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Abstract

The Lp -improving properties of convolution operators with measures supported on space curves have
been studied by various authors. If the underlying curve is non-degenerate, the convolution with the
(Euclidean) arclength measure is a bounded operator from L3/2(R3) into L2(R3). Drury suggested that
in case the underlying curve has degeneracies the appropriate measure to consider should be the affine
arclength measure and he obtained a similar result for homogeneous curves t i-> (/, t2, tk), / > 0 for
k > 4. This was further generalized by Pan to curves t i->- (/, tk,«'), / > 0 for 1 < Jt < /, it + / > 5. In
this article, we will extend Pan's result to (smooth) compact curves of finite type whose tangents never
vanish. In addition, we give an example of a flat curve with the same mapping properties.

2000 Mathematics subject classification: primary 42B15; secondary 42B10.
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1. Introduction

The Lp -improving properties of convolution operators with measures supported on
space curves have been studied by many authors. Oberlin [5] showed that the convo-
lution with the (Euclidean) arclength measure on the curve 11-> (r, r2, r3), 0 < t < 1,
maps L3/2(K3) boundedly into L2(R3). Later, Pan [6] extended this result to non-
degenerate compact curves in K3.

Drury [3] suggested that in case the underlying curve has degeneracies the ap-
propriate measure to consider should be the affine arclength measure and obtained
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a similar result for a class of homogeneous curves. Recall that the affine arclength
measure aY on the curve y : / -> R3 is defined by

= f(y(t))k(t)dt

for/ e C~(R3), where

k(t) = det y"(t) te I.

Associated with aY is the convolution operator TOy given by

(1) Taj 00 =ay*f(x)= I f(x-y) daY (y)

for / e C£°(IR3). Drury showed that TOy is bounded from L3/2(IR3) into L2(R3) for
= (t, t2, tk), t > 0, if k > 4. This was further improved by Pan [7, 8]:

PROPOSITION 1.1. Let 1 < k < I < oo, and suppose k +1 > 5. Let aY be the affine
arclength measure on the curve y(t) — (t, tk, tl), t > 0, defined by

f = c (°
JO

l-5)/6 dt

forf € CS°(R3). Then TOy defined by (1) maps L3^2(K3) boundedly into L2(IR3).

Notice that all the results mentioned above are sharp. In other words, if we denote
by ST the trapezoid with vertices at (0, 0), (1, 1), (2/3, 1/2), and (1/2, 1/3), then TOy

is a bounded operator from Z/(R3) into L9(K3) if and only if (l/p, I/a) € &. The
operator TOy is related to the convolution with the (Euclidean) arclength measure. To
be more specific, for 1 < it < /, we let

X ' = {(1/P. 1/9) e ^ : l /p - I /a < 1/(1 + * + /)}•

Then an analytic interpolation shows that the convolution operator with the (Euclidean)
arclength measure on the curve th> (t, tk, t1), 0 < t < 1, is a bounded operator from
Z/(R3) into L«(R3) at least for ( l / p , I /a) 6 int X'1 •

In this paper, we will establish similar results to Proposition 1.1 for curves of finite
type with non-vanishing tangents and also an example of flat curve with the same
mapping properties will be provided. More precisely, we will prove:

THEOREM 1.2. Let y be a smooth compact curve of finite type in K3. Assume y'(t)
doesn 't vanish at any point. Let Ta J = aY * f, where aY is the affine arclength
measure on the curve y. Then Ta maps L3/2(K3) boundedly into L2(K3).
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THEOREM 1.3. For any to > 0, the operator 7£ defined by T£f = o* *f is a
bounded operator from L3/2(R3) into L2(R3), where a^ is the affine arclength measure
on the curve y : t \-+ (t, t2, e~l/l), 0 < t < «b-

The organization of this paper is as follows. In Section 2, a perturbed version of
Proposition 1.1 will be studied. Based on this, we prove Theorem 1.2 in Section 3. In
the last section we will prove Theorem 1.3.

After finishing this paper, we learned that, using an ingenious idea by Christ [2],
Secco [10] independently obtained a result extending Proposition 1.1 to 1 < k <
I (possibly it + / < 5). She also showed that the convolution operator with the
(Euclidean) arclength measure on the curve t (-»• (t, tk, tl), 0 < t < 1, maps Z/(R3)
into L«(IR3) if and only if (l/p, \/q) e X'1-

2. Perturbations of homogeneous curves

Recall the following results on plane curves.

