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On Hadwiger’s covering problem in small
dimensions.
A. Arman, A. Bondarenko and A. Prymak

Abstract. Let𝐻𝑛 be theminimal number such that any 𝑛-dimensional convex body can be covered by
𝐻𝑛 translates of the interior of that body. Similarly 𝐻𝑠𝑛 is the corresponding quantity for symmetric
bodies. It is possible to define𝐻𝑛 and𝐻𝑠𝑛 in terms of illumination of the boundary of the body using
external light sources, and the famousHadwiger’s covering conjecture (illumination conjecture) states
that 𝐻𝑛 = 𝐻𝑠𝑛 = 2𝑛 .
In this note we obtain new upper bounds on 𝐻𝑛 and 𝐻𝑠𝑛 for small dimensions 𝑛. Our main idea is to
cover the body by translates of John’s ellipsoid (the inscribed ellipsoid of the largest volume). Using
specific lattice coverings, estimates of quermassintegrals for convex bodies in John’s position, and
calculations of mean widths of regular simplexes, we prove the following new upper bounds on 𝐻𝑛
and 𝐻𝑠𝑛 : 𝐻5 ≤ 933, 𝐻6 ≤ 6137, 𝐻7 ≤ 41377, 𝐻8 ≤ 284096, 𝐻𝑠4 ≤ 72, 𝐻𝑠5 ≤ 305, and 𝐻𝑠6 ≤ 1292.
For larger 𝑛, we describe how the general asymptotic bounds 𝐻𝑛 ≤

(2𝑛
𝑛

)
𝑛(ln 𝑛 + ln ln 𝑛 + 5) and

𝐻𝑠𝑛 ≤ 2𝑛𝑛(ln 𝑛+ ln ln 𝑛+5) due to Rogers, Shephard andRoger, Zong, respectively, can be improved
for specific values of 𝑛.

1 Introduction

Let K𝑛 be the family of all convex bodies in R𝑛, i.e., all convex compact sets 𝐾 ⊂ R𝑛

with a nonempty interior (int(𝐾) ≠ ∅). For 𝐴, 𝐵 ⊂ R𝑛, we denote by

𝐶 (𝐴, 𝐵) := min

{
𝑁 : ∃𝑡1, . . . , 𝑡𝑁 ∈ R𝑛 satisfying 𝐴 ⊆

𝑁⋃
𝑗=1

(𝑡 𝑗 + 𝐵)
}
,

the minimal number of translates of 𝐵 needed to cover 𝐴.
Hadwiger 17] raised the question of determining the value of

𝐻𝑛 = max{𝐶 (𝐾, int(𝐾)) : 𝐾 ∈ K𝑛}

for all 𝑛 ≥ 3.
Considering an 𝑛-cube, one immediately sees that 𝐻𝑛 ≥ 2𝑛, and the well-known

Hadwiger’s covering conjecture states that 𝐻𝑛 = 2𝑛 for 𝑛 ≥ 3 with equality only for
parallelepipeds. It was shown that𝐻2 = 4 by Levi 23]. Aside from Levi and Hadwiger,
the conjecture may be associated with the names of Boltyanski, who in 7] has estab-
lished an equivalent formulation in terms of illumination of the boundary of the body
by external light sources, and with Gohberg-Markus 15] who asked the question in
terms of the minimal number of smaller homothetic copies of 𝐾 required to cover
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On Hadwiger’s covering problem in small dimensions 3

𝐾 . As of today, the conjecture, which is also known as the illumination conjecture, is
wide open. For details about the history and partial results for special classes of con-
vex bodies see, e.g., 5]. For general background on convex geometry one can refer to,
e.g., 32] or to the introductory sections of 1] or 8].

In what follows we will outline the current approaches in obtaining the upper
bounds on 𝐻𝑛 and our modifications allowing to obtain new bounds.

To this end, letK𝑠
𝑛 be the subfamily ofK𝑛 consisting of centrally symmetric convex

bodies, and define
𝐻𝑠𝑛 = max{𝐶 (𝐾, int(𝐾)) : 𝐾 ∈ K𝑠

𝑛}.
The best known explicit upper bound on 𝐻𝑛 in high dimensions follows from the

results of Rogers and Zong 29] (which, in turn, use the Rogers-Shephard inequal-
ity 28]):

𝐻𝑛 ≤
(
2𝑛
𝑛

)
𝑛(ln 𝑛 + ln ln 𝑛 + 5). (1.1)

This bound is valid for each dimension 𝑛 ≥ 3, so it can be used for our settings of
specific small 𝑛. We remark that a similar estimate was first obtained by Erdös and
Rogers 12], who showed (1.1) with 4+ 1

𝑛
in place of 5, but only for sufficiently large 𝑛.

