits cone I is defined by

I =
⋃
w∈W

w(C).

Looijenga proves that the Weyl group W acts properly discontinuously on the interior Int(I) of
I [Loo81, Corollary 1.14]. Moreover, the reflection hyperplanes α⊥ ⊂ Pic(Y )R, α ∈ Φ are dense
in Pic(Y )R\ Int(I) ∪ (−Int(I)) by [Loo81, Theorem II.1.5]. So

Int(I) ∪ (−Int(I)) ⊂ Pic(Y )R

is the maximal W -equivariant open set on which W acts properly discontinuously.
In the general case, recall that we have an inclusion W ⊂ Adm. The group Adm is the full

monodromy group and the Weyl group W is the normal subgroup given by Picard–Lefschetz
transformations. Under assumptions 7.1 we have W = Adm (see Lemma 5.4). In general
W 6= Adm, and in fact the index of W ⊂ Adm may be infinite (see Example 5.3). Moreover,
there are examples such that W is trivial and Adm is infinite (see Example 5.6).

However, we show that the fact that W = Adm acts properly discontinuously on the Tits
cone admits a generalization as follows.

Proposition 7.3. Assume the conditions 7.1. Let (Yg, D) denote a generic deformation of (Y,D).
Then the closure of the Tits cone I ⊂ Pic(Y )R is equal to the closure of

NE(Yg) + 〈D1, . . . , Dn〉R.

Proof. Write A = NE(Yg)+〈D1, . . . , Dn〉R, a convex cone in Pic(Y )R. We must show that A = I.
The Weyl group W acts transitively on the set of (−1)-curves on Yg meeting Di, for each

i = 1, . . . , n, by [Loo81, Theorem I.4.6]. Also C+ ⊂ I by [Loo81, Lemma I.3.7].
If D2 < 0, then I is the convex hull of the union of 〈D1, . . . , Dn〉R and the set of (−1)-curves

on Yg by [Loo81, Proposition I.3.9], the description of the extremal facets of I in [Loo81, § I.3.8],
and [Loo81, Theorem I.4.6]. Now by the description of NE(Yg) given by Lemma 2.14 we deduce
that I = A if D2 < 0.

If D2 = 0 then
I = {x ∈ Pic(Y )R | x ·D > 0} ∪ 〈D1, . . . , Dn〉R

by [Loo81, Proposition I.3.9]. It is easy to see that I = A in this case. Indeed, if x ·D > 0, then
(x+ND) ∈ C+ for N � 0, and thus x ∈ A. So I ⊂ A. Conversely, A ⊂ I because D is effective
and D ·Di = 0 for each component Di of D (note that D is either irreducible with D2 = 0 or a
cycle of (−2)-curves). 2

Proposition 7.4. Let Y be a smooth projective surface. Let Γ ⊂ Aut(Pic(Y )) be a subgroup
preserving the semigroup of effective classes. Then Γ acts properly discontinuously on the interior
of the cone NE(Y ).
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Proof. First note that any subgroup Γ of Aut(Pic(Y )) acts properly discontinuously on the
positive cone C+.

Now assume as in the statement that Γ preserves the semigroup of effective classes. We will
use the Zariski decomposition of effective divisors on the surface Y to show that Γ acts properly
discontinuously on the interior of the effective cone. Let D be a pseudoeffective R-divisor on the
surface Y (that is, D ∈ NE(Y )). Then there is a unique decomposition

D = P +N

where P and N are R-divisors, P is nef, N is effective, and, writing N =
∑
aiNi where Ni

is irreducible and ai ∈ R>0 for each i, we have P ·Ni = 0 for each i and the matrix (Ni ·Nj) is
negative definite. See [KMM87, Theorem 7.3.1]. Moreover D lies in the interior of the effective
cone if and only if P 2 > 0. (Indeed C+ ⊂ NE(Y ) so P 2 > 0 implies D lies in the interior of
NE(Y ). Conversely if P 2 = 0 and P 6= 0 then D ∈ P⊥ and P is nef so D does not lie in the
interior of NE(Y ). Finally, if P = 0, then we can find a nef divisor B such that B ·D = 0. Indeed,
take an ample divisor A and write B = A+