LEMMA 2.1 (Littman [4]). Let I be a compact interval and let<t>: I - » RbeaC2

function. Suppose there exists a positive constant C such that \<j>"(t)\ > Cfor r e / .
Then Tf given by

Tff {xux2) = If (x, -t,x2- 4>(t)) dt
Ji

satisfies || Tff \\LHW) < C'\\f \\L.VHW) with some constant C depending only on C.

LEMMA 2.2 ([1]). Let I be a compact interval and let <p : I —> N. be a C3 function.
Suppose there exist constants C\ and C2 with 0 < C\ < C2 < oo such that

(1) 4>"{t) never vanishes for r e / ;
( 2 ) Q<f>\t)2 < \4>(t)4>"(t)i < C2<P'(t)2for t e /;
(3) \4>(tW"(t)\ < C2\cf>'(t)(f>"(t)\forte /;

(4) J\jt dt < C2.
i

Then T* given by

Tff(xux2) = (f{x, - t,x2-<t>(t))\<t>"(t)\l/3dt

satisfies WT^fW^^ < C3II/ ||z.'/2(R2) with some constant C3 depending only on C\
andC2.
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Suppose 1 < k < I < oo and k + / > 5. Let

4>(t) = tk + 0,(0 and i,(t) = t' + i/1(t).

We assume that, fory = 0, 1, . . . , 4,

tfi\t) = o(tk-i) and *iO)(O = *(*'"')

as t -> 0+.
Lety(f) = (*, 0(0 , iK0)and lea (0 = |0"(O^'"(O-0'"(OV'"(OI1/6- For<, > 0

sufficiently small, we consider the operator TOy defined by

arf(x)= / .,
Jo

(2) TaJ{x)= I f(x-y(t))X(t)dt.

Then, we have:

PROPOSITION 2.3. For *b > 0 sufficiently small, Tay defined by (2) maps L3/2(R3)
boundedly into L2(K3).

PROOF. We begin with a lemma by Oberlin [5]:

LEMMA 2.4. IfT*y TOy maps L3/2(R3) boundedly into L3(K3), then TOy is a bounded
operator from L3/2(IR3) into L2(R3).

PROOF. One has only to observe

WT0JWI2 = (Tayf, TaJ) = (T:jayf,f)

which completes the proof of the lemma. •

According to Lemma 2.4 and by symmetry, it suffices to show that 5 defined by

Sf (x) = It f{x- y(t) + y(s))k(t)k(s) dsdt
J J O<s<t<to

is bounded from L3/2(R3) into L3(K3) for some to > 0. A change of variables

I u = t-s;
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and fractional integration theorem [11] reduce the proof to verifying the uniform

boundedness of {\\S'u\\on(tii)^.Li(ti1)}o<u<ia for some to > 0, where S'u are given by

with *u(i;*) = \l/(t) - f(s).

A homogeneity argument further reduces the proof to establishing the uniform
boundedness of {||Su||z.3/2(R2)->z.3(R2)}o<«<r0 for some t0 > 0, where

/•(0«o)-0('o-u))/u*
Sug(x2, xit) = / g(x2-v,Xi-Vu(v))ju(v)dv,

J<Hu)/uk

I /-.A _ ,.2/3-(t+/)/3+t
Ju(v)~u

with 4>w(t0 given by

no-my

U(t) - 4>(s) = ukv,

To simplify our notation, we introduce F = t/u and s = s/u. Then, we have:

LEMMA 2.5. 77iere exist to > 0, fc > 0, Cx and C2 such that

(I) IfO<u<to and 0 < s < b, then

(1) *»>C,;

(2) Ju(v) < C2.

(II) / / 0 < u < to and s > b, then

(1) *„(«), * ; ( « ) ' * : (u ) > 0;
(2) clV('-')/(*-D-; < 4,0)( w ) <
(3) | * ' ' * " 3

.j = 0, 1, 2;

Ji>
dv < C2.

PROOF. Recall the following facts:

FACT 2.6. Let k > 0. Then there exist positive constants C\ and C2 depending only
on k such that Q {t - s)^'1 < tk — sk < C2(t — s)tk~l whenever 0 < s < t < oo.