Now the asymptotic behavior of
(2𝑛
𝑛

)
is 4𝑛√

2𝜋𝑛
, so this upper bound is (4+𝑜(1))𝑛 while

the conjecture states 𝐻𝑛 = 2𝑛. Remarkable sub-exponential improvements of (1.1)
have been obtained only recently by Huang, Slomka, Tkocz and Vritsiou 18]. Namely,
using “thin-shell” volume estimates they obtained

𝐻𝑛 ≤ exp(−𝑐
√
𝑛)4𝑛. (1.2)

This was later improved, using the new breakthrough bounds on the isotropic con-
stant, by Campos, van Hintum, Morris and Tiba 9] to

𝐻𝑛 ≤ exp
(−𝑐𝑛
ln 𝑛

)
4𝑛. (1.3)

Both constants 𝑐 in (1.2) and (1.3) are independent of 𝑛 but not given explicitly. For
centrally symmetric bodies, one has (see 12] and 29])

𝐻𝑠𝑛 ≤ 2𝑛𝑛(ln 𝑛 + ln ln 𝑛 + 5), (1.4)

which is asymptotically close to the conjectured 2𝑛.
The first step in obtaining any of the inequalities (1.1)–(1.4) is the result of

Rogers 27] on the covering density of R𝑛 by translates of a body 𝐿. Namely, let

𝜃 (𝐿) = lim
𝑅→∞

inf
Λ

{
|𝐿 |#Λ
(2𝑅)𝑛 : [−𝑅, 𝑅]𝑛 ⊆

⋃
𝜆∈Λ

(𝑥𝜆 + 𝐿)
}

denote the covering density of space by translates of 𝐿, where |𝐿 | is the volume of 𝐿,
and #Λ is the cardinality of Λ. Rogers 27] showed that for any body 𝐿 ∈ K𝑛,

𝜃 (𝐿) ≤ 𝑛(ln 𝑛 + ln ln 𝑛 + 5). (1.5)

The main idea of 27] is that an appropriate number of random translates of 𝐿 cov-
ers “most” of the space, and the leftover can be handled using a maximum packing
argument.
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4 A. Arman, A. Bondarenko, and A. Prymak

The second step is the use of the inequality

𝐶 (𝐾, 𝐿) ≤ |𝐾 − 𝐿 |
|𝐿 | 𝜃 (𝐿), (1.6)

which is valid for any 𝐾, 𝐿 ∈ K𝑛 and was proved by Rogers and Zong 29] using
certain averaging argument. (Here 𝐾 − 𝐿 = {𝑥 − 𝑦 : 𝑥 ∈ 𝐾, 𝑦 ∈ 𝐿} is the Minkowski
difference.)

For symmetric bodies, one obtains (1.4) from (1.6) by choosing 𝐿 = (1 − 𝜀)𝐾
with 𝜀 → 0+ and using the fact that |𝐾 − 𝐾 | = |2𝐾 | = 2𝑛 |𝐾 | for 𝐾 ∈ K𝑠

𝑛 . For
general bodies, (1.1) follows from (1.6) by applying the Rogers-Shephard inequality
(see 28]), which, for any 𝐾 ∈ K𝑛, estimates the volume of the difference body 𝐾 − 𝐾
by |𝐾 − 𝐾 | ≤

(2𝑛
𝑛

)
|𝐾 |.

The improvements (1.2) and (1.3) are both based on choosing 𝐿 to be the largest (by
volume) centrally symmetric subset of 𝐾 . With such choice, we have |𝐾 − 𝐿 |/|𝐿 | ≤
|2𝐾 |/|𝐿 | ≤ 2𝑛Δ𝐾𝐵 (𝐾)−1, where

Δ𝐾𝐵 (𝐾) := max
𝑥∈R𝑛

|𝐾 ∩ (𝑥 − 𝐾) |
|𝐾 |

is the Kövner-Besicovitch measure of symmetry of 𝐾 . Simple averaging gives
Δ𝐾𝐵 (𝐾) ≥ 2−𝑛 for any 𝐾 ∈ K𝑛, while 18] and 9] obtain the corresponding sub-
exponential improvements to the lower bound on Δ𝐾𝐵 (𝐾), yielding (1.2) and (1.3).

For low dimensions, Lassak 21] showed that

𝐻𝑛 ≤ (𝑛 + 1)𝑛𝑛−1 − (𝑛 − 1) (𝑛 − 2)𝑛−1, (1.7)

which outperforms (1.1) for 𝑛 ≤ 5. For 𝑛 = 3 this gives𝐻3 ≤ 34, which was improved
to𝐻3 ≤ 20 by Lassak 22], then to𝐻3 ≤ 16 by Papadoperakis 24], and then to𝐻3 ≤ 14
by Prymak 25]. For slightly larger dimensions, it was shown in 26] that 𝐻4 ≤ 96,
𝐻5 ≤ 1091 and 𝐻6 ≤ 15373 improving both (1.1) and (1.7) for 𝑛 = 4, 5, 6. Then
Diao 11] obtained 𝐻5 ≤ 1002 and 𝐻6 ≤ 14140. All of these results in low dimensions
were based on comparing the body with a suitable parallelepiped. For the symmetric
case, Lassak 20] obtained the sharp result 𝐻𝑠3 = 8, but for 𝑛 ≥ 4 no estimate better
than (1.4) or than the corresponding bound on 𝐻𝑛 (obviously, 𝐻𝑠𝑛 ≤ 𝐻𝑛) was known.

