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Abstract

Let P be a Poisson process of intensity one in a square Sn of area n. We construct a random
geometric graph Gn,k by joining each point of P to its k ≡ k(n) nearest neighbours.
Recently, Xue and Kumar proved that if k ≤ 0.074 log n then the probability that Gn,k is
connected tends to 0 as n → ∞ while, if k ≥ 5.1774 log n, then the probability that Gn,k

is connected tends to 1 as n → ∞. They conjectured that the threshold for connectivity
is k = (1 + o(1)) log n. In this paper we improve these lower and upper bounds to
0.3043 log n and 0.5139 log n, respectively, disproving this conjecture. We also establish
lower and upper bounds of 0.7209 log n and 0.9967 log n for the directed version of this
problem. A related question concerns coverage. With Gn,k as above, we surround each
vertex by the smallest (closed) disc containing its k nearest neighbours. We prove that
if k ≤ 0.7209 log n then the probability that these discs cover Sn tends to 0 as n → ∞
while, if k ≥ 0.9967 log n, then the probability that the discs cover Sn tends to 1 as
n → ∞.
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1. Introduction

Suppose that n radio transceivers are scattered at random over a desert. Each radio is able to
establish a direct two-way connection with the k radios nearest to it. In addition, messages can
be routed via intermediate radios, so that a message can be sent indirectly from radio S to radio
T through a series of radios S = S1, S2, . . . , Sn = T , each one having a direct connection to
its predecessor. How large does k have to be to ensure that any two radios can communicate
(directly or indirectly) with each other?

To make this question precise, we define a random geometric graph G(A, λ, k), as follows.
Let P be a Poisson process of intensity λ in a region A, and join every point of P to its k nearest
neighbours. We would like to know the values of k for which the resulting graph G(A, λ, k)
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is likely to be connected. Throughout this paper, distance is measured using the Euclidean
l2-norm, and is denoted by ‖ · ‖.

There are two equivalent ways of viewing the problem. The first is to fix the area A and
let λ → ∞. In the second formulation, we instead fix λ = 1 and let the region A grow while
keeping its shape fixed, so that the expected number of points in A again increases. As this is
the formulation we will use, we abbreviate G(A, 1, k) to G(A, k). We will take A = Sn, the
square of area n (not side-length n), which ensures that the expected number of points in our
region is n. (However, as it turns out, the shape is essentially irrelevant.) Thus we are interested
in the values of k ≡ k(n) for which Gn,k := G(Sn, k) is likely to be connected, as n → ∞.

Much of the previous work on this problem has been done with the above application (namely,
to wireless, ad-hoc networks) in mind. In [6]–[8], [12], [16], and [17] the network was modelled
as a Poisson process in the plane, while in [9] the nodes (or transceivers) were located along a
line.

Before we get to our main results, we observe that two essentially trivial arguments give the
right order of magnitude for k: specifically, that there exist positive constants c1 and c2 such
that if k ≤ c1 log n then the probability that Gn,k is connected tends to 0 as n → ∞ while, if
k ≥ c2 log n, then the probability that Gn,k is connected tends to 1 as n → ∞. (All logarithms
in this paper are to the base e). Throughout this paper, we will say that an event occurs with high
probability (w.h.p.) if it occurs with a probability tending to 1 as n → ∞. Thus, if k ≤ c1 log n

then Gn,k is disconnected w.h.p. and if k ≥ c2 log n then Gn,k is connected w.h.p.
Let us tessellate the square Sn with small squares Qi of area log n − O(1), where the

(positive) O(1) term is chosen so that the side-length of Qi exactly divides that of Sn. Then the
probability that a small square contains no points of the process is e− log n+O(1) = O(n−1) =
o((log n)/n), so that, w.h.p., every small square contains at least one point. Using the inequality
r! > (r/e)r , the probability that a disc of radius (5 log n)1/2 (area 5π log n) contains more than
k = �5πe log n	 < 42.7 log n points is at most

e−5π log n

(
(5π log n)k+1

(k + 1)!
)(

1 + 5π log n

k + 2
+ · · ·

)
< e−5π log n(1 + e−1 + e−2 + · · · ) = o(n−1),

so that, w.h.p., every point has at most k points within a distance (5 log n)1/2. Thus, w.h.p.,
every point of Gn,k contained in a square Qi is joined to every other point in Qi and also to
every point in every adjacent square. This is enough to make Gn,k connected.