FACT 2.7. Let k < 0. Then there exist positive constants C\ and C2 depending only
on k such that Q(t — s)sk/t < sk — tk < C2(t — s)sk/t whenever 0 < s < t < oo.
In particular, if t/s > S > 0, there exists a positive constant C depending only on 8
and k such that (1/C)(r - s)f*-' < sk - tk < C{t - s)tk~K
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Before we proceed, we observe that for any e > 0 there exists to > 0 such that if
0 < s < F < to/u and s < b,

(3) ^ K V ) - tf\us)\ < e?"y-1, ; = 0, 1,

(5) ^7l^i< / ) (« ' ) - ^iy)(«*)| < e?-J-\ J = 0, 1, 2,

and that if 0 < s < t < to/u and s > b, v

(6) _L|^) ( MF) - tf\us)\ < €?->-\ j = 0, 1, 2, 3,

(7) J-\^\uf) - tf\us)\ < e?-^1, j = 0, 1, 2, 3.

Write

where

Then, we have

-3 + s'+k~3) + i'-2sk-2((k - 1)F - (/ - 1) j)

it - 1)5 - (Z - 1)F)

-3 + im~3) + F'-2J*-2((A: - /)S + (k - 1))

) t - 0 F - ( J t - l ) )

-3 + *'+*-3 - ?-2s*-> - ?-'5'-2)
'-2it-2-F*-2J/-2)

- s'-2)(tk~l - sk~x) + (k- I)ik-2sk-2(t'-k -

Thus, we obtain Mx(v) > cmax(ik+'-5, sk~2). From (3)-(7), we see that
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Now, (I) is clear. Simple calculations show (a), (b) and (c) of (II). To verify (d), we
write

where

d_
dv"

M2{v) = -

M2(v) + P2(v)

N(v)
{(</,'(ui) -4>'(us))/u*-*}6

with

N(v) =
- 3(* - l)B2(v)) - 2(? - i')C(v),

where

Bl(v) =

- (* -

- (* - 1)(F

-3 - 5*"3)};

- sk~2);

{(/ - l)(?"2 - j ' - 2 ) ( ? - ' - S"-1) -(k- 1)(F'-'

And so, we have N(v) = Pk+v~6N(n), where /x = j/Fand

with

- 2(1 - M'

- (* - Dd - M'~

- (k - 1K1 - n'- - fik-2)}',

/x*-1) -(k

Since A (̂/x) is real-analytic near /x = 1 and ATW)(1) = 0, j = 0, 1 , . . . , 5, we can
conclude |A^(/x)| < C(l — /x)6 for /x sufficiently close to 1. Altogether, we obtain

d
dv < cr
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for s > b > 0. In other words,

dv
< CiT

whenever v > v0 > 0. From k/(k — 1) > 1 we see (d) and the proof of the lemma is
complete. •

To finish the proof of the proposition, we decompose Su = 5U, i + 5u2 by

/•DO \

Su,\g(x2, Xi) - / g(x2 -v,x3- Vu(v))Ju(v) dv,
J<Hu)/uk

and

Su,2g(x2, x3) = / g{x2 -v,x3- Vu(v))Ju(v) dv.

Then, we have \Su,{g\ < CS°ul\g\ and |5U>2^| < CS°u2\g\, where

S°u]g(x2,Xi)= / g(x2-v,x3-Vu(v))dv,
J<t>(u)luk

and
/•(0('O)-*('O-U))/U*

S°u,2g(x2,x3)= g(x2-v,x3-Vu(v))W(v)\l/3dv.
Jvo

Lemma 2.1 and Lemma 2.2 apply to 5^, and 5^ 2. The proof is now finished. •

REMARK 2.8. An analytic interpolation gives the V-Lq boundedness of TY given
by TYf (x) = f,f(x — y(t)) dt, for (l/p, \/q) e int ̂ 'l, where y is as in Proposi-
tion 2.3.

3. Curves of finite type

Recall the following result on non-degenerate curves.

PROPOSITION 3.1 (Pan [6]). Let yu y2 e C3(/). Suppose that for any t € I,
(Ki(2)(0,y2

<2)(0) and (y,(3)(0, Y2\t)) span K2. Then the convolution operator T
defined by Tf (x) = f,f (t, y, (t), y2(t)) dt maps L3/2(K3) boundedly into L2(K3).