Our main result is the following new bounds.

Theorem 1.1 𝐻5 ≤ 933, 𝐻6 ≤ 6137, 𝐻7 ≤ 41377, 𝐻8 ≤ 284096, 𝐻𝑠4 ≤ 72, 𝐻𝑠5 ≤ 305,
and 𝐻𝑠6 ≤ 1292.

The main idea of the proof is to utilize (1.6) with 𝐿 being the maximal (by volume)
inscribed ellipsoid into 𝐾 (such ellipsoids were characterized by John 19]). After an
appropriate affine transform, we can assume that 𝐿 is the unit ball 𝐵𝑛2 in R𝑛, while 𝐾
is in the so-called John’s position, so applying (1.6) we get

𝐶 (𝐾, int𝐾) ≤
|𝐾 + 𝐵𝑛2 |
|𝐵𝑛2 |

𝜃 (𝐵𝑛2 ). (1.8)

Next we make use of several geometric results which allow us to obtain an upper
bound on |𝐾 + 𝐵𝑛2 |. One ingredient in such estimates is the fact that the mean width
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On Hadwiger’s covering problem in small dimensions 5

and the volume of a body in John’s position are largest for the regular simplex (general
case) or for the cube (symmetric case), the results due to Ball 2], Barthe 4], Schechtman
and Schmuckenschläger 31]. Another ingredient in our estimates is a Bonnnesen-type
inequality by Bokowski and Heil 6] on quermassintegrals of 𝐾 . Finally, we use upper
bounds on 𝜃 (𝐵𝑛2 ) for specific small 𝑛 which arise from known lattice coverings.

Theorem 1.1 is proved in Sections 2–4. Of possibly independent interest are esti-
mates of the mean width of the regular simplex in dimensions 5 ≤ 𝑛 ≤ 8 given in
Section 3.

In Section 5 we show how one can improve (1.5) for each fixed 𝑛 by optimiz-
ing choices of certain parameters in the original proof of Rogers 27] (the original
proof provides a succinct bound valid for all 𝑛). Consequently, (1.1) and (1.4) can be
somewhat improved for 𝑛 larger than those covered by Theorem 1.1.

To finalize, in Tables 1 and 2 we provide the best known upper bounds on 𝐻𝑛 and
𝐻𝑠𝑛 for 3 ≤ 𝑛 ≤ 14.

𝑛 𝐻𝑛 ≤ reference 𝑛 𝐻𝑛 ≤ reference
3 14 25] 9 2 064 332 Prop. 5.1
4 96 26] 10 8 950 599 Prop. 5.1
5 933 Th. 1.1 11 38 482 394 Prop. 5.1
6 6 137 Th. 1.1 12 164 319 569 Prop. 5.1
7 41 377 Th. 1.1 13 697 656 132 Prop. 5.1
8 284 096 Th. 1.1 14 2 947 865 482 Prop. 5.1

Table 1: Best known upper bounds on 𝐻𝑛 for 3 ≤ 𝑛 ≤ 14.

𝑛 𝐻𝑠𝑛 ≤ reference 𝑛 𝐻𝑠𝑛 ≤ reference
3 8 20] 9 21 738 Prop. 5.1
4 72 Th. 1.1 10 49 608 Prop. 5.1
5 305 Th. 1.1 11 111 721 Prop. 5.1
6 1 292 Th. 1.1 12 248 895 Prop. 5.1
7 3 954 Prop. 5.1 13 549 506 Prop. 5.1
8 9 370 Prop. 5.1 14 1 203 936 Prop. 5.1

Table 2: Best known upper bounds on 𝐻𝑠𝑛 for 3 ≤ 𝑛 ≤ 14.

2 Preliminaries

In what follows, 𝐵𝑛2 = {𝑥 ∈ R𝑛 : ∥𝑥∥ ≤ 1}, and S𝑛−1 = {𝑥 ∈ R𝑛 : ∥𝑥∥ = 1}. The 𝑛-
dimensional volume is denoted by | · |𝑛, and subscript is usually dropped if the value
of 𝑛 is clear from the context.
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6 A. Arman, A. Bondarenko, and A. Prymak

2.1 John’s position

Let J𝑛 be the family of convex bodies 𝐾 ∈ K𝑛 which are in John’s position, i.e. 𝐵𝑛2 is
the maximal volume ellipsoid of 𝐾 (see, e.g., 8, Sect. 1.5.1]). Similarly, define J 𝑠

𝑛 to be
the family of centrally symmetric convex bodies 𝐾 ∈ K𝑠

𝑛 which are in John’s position.
For any 𝐾 ∈ K𝑛 (or 𝐾 ∈ K𝑠

𝑛) there exists an affine image of 𝐾 in J𝑛 (or in J 𝑠
𝑛 ).