∑
λiNi such that B ·Ni = 0 for each i, then λi > 0

for each i and B is nef, B · D = 0. Thus D does not lie in the interior of NE(Y ).) Note also
that if D lies in the interior of the effective cone then the Zariski decomposition D = P + N
is characterized by the following properties: P is nef, P 6= 0, N is effective, and P · N = 0.
(Indeed, writing N =

∑k
i=1 aiNi as above, P ·N = 0 and P nef implies P ·Ni = 0 for each i. Also

P 2 > 0 because D lies in the interior of the effective cone, so the subspace 〈N1, . . . , Nk〉R ⊂ P⊥
is negative definite. It remains to show that the Ni are linearly independent. Otherwise, we have
a nontrivial expression

∑
αiNi =

∑
βiNi where αi, βi ∈ R>0 and αiβi = 0 for each i. But then

0 >

(∑
αiNi

)2

=

(∑
αiNi

)
·
(∑

βiNi

)
> 0,

which is a contradiction.)
Let B ⊂ Pic(Y )R denote the interior of the effective cone. We need to show that Γ acts

properly discontinuously on B. Equivalently, the map

Γ×B → B ×B, (γ, x) 7→ (x, γx)

is proper (that is, the inverse image of a compact set is compact). Equivalently, if (γn, xn) is a
sequence in Γ× B such that xn → x and γnxn → y as n →∞ for some x, y ∈ B, then γn = γ,
for some γ ∈ Γ, for infinitely many n. Let xn = Pn + Nn, x = P + N , and y = P ′ + N ′ be the
Zariski decompositions of xn, x, and y. Then Pn → P and Nn → N as n →∞ by continuity of
the Zariski decomposition on the interior of the effective cone [BKS04, Proposition 1.16]. Also,
since by assumption Γ preserves the semigroup of effective classes, γnxn = γnPn + γnNn is the
Zariski decomposition of γnxn. Thus γnPn → P ′ and γnNn → N ′ as n → ∞. Now Pn → P
and γnPn → P ′ implies γn = γ, some γ ∈ Γ, for infinitely many n because Γ acts properly
discontinuously on C+. 2

Lemma 7.5. Let (Y,D) be a Looijenga pair. Let (Yg, D) be a generic deformation of (Y,D).
Then the monodromy group AdmY preserves the semigroup of effective classes on (Yg, D).

Proof. By Lemma 2.14 result (i), if C ⊂ Yg is an irreducible curve, then either C ⊂ D, C2 > 0, or
C is a (−1)-curve. The group AdmY preserves the boundary classes [Di] and the ample cone of Yg
by Lemma 2.15. It follows from the Riemann–Roch formula that µ(C) is effective for µ ∈ AdmY

and C either an irreducible curve such that C2 > 0 or a (−1)-curve. So AdmY preserves the
semigroup of effective classes. 2
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Corollary 7.6. Let (Y,D) be a Looijenga pair. Let (Yg, D) be a generic deformation of (Y,D).
Then AdmY acts properly discontinuously on the interior of NE(Yg) + 〈D1, . . . , Dn〉R.

Proof. The group AdmY acts properly discontinuously on the interior of NE(Yg) by Lemma 7.5
and Proposition 7.4. Since AdmY acts trivially on the subspace 〈D1, . . . , Dn〉R, it follows that
AdmY acts properly discontinuously on the interior of NE(Yg) + 〈D1, . . . , Dn〉R. (Indeed any two
points x, y in the interior of NE(Yg)+〈D1, . . . , Dn〉R are contained in a translate T of the interior
of NE(Yg) by some element z =

∑
aiDi, ai ∈ R. Thus there exist open neighborhoods x ∈ U ⊂ T

and y ∈ V ⊂ T such that the set {g ∈ AdmY | gU ∩V 6= ∅} is finite because AdmY acts properly
discontinuously on T .) 2
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