By compactness there are only finitely many degenerate points on the curve.
Since y'(t) never vanishes, Proposition 3.1, a partition of unity argument and a
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re-parametrization around each degenerate point followed by a suitable affine motion
in K3 allow us to assume

y(t) = (t + y,(f), r* + y2(t), t' + y^t)) , 0 < t < to

with to > 0 (as small as we want) and k,l e N, 1 < k < I. The perturbation terms
are smooth and also satisfy

y<»(0 = O ( r ^ + 2 ) , y?\t) = O (r*->+1), y3
0)(r) = 0 ( f ' - ' + I ) ,

as r -> 0+, fory = 0, 1, 2, 3, 4. A re-parametrization 5 = t + yx (t) will bring y into
the form which can be handled by Proposition 2.3.

REMARK 3.2. (1) The smoothness assumption on y can be weakened in Theo-
rem 1.2.
(2) The type set for TOy in Proposition 2.3, Theorem 1.2 and Corollary 3.3 can be

identified with 2T.
(3) Since a real-analytic curve not contained in a hyperplane is of finite type, we

have the following:

COROLLARY 3.3. Let y be a compact real-analytic space curve with non-vanishing
tangents and let TOyf = aY * f, where oY is the affine arclength measure on the
curve y. Then Tay maps L3/2(K3) boundedly into L2(K3).

(4) As in Drury [3], one can prove the following result on Fourier restriction:

COROLLARY 3.4. Let y : / —> K3 be a smooth compact curve of finite type in K3 with
non-vanishing tangents. Then \\f \\mdaY) < 11/ llz.o(R3), whenever 6/p + \/q = 6 and
1 < P < 36/31.

4. A flat example

In this section, we prove Theorem 1.3. By Corollary 3.3, we have only to show that

there exists /0 > 0 such that T£ is bounded from L3/2(K3) into L2(R3). For simplicity

of notation, put \fr(t) = e~l/l, and k(t) = IVf'"(')l1/6- A homogeneity argument

reduces the proof to obtaining a uniform estimate on {||5B||t3/2(ol2)l_>t3(R2)}o<I(<(l) for

some to > 0, where Su are the operators given by

g(x2 -s,x3- f(s + u) + if(s))k(s + u)k(s) ds.

The following observation suggested by Professor Stephen Wainger will be useful:
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PROPOSITION 4.1. Let N be a positive integer. For s > 0 we let ijf(s) = e~l/s and
for u, s > Owe let iru(s) = \j/(s + u) — ^r(s).

Then there exists a positive real number to depending only on N such that for
j =0,l,...,N, the following hold

(i) t<>>(s) > 0, ifO < s < to;
(ii) r/r^(s) ~ ^(s + u),ifO<u<to,O<s<to-u,andu>s2;

(iii) V^'O) ~ u/s^^s + u),ifO<u<to,O<s<to-uandu<s2.

PROOF, (i) One has only to observe that for/ > 1

with a polynomial Qj (s) of degree j — 1 which vanishes at s = 0.
(ii) It suffices to show the existence of t0 > 0 and a constant C, 6 (0, 1) such that

whenever 0 < s < to — u and u > s2. This amounts to show

F(s, u) = (S +
s"

)2j
 e-

1/s+l^+u) < q.

For 0 < to < 1 to be determined later, let 0 < u < to and u > s2. Suppose u < tos.
Then

F(s, II) < (1 + Zb)^e->/(«^(^+«)) < ( 1 + ro)^e-i/2.

On the other hand, if u > *<)•*> we have

F(s, u) <

Here, the last inequality follows from the fact that G{y) = (1 + y)tt e y/l° is monotone
decreasing on 0 < y < 00, if 0 < to < I/a. It is only a matter of choosing to > 0
small enough,
(iii) One needs to estimate

(u/s2)^^(s + u)

We write J = J\ + J2 + Ji, where

1 - (1 - Q y «
V = u/s2 ' 2 = i /I5 1 - Qj (s + u)
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and

1 - Qj (s + u) u/s2

By continuity of Qj and from Qj (0) = 0, one can choose t0 > 0 such that

|J , |<2/0
2 sup \Qf(s)\, \J2\<22J+ljt0.