John’s theorem (see e.g. 1, Thm. 2.1.3, Remark 2.1.17]) implies that

𝐾 ⊆ 𝑛𝐵𝑛2 for any 𝐾 ∈ J𝑛, and 𝐾 ⊆
√
𝑛𝐵𝑛2 for any 𝐾 ∈ J 𝑠

𝑛 . (2.1)

2.2 Quermassintegrals

In order to bound 𝐻𝑛 and 𝐻𝑠𝑛 we will use the inequality (1.8), and so we start by
discussing upper bounds on |𝐾 + 𝐵𝑛2 |, where 𝐾 is in John’s position.

By Steiner’s formula, for any 𝐾 ∈ K𝑛

|𝐾 + 𝑡𝐵𝑛2 | =
𝑛∑︁
𝑗=0

(
𝑛

𝑗

)
𝑊 𝑗 (𝐾)𝑡 𝑗 , (2.2)

where

𝑊 𝑗 (𝐾) = 𝑉 (𝐾, . . . , 𝐾︸     ︷︷     ︸
𝑛− 𝑗 times

, 𝐵𝑛2 , . . . , 𝐵
𝑛
2︸       ︷︷       ︸

𝑗 times

)

is the 𝑗-th quermassintegral of𝐾 and𝑉 (·) is the mixed volume, see, e.g., 1, Sect. 1.1.5],
8, Sect. 1.4.2] or 32, Sect. 4.2]. Additionally,𝑊0 (𝐾) = |𝐾 |,𝑊1 (𝐾) = 𝜕 (𝐾)/𝑛, where
𝜕 (𝐾) is the surface area of 𝐾 , and𝑊𝑛 (𝐾) = |𝐵𝑛2 |. Also note that if 𝐵𝑛2 ⊆ 𝐾 , then due
to the monotonicity of mixed volumes we have𝑊𝑖 (𝐾) ≥ 𝑊 𝑗 (𝐾) for 𝑖 ≤ 𝑗 .

Next, we will discuss upper bounds on𝑊𝑖 (𝐾) for𝐾 ∈ J𝑛 and𝐾 ∈ J 𝑠
𝑛 respectively.

Let𝑇𝑛 be a regular simplex in R𝑛 of unit edge length, and let Δ𝑛 be a dilation of𝑇𝑛

for which 𝐵𝑛2 is the inscribed ball, then Δ𝑛 =
√︁
2(𝑛 + 1)𝑛 𝑇𝑛. Also, let𝐶𝑛 := [−1, 1]𝑛

be a cube circumscribed about 𝐵2
𝑛. Ball 2] proved that among all convex bodies in

R𝑛 simplexes have maximal volume ratio (volume ratio measures how much of the
volume of the whole body can be contained in the largest inscribed ellipsoid) while
for the symmetric ones such a maximizer is the cube 3]. These results can be stated in
our terms as follows:

𝑊0 (𝐾) ≤
{
𝑊0 (Δ𝑛), if 𝐾 ∈ J𝑛,
𝑊0 (𝐶𝑛), if 𝐾 ∈ J 𝑠

𝑛 .
(2.3)

For 𝐾 ∈ K𝑛 and a direction 𝑢 ∈ S𝑛−1, the support function is defined as ℎ𝐾 (𝑢) =
sup{⟨𝑥, 𝑦⟩ : 𝑦 ∈ 𝐾}. Let 𝜎 be the rotationally invariant probability measure on S𝑛−1,
then the mean width of 𝐾 is defined by

𝑤(𝐾) =
∫
S𝑛−1

ℎ𝐾 (𝑢) 𝑑𝜎(𝑢).1

1Note that sometimes the mean width is defined as
∫
S𝑛−1 ℎ𝐾 (𝑢) + ℎ𝐾 (−𝑢) 𝑑𝜎 (𝑢) .
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On Hadwiger’s covering problem in small dimensions 7

We have 𝑊𝑛−1 (𝐾) = |𝐵𝑛2 |𝑤(𝐾), which is a partial case of Kubota’s formula 1, eq
(1.1.1)]. Barthe 4, Thm. 3] proved 2 that among the bodies from J𝑛, the mean width is
maximized for Δ𝑛, while Schechtman and Schmuckenschläger 31] (the proof is also
included in 4, Thm. 2]) remarked that𝐶𝑛 maximizes the mean width among the bodies
from J 𝑠