Furthermore, if k is much smaller than log n then, w.h.p., Gn,k will not be connected. To see
this, consider a configuration of three concentric discs D1, D3, and D5, of radii r , 3r , and
5r , respectively, where πr2 = k + 1. We call the configuration bad if (i) D1 contains at
least k + 1 points, (ii) the annulus D3 \ D1 contains no points, and (iii) the intersection of
D5 \ D3 with any disc of radius 2r centred at a point P on the boundary of D3 contains at
least k + 1 points. Now, if a bad configuration occurs anywhere in Gn,k , then Gn,k will not
be connected, because the k nearest neighbours of a point in D1 all lie within D1 and the
k nearest neighbours of a point outside D3 all lie outside D3. Hence, there will be no edge
of Gn,k connecting D1 to Sn \ D3. Condition (i) holds with a probability of approximately 1

2 ,
condition (ii) holds with probability e−8(k+1), and condition (iii) holds with probability 1−o(1),
since a disc of radius 2r around a point on the boundary of D3 is very likely to contain at least
2(k + 1) points. Hence, for k ≤ 1

8 (1 − ε)(log n), the probability of a configuration being
bad is p ≥ ( 1

2 − o(1))n−1+ε. Since we can fit Cn/log n copies of D5 into Sn, and each is

https://doi.org/10.1239/aap/1113402397 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1113402397


Connectivity of random k-nearest-neighbour graphs SGSA • 3

independently bad with probability p, the probability that Gn,k is connected is at most

(1 − p)Cn/log n ≤ exp(−C′nε/log n) → 0,

for k ≤ 1
8 (1 − ε)(log n) and some positive constants C and C′.

These elementary arguments indicate that we should focus our attention on the range
k = �(log n). Indeed, defining cl and cu by

cl = sup{c : P(Gn,�c log n	 is connected) → 0}
and

cu = inf{c : P(Gn,�c log n	 is connected) → 1},
we have just shown that

0.125 ≤ cl ≤ cu ≤ 42.7.

By making use of a substantial result of Penrose [13], Xue and Kumar [18] improved the upper
bound to

cu ≤ 5.1774,

although a bound of

cu ≤
{

2 log

(
4π/3 + √

3/2

π + 3
√

3/4

)}−1

≈ 3.8597

can be found in earlier work of Gonzáles-Barrios and Quiroz [5]. It seems likely that cl = cu =
c, and Xue and Kumar asked whether or not c = 1. In this paper we improve the above bounds
considerably, disproving the conjecture c = 1.

The methods used in this paper are new, and specific to this problem. However, it is interesting
to compare our results with those relating to two similar problems. The first also concerns a
Poisson process of intensity 1 in a region A. This time we join each point to all other points
within a radius r , obtaining the graph Gr(A): we will refer to this as the disc model. This
model originated in a paper of Gilbert [4]. He considered the model in the infinite plane,
and was interested in the probability Pr(∞) that an arbitrary vertex of Gr(R

2) belongs to an
infinite connected component of Gr(R

2). Define rcrit to be the supremum of those r for which
Pr(∞) = 0. Gilbert showed that

1.75 ≤ πr2
crit ≤ 17.4.

Simulations [1], [15] suggest that πr2
crit ≈ 4.512. The study of Gr(R

2) is known as continuum
percolation, and is the subject of a monograph by Meester and Roy [11]. Many authors reserve
the phrase ‘random geometric graphs’ for the graphs Gr(A); however, we will use it in a more
general context, so that it includes the graphs Gn,k as well.

Regarding connectivity, Penrose [13], [14] showed that if A = Sn and πr2 = c log n, so
that each point has on average c log n neighbours, then there is a critical value of c, in the
sense described above, which equals 1. This is the result used by Xue and Kumar in the work
cited above. There is an analogous result for classical random graphs: if in a random graph
G = G(n, p) the average degree is c log n, then, if c < 1, w.h.p. G is not connected while, if
c > 1, w.h.p. G is connected. In both cases, the obstruction to connectivity is the existence of
isolated vertices (in the sense that, w.h.p., the graph becomes connected as soon as it has no
isolated vertices).
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In our problem, we expressly forbid isolated vertices; indeed, each vertex has degree at least k.
Thus the obstruction to connectivity must involve more complicated extremal configurations,
making it harder to obtain precise results. Another complication is that the average vertex
degree is not exactly k, but somewhere between k and 2k. (In fact, it is easy to show that, for
k → ∞, the average degree is (1 + o(1))k.) This motivates the study of the directed case,
where, in a Poisson process of intensity 1 in a region A, we place directed edges pointing away
from each point towards its k nearest neighbours. This ensures that, in the resulting graph

G(A, k), every vertex has an out-degree of exactly k. Again, we will only consider the case
A = Sn; furthermore, we let k = �c log n	 and write 
Gn,k = 
G(Sn, k). In this variant, we wish
to know how large c should be to guarantee a directed path between any two vertices w.h.p.
Clearly, the threshold value of c, if it exists, will be as least as large as in the undirected case.
We provide upper and lower bounds for this problem as well.