0<s<to

Since for any 0 < y < 1, (1 — e~l)y < 1 — e~y < y, we have 73 ~ 1, which in turn
implies J ~ 1. The proof of Proposition 4.1 is now complete. •

Implications of Proposition 4.1 are

(1) V'uCO' V^CO' ^u CO > 0>
(2) 0 < Ci < fu(.s)ifl{s)/ir'u{s)2 < C2 < oo;

The following lemma shows that Su can be dominated by the convolution operator
with the affine arclength measure on the curve v i-» iru{v).

LEMMA 4.2. Let to > 0 be sufficiently small and let

for 0 < M < to and 0 < s < to — u. Then there exists a constant C2 such that
Ru(s) < C2.

PROOF. There are three cases to consider:

Case I: u < s2.

Ru(s) < Cu1/3 —
e-\/(3(s+«))/(s + M)4/3

1/3

e < C2.

Case II: s2 <u <s.

Ru(s) <

) c / ^
V 2
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Case III: s < u.

Ru(s) <

< Cu2/3u-le-mUu) < Cu-1/3e-1/iUu) < C2.

Note that the second inequality follows from the following lemma:

LEMMA 4.3. Let to, u and s be as in Lemma 4.2. Then Gu defined by

[12]

is monotone increasing on 0 < s < u.

PROOF. From log Gu(s) - - log s - I/(6s) + l/(6(s + «)), we get

G'u(s) = _ 1 1 _
62Gu(s) s 6s2 6(s + u)2~l2s2 6(s + u)2

1 1 1
> = > 0,
- 12s2 2As2 2As2

assuming to is sufficiently small. This finishes the proof of Lemma 4.3 and Lemma 4.2.

•
According to Lemma 2.2, it remains to prove that pu(s) has a bounded variation.

To see this, one has only to observe:

LEMMA 4.4. There exists to > 0 such that, for u e (0, t0), the function

Pu(s) =
t'u(s)2

is decreasing on (0, to — u).

PROOF.

-P(S)= 1-2(5 + 11) [i
ds (1 - (1 + u/s)2e-"W+u»)i \ (s(s + u))2

• n \ cc-uHs(s+u))

(1 - (1 + u/s)2e-uWs+u»)2

Here, we put

l-2(s + u)
«») (1 - f 1 + ^) 2

 e-/M+»
' \ \ s)
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1 - 2(5 + M) V s.

and

H = — =• (l + -)* (1 - e-
u/is{s+"») f 1 - ( l + -

( 1 - 2 ( 5 + M))2V s) V >\ \ s(1 - 2(5 + u)Y

Au 1 -

- 2(5 + u)

1 - 2 ( J + M) v 5

We

T

and

n

wnte

f 1 - 2 5

[ 1 - 2(5 +

f 1 - 2 5

[ 1 - 2(5 +

= A + B,

Au

(1 - 2(5 +

52 V

= C+D.

When 5 < y/u,

(1 + M/5)2[(1

I 11 J

— Aii -L ,

« )

' "

« )

« ) )

s '

- :

M
h -

5

A,,

I
-2(.

2 \ ^

[

25)/

r-
17, i

M y

2s

S+uy

25 1

I1
-2(5 +

(1 - 2(5

A 2

V

1 1 '

((

\y

« > '

+ i

i

2M

"V l l
uy ' 20-L)

H!r2 ( 5i+ I < )

1 + 5 ^

< 5 / J

!«))]e-«/t»(i+«»

2" - m
2(5 + II) - VVi

2M

1 - 2(5 + M)

2 2M
)

i - J b
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with to > 0 chosen sufficiently small. For M/4 < 5 < yfu, we have A > Au/s, and

M(25 + u) Au u

A— A + D> — , . +Du))
2 ' - r 2s2 s(s + M)

4M

Au
- I2

s(s

to S

For 0 < 5 < M/4, we have A > (u/s)* and

u(2s + u)
A

u \ u4 /«\2]
D>- - - 6 4 M - 3 ( - ) > 0 .

Therefore, for s < >Ju, we have

For s > v/w. we have

A > Au/s, B > - 4 M , D > - 2 4 ( M / 5 2 ) 2 ( M / 5 ) ,

and so

2 (s(s + u))2 s3 s + u

Hence, for 5 > */u, we have

This finishes the proof of Lemma 4.4 and Theorem 1.3. •

REMARK 4.5. We can identify the type set for T* with &.
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