𝑛 , i.e.,

𝑊𝑛−1 (𝐾) ≤
{
𝑊𝑛−1 (Δ𝑛), if 𝐾 ∈ J𝑛,
𝑊𝑛−1 (𝐶𝑛), if 𝐾 ∈ J 𝑠

𝑛 .
(2.4)

We estimate 𝑤(Δ𝑛) for the required values of 𝑛 in the next section. It is known 14],
16, Sec. 13.2.3] (or can be obtained by a straightforward computation) that 𝑤(𝐶𝑛) =
2 |𝐵𝑛−12 |𝑛−1

|𝐵𝑛2 |𝑛
for 𝑛 ≥ 2, and so𝑊𝑛−1 (𝐶𝑛) = 2|𝐵𝑛−12 |.

Remark 2.1 The results 2, Thm. 1, Thm. 1′] imply that 𝑊1 (𝐾) ≤ 𝑊1 (Δ𝑛) for any
𝐾 ∈ J𝑛 (recall that𝑊1 (𝐾) = 𝜕 (𝐾)/𝑛, where 𝜕 (𝐾) is the surface area of𝐾). This would
not lead to any improvements in our context as 𝑊1 (Δ𝑛) = 𝑊0 (Δ𝑛) and we get the
same upper bound on𝑊1 (𝐾) as from𝑊1 (𝐾) ≤ 𝑊0 (𝐾). A similar remark regarding
the inequality 𝑊1 (𝐾) ≤ 𝑊1 (𝐶𝑛) also holds for 𝐾 ∈ J 𝑠

𝑛 , and follows from 2, Thm.
2], 3, Thm. 3].

Remark 2.2 It is natural to conjecture that 𝑊 𝑗 (𝐾) ≤ 𝑊 𝑗 (Δ𝑛) (and that 𝑊 𝑗 (𝐾) ≤
𝑊 𝑗 (𝐶𝑛)) for any 𝐾 ∈ J𝑛 (respectively, 𝐾 ∈ J 𝑠

𝑛 ) and all 0 ≤ 𝑗 ≤ 𝑛. This is an obvious
equality for 𝑗 = 𝑛 and is valid for 𝑗 ∈ {0, 1, 𝑛−1} as described above ((2.3), Remark 2.1,
(2.4)).

Finally, we need a Bonnesen-style inequality by Bokowski and Heil 6]. If 𝐾 ∈ K𝑛
satisfies 𝐾 ⊆ 𝑅𝐵𝑛2 , then for all 0 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑛

𝑊 𝑗 (𝐾) ≤
(𝑘 − 𝑗) (𝑖 + 1)𝑅𝑖𝑊𝑖 (𝐾) + ( 𝑗 − 𝑖) (𝑘 + 1)𝑅𝑘𝑊𝑘 (𝐾)

(𝑘 − 𝑖) ( 𝑗 + 1)𝑅 𝑗 =: 𝐵𝑅,𝑖, 𝑗 ,𝑘 (𝑊𝑖 (𝐾),𝑊𝑘 (𝐾)).
(2.5)

Recall that in our settings we can choose 𝑅 according to (2.1).

2.3 Density of coverings by balls

One of the approaches to construct specific efficient coverings of the space by balls is
to use lattices, see 10, Ch. 2]. Considering the 𝐴∗

𝑛 lattice yields the following estimate
(valid for all 𝑛):

𝜃 (𝐵𝑛2 ) ≤ |𝐵𝑛2 |
√
𝑛 + 1

(
𝑛(𝑛 + 2)
12(𝑛 + 1)

)𝑛/2
. (2.6)

It turns out that the above is optimal (smallest possible lattice covering density) for
2 ≤ 𝑛 ≤ 5 and provides the best known upper bound on 𝜃 (𝐵𝑛2 ) in most dimensions
10 ≤ 𝑛 ≤ 21. Better lattices were found by Schürmann and Vallentin 33] for6 ≤ 𝑛 ≤ 8,
which is important for our applications. To the best of our knowledge, there have

2The result of Barthe is stated in terms of ℓ-norm, and can be translated in the language of mean width
using the formula 4, p. 685] for the ℓ-norm of the dual body.
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8 A. Arman, A. Bondarenko, and A. Prymak

been no improvements after the work 33], where an interested reader can find a brief
survey of the topic. We list the corresponding lattice covering densities of R𝑛 by balls
in Table 3.

𝑛 least known lattice covering density 𝑛 least known lattice covering density
2 1.209199 8 3.142202
3 1.463505 9 4.340185
4 1.765529 10 5.251713
5 2.124286 11 5.598338
6 2.464801 12 7.510113
7 2.900024 13 7.864060

Table 3: Least known lattice covering densities, as in 33].

3 Estimates on mean width of regular simplex

The values of 2𝑤(𝑇𝑛) for 2 ≤ 𝑛 ≤ 6 expressed as certain integrals and numerically
evaluated with high precision can be found in 14]. We remark that in 14] expected
values of widths of simplexes are considered, while the mean width as we defined here
(and as commonly defined in the literature on geometry, see 1,8]) is the expected value
of the support function, this discrepancy results in the mean width of 𝑇𝑛 from 14]
(and 34]) being equal to 2𝑤(𝑇𝑛). We need upper estimates of𝑤(𝑇𝑛) for 𝑛 = 7, 8, which
we were unable to find in the literature. We present a simple computational technique
to obtain upper and lower estimates on 𝑤(𝑇𝑛) which will suffice for our purposes.

The starting point is the following representation that follows the work 14] by
Finch and references therein, in particular, Sun 34].

Let 𝐹 (𝑥) = 1√
2𝜋

∫ 𝑥
−∞ 𝑒

−𝑡2/2 𝑑𝑡 be the cumulative distribution function of the stan-

dard normal distribution, then 𝐹 (𝑥) = 1
2 + 1

2erf(
𝑥√
2
), where erf(𝑧) = 2√

𝜋

∫ 𝑧
0 𝑒−𝑡

2
𝑑𝑡

is the error function.
For 𝑛 ≥ 0 let

𝑔𝑛+1 (𝑥) := 1 − 𝐹 (𝑥)𝑛+1 − (1 − 𝐹 (𝑥))𝑛+1 = 1 −
(
1 + erf( 𝑥√

2
)

2

)𝑛+1
−

(
1 − erf( 𝑥√

2
)

2

)𝑛+1
.

The following formula for mean width follows from 34] and was derived in 14]:

𝑤(𝑇𝑛) =
Γ( 𝑛2 )

2Γ( 𝑛+12 )

∫ ∞

0
𝑔𝑛+1 (𝑥) 𝑑𝑥. (3.1)

Next, we estimate the integral in the formula.
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Proposition For any 𝑎 > 2 and any positive integers 𝑛, 𝑁 , the following estimates
hold:

𝑎

𝑁

𝑁∑︁
𝑘=1

𝑔𝑛+1
(
𝑎𝑘
𝑁

)
≤

∫ ∞

0
𝑔𝑛+1 (𝑥) 𝑑𝑥 ≤

𝑎

𝑁

𝑁−1∑︁
𝑘=0

𝑔𝑛+1
(
𝑎𝑘
𝑁

)
+ 𝑛 + 1

√
2𝜋

exp (−𝑎) . (3.2)

■

Proof We directly estimate the “tail” of the integral and use simple endpoint Rie-
mann sums for the “main” part of the integral in (3.1).

Recalling that 𝑑
𝑑𝑥
𝐹 (𝑥) = 1√

2𝜋
𝑒−𝑥

2/2 it is straightforward to verify that 𝑔𝑛+1 is a
positive strictly decreasing function on [0,∞). Hence, considering the upper and the
lower Riemann sums for

∫ 𝑎
0 𝑔𝑛+1 (𝑥) 𝑑𝑥 and the uniform partition of [0, 𝑎] into 𝑁

subintervals, we obtain

𝑎

𝑁

𝑁∑︁
𝑘=1

𝑔𝑛+1
(
𝑎·𝑘
𝑁

)
≤

∫ 𝑎

0
𝑔𝑛+1 (𝑥) 𝑑𝑥 ≤

𝑎

𝑁

𝑁−1∑︁
𝑘=0

𝑔𝑛+1
(
𝑎·𝑘
𝑁

)
. (3.3)

For any 𝑥 > 𝑎 ≥ 2

𝑔𝑛+1 (𝑥) ≤ 1 − 𝐹 (𝑥)𝑛+1 = 1 − (1 − 𝐹 (−𝑥))𝑛+1 = 1 −
(
1 − 1

√
2𝜋

∫ ∞

𝑥

𝑒−𝑡
2/2 𝑑𝑡

)𝑛+1
≤ 𝑛 + 1

√
2𝜋

∫ ∞

𝑥

𝑒−𝑡
2/2 𝑑𝑡 ≤ 𝑛 + 1

√
2𝜋

∫ ∞

𝑥

𝑒−𝑡 𝑑𝑡 =
𝑛 + 1
√
2𝜋

exp (−𝑥) ,

so ∫ ∞

𝑎

𝑔𝑛+1 (𝑥) 𝑑𝑥 ≤
𝑛 + 1
√
2𝜋

exp (−𝑎) .

Taking this inequality and the evident
∫ ∞
𝑎
𝑔𝑛+1 (𝑥) 𝑑𝑥 ≥ 0 into account, we

deduce (3.2) from (3.1) and (3.3). ■

Since the error function can be computed numerically with any given precision,
employing a simple SageMath (30]) computation ?github], we obtain the following
corollary.

Corollary The following inequalities hold:

0.4208 ≤𝑤(𝑇5) ≤ 0.4215,

0.4067 ≤𝑤(𝑇6) ≤ 0.407,

0.39425 ≤𝑤(𝑇7) ≤ 0.39427,

0.383 ≤𝑤(𝑇8) ≤ 0.38301.

■

These estimates for 𝑛 = 5, 6 are consistent with the values obtained in 14];
we include them here for completeness. While our computational method allows to
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obtain a tighter gap in the estimates, we only derived what was necessary for our appli-
cation of estimating 𝐻𝑛 from above ensuring that no further improvement is possible
(even if the value of the lower bound on𝑤(𝑇𝑛) is used, the upper bound on the integer
value 𝐻𝑛 does not improve). The computations take less than two hours on a modern
personal computer.

4 Proof of Theorem 1.1

Let us begin with the general (not necessarily symmetric) case. Since 𝐶 (𝐾, int(𝐾)) is
invariant under affine transforms, we can assume that 𝐾 ∈ J 𝑛. Then using 𝐵𝑛2 ⊆ 𝐾 ,
compactness and (1.6), we have

𝐶 (𝐾, int(𝐾)) ≤ 𝐶 (𝐾, int(𝐵𝑛2 )) ≤ lim
𝑟→1−

𝐶 (𝐾, 𝑟𝐵𝑛2 )

≤ lim
𝑟→1−

|𝐾 − 𝑟𝐵𝑛2 |
|𝑟𝐵𝑛2 |

𝜃 (𝐵𝑛2 ) =
|𝐾 + 𝐵𝑛2 |
|𝐵𝑛2 |

𝜃 (𝐵𝑛2 ).

Hence, applying (2.2),

𝐶 (𝐾, int(𝐾)) ≤
𝜃 (𝐵𝑛2 )
|𝐵𝑛2 |

𝑛∑︁
𝑗=0

(
𝑛

𝑗

)
𝑊 𝑗 (𝐾). (4.1)

The upper bounds for 𝜃 (𝐵𝑛2 ) come from Table 3, so it remains to estimate𝑊𝑖 (𝐾). As
Δ𝑛 =

√︁
2𝑛(𝑛 + 1)𝑇𝑛, by (2.3),

𝑊𝑖 (𝐾) ≤ 𝑊0 (𝐾) ≤ 𝑊0 (Δ𝑛) = (2𝑛(𝑛 + 1))𝑛/2 |𝑇𝑛 | = 𝑛𝑛/2 (𝑛 + 1) (𝑛+1)/2
𝑛!

(4.2)

for any 0 ≤ 𝑖 ≤ 𝑛. Using (2.4),

𝑊𝑛−1 (𝐾) ≤ 𝑊𝑛−1 (Δ𝑛) = |𝐵𝑛2 |𝑤(Δ𝑛) = |𝐵𝑛2 |
√︁
2𝑛(𝑛 + 1)𝑤(𝑇𝑛). (4.3)

Trivially,𝑊𝑛 (𝐾) = |𝐵𝑛2 |.
Next we combine the above, and use (2.5) (valid with 𝑅 = 𝑛 due to (2.1)) for

appropriate parameters. The calculations were performed in the script ?github].
Bound on 𝐻5. We apply (4.1) and estimate the quermassintegrals as follows. For

0 ≤ 𝑖 ≤ 2, use (4.2); (4.3) and (2.5) give 𝑊4 (𝐾) ≤ 𝑊4 (Δ5) and 𝑊3 (𝐾) ≤
𝐵5,2,3,4 (𝑊0 (Δ5),𝑊4 (Δ5)); recall that 𝑊5 (𝐾) = |𝐵5

2 |. Combining the above, using
Corollary 3.2 and calculating the actual value of the bound yields 𝐻5 ≤ 933.

Bound on 𝐻6. The arguments are similar to the previous case. The required
application of (2.5) is𝑊4 (𝐾) ≤ 𝐵6,3,4,5 (𝑊0 (Δ6),𝑊5 (Δ6)). The result is 𝐻6 ≤ 6137.

Bounds on 𝐻𝑛 for 𝑛 = 7, 8. We proceed similarly with the only difference that
𝑊 𝑗 (𝐾) ≤ 𝐵𝑛,𝑛−4, 𝑗 ,𝑛−1 (𝑊0 (Δ𝑛),𝑊𝑛−1 (Δ𝑛)) is used for 𝑗 ∈ {𝑛 − 3, 𝑛 − 2} yielding
𝐻7 ≤ 41377 and 𝐻8 ≤ 284096.

When the body is centrally symmetric, we follow a similar route, with the following
differences. In place of (4.2) we have

𝑊𝑖 (𝐾) ≤ 𝑊0 (𝐾) ≤ 𝑊0 (𝐶𝑛) = 2𝑛 (4.4)

2025/03/29 00:24
https://doi.org/10.4153/S0008439525000384 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439525000384


On Hadwiger’s covering problem in small dimensions 11

for any 0 ≤ 𝑖 ≤ 𝑛. Using (2.4) we get

𝑊𝑛−1 (𝐾) ≤ 𝑊𝑛−1 (𝐶𝑛) = 2|𝐵𝑛−12 |. (4.5)

Finally, by (2.1), the inequality (2.5) can be used with 𝑅 =
√
𝑛.

Bound on𝐻𝑠4 .Apply (4.1) and bound the quermassintegrals as follows. For 𝑖 = 0, 1
use (4.4); use (4.5) to get𝑊3 (𝐾) ≤ 2|𝐵3

2 |; we have𝑊4 (𝐾) = 𝑊4 (𝐶4) = |𝐵4
2 |; by (2.5)

𝑊2 (𝐾) ≤ 𝐵2,1,2,3 (𝑊1 (𝐶4),𝑊3 (𝐶4)). Combining the above and calculating the value
of the bound yields 𝐻𝑠4 ≤ 72.

Bounds on 𝐻𝑠𝑛 for 𝑛 = 5, 6. We use similar arguments: (4.4) for 𝑖 =

0, 1, 2; 𝑊𝑛 (𝐾) = 𝑊𝑛 (𝐶𝑛) = |𝐵𝑛2 |; (4.5) for 𝑖 = 𝑛 − 1; and 𝑊 𝑗 (𝐾) ≤
𝐵√

𝑛,2, 𝑗 ,𝑛−1 (𝑊0 (𝐶𝑛),𝑊𝑛−1 (𝐶𝑛)) for 3 ≤ 𝑗 ≤ 𝑛 − 2, which imply 𝐻𝑠5 ≤ 305 and
𝐻𝑠6 ≤ 1292.

Remark 4.1 In the above computations, we used the exact value for the density aris-
ing from 𝐴∗

𝑛 lattice from the estimate (2.6) for 𝑛 = 4, 5. For 𝑛 = 6, 7, 8 we used the
values of covering densities from 33] presented in Table 3 increased by 5 · 10−6 as
they were given to 6 decimal places, while we require an upper bound. Even if such an
increase is not performed, the resulting integer valued upper bounds in Theorem 1.1
would not change, so the accuracy given in 33] is more than sufficient for our needs.

5 Estimates via optimized Rogers bound

Proposition Suppose 𝑛 ≥ 3. If

𝑟𝑛 = min
𝑥∈ (0,1/𝑛)

𝑓𝑛 (𝑥), where 𝑓𝑛 (𝑥) = (1 + 𝑥)𝑛 (1 − 𝑛 ln(𝑥)), (5.1)

then

𝜃 (𝐾) ≤ 𝑟𝑛 for any 𝐾 ∈ K𝑛, 𝐻𝑛 ≤
(
2𝑛
𝑛

)
𝑟𝑛, and 𝐻𝑠𝑛 ≤ 2𝑛𝑟𝑛. (5.2)

■

Proof The first inequality in (5.2) is established in 27, p. 5]. (The bound (1.5) was
obtained in 27] by taking 𝑥 = 1

𝑛 ln 𝑛 in (5.1).) The other two inequalities in (5.2) follow
from (1.6) in the same way as (1.1) and (1.4) do. ■

For our purposes, it suffices to use the straightforward 𝑟𝑛 ≤ min{ 𝑓𝑛 ( 𝑗

𝑁𝑛
) : 1 ≤

𝑗 ≤ 𝑁 − 1} with 𝑁 = 1000. The resulting bounds on 𝑟𝑛 for 3 ≤ 𝑛 ≤ 14 are given
in Table 4 (the computed values of min{ 𝑓𝑛 ( 𝑗

𝑁𝑛
) : 1 ≤ 𝑗 ≤ 𝑁 − 1} are rounded up in

the sixth digit, so they represent actual upper bounds), and the estimates on 𝐻𝑛 and
𝐻𝑠𝑛 can be found in Tables 1 and 2. For the computations, see ?github]. We remark
that max{𝜃 (𝐾), 𝐾 ∈ K2} = 3

2 was established by Fáry 13].
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𝑛 max{𝜃 (𝐾), 𝐾 ∈ K𝑛} ≤ 𝑛 max{𝜃 (𝐾), 𝐾 ∈ K𝑛} ≤
3 10.064123 9 42.458503
4 14.916986 10 48.445515
5 20.024359 11 54.551530
6 25.362768 12 60.765566
7 30.898293 13 67.078451
8 36.603890 14 73.482436

Table 4: Upper bounds on max{𝜃 (𝐾), 𝐾 ∈ K𝑛}, for 3 ≤ 𝑛 ≤ 14.
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