At first sight it might seem that the following random graph problem might shed some
light on the situation: in a graph on n vertices, join each vertex to k randomly chosen others.
For what values of k is the resulting graph Gn,k-out connected w.h.p.? Surprisingly, this question
was posed by Ulam [10] in 1935 – also see page 40 of [2]. We have expressly forbidden
isolated vertices here, as well. However, it is easy to show that even k = 2 is enough to ensure
connectivity w.h.p. In contrast, for the directed version of the problem, where we send a directed
edge from each vertex to k randomly chosen others, and ask for a directed path between any
two vertices, we need k ≈ log n, the main obstruction to connectivity being vertices with zero
in-degree.

All our results will apply not only for Poisson processes, but also for n points placed in
a square of area n according to the uniform distribution. Indeed, one can view our Poisson
process as simply the result of placing X points in the square, where X ∼ Poisson(n). For more
details, see [13] and [18].

2. Results

Our main result concerns the undirected random geometric graph Gn,k .

Theorem 1. If c ≤ 0.3043 then P(Gn,�c log n	 is connected) → 0 as n → ∞. If c > 1/log 7 ≈
0.5139 then P(Gn,�c log n	 is connected) → 1 as n → ∞. Thus

0.3043 ≤ cl ≤ cu ≤ 0.5139.

The lower bound is proved in Theorem 4, below, while the upper bound is proved in
Theorem 7. The argument for the lower bound is essentially a modification of that given
in the introduction, while the proof of the upper bound is more involved.

For the directed graph 
Gn,k , we have the following result. (Note that a directed graph is
connected if, given any two vertices x and y, there is a directed path from x to y.)

Theorem 2. If c ≤ 0.7209 then P( 
Gn,�c log n	 is connected) → 0 as n → ∞. If c ≥ 0.9967
then P( 
Gn,�c log n	 is connected) → 1 as n → ∞.

Finally, let Pn be a Poisson process giving rise to the random geometric graph Gn,k .
For a vertex x ∈ V (Gn,k), the vertex set of Gn,k , we define the disc Bk(x) to be the smallest
closed disc containing the k nearest neighbours of x. Thus, in Gn,k , x is (almost surely) joined
to every vertex in its disc Bk(x). We say that Pn is a k-cover if the discs Bk(x) cover Sn, and
we prove the following result in Section 6.
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Theorem 3. If c ≤ 0.7209 then P(Pn is a �c log n	-cover) → 0 as n → ∞. If c ≥ 0.9967
then P(Pn is a �c log n	-cover) → 1 as n → ∞.

3. Lower bounds

We start by proving a useful lemma. For any region S ⊆ R
2, write |S| for the Lebesgue

measure of S.

Lemma 1. Let A1, . . . , Ar be disjoint regions of R
2 and ρ1, . . . , ρr ≥ 0 real numbers such

that ρi |Ai | ∈ Z. The probability that a Poisson process with intensity 1 has precisely ρi |Ai |
points in each region Ai is then

exp

{ r∑
i=1

(ρi − 1 − ρi log ρi)|Ai | + O(r log+
∑

ρi |Ai |)
}
,

with the convention that 0 log 0 = 0, and where log+ x = max{log x, 1}.
Proof. Let ni = ρi |Ai |. The probability in question is given exactly by

p =
r∏

i=1

(
e−|Ai | |Ai |ni

ni !
)

.

Taking logarithms and using Stirling’s formula gives

log p =
r∑

i=1

(−|Ai | + ni log |Ai | − ni log ni + ni + O(log+ ni))

=
r∑

i=1

(ni − |Ai | − ni log ρi) + O(r log+ max ni)

=
r∑

i=1

(ρi − 1 − ρi log ρi)|Ai | + O(r log+
∑

ρi |Ai |),

from which the result follows.

Theorem 4. If c ≤ 0.3043 then P(Gn,�c log n	 is connected) → 0 as n → ∞.

Proof. We first illustrate the proof with a simpler proof that c < c0 = 1/(log 50
18 +8 log 25

18 ) ≈
0.2739 suffices in the statement of the theorem. Let D be a disc with radius 5r0. Relative to D,
let A1 be a concentric disc with radius r0, A2 a concentric annulus with radii r0 and 3r0, and
divide the remaining area A of D into N − 2 (mostly square) regions A = ⋃

3≤i≤N Ai , with
each Ai of diameter at most εr0 (see Figure 1). We define the densities ρi by ρ1 = 2ρ = 50

18 ,
ρ2 = 0, and ρi = ρ = 25

18 for i ≥ 3, and suppose that ρi |Ai | ∈ Z and that exactly ρi |Ai | points
lie in each Ai . (Note that

∑i=N
i=1 ρi |Ai | = |D|, so the number of points in D is as expected.)

Pick a point x at radius r ≥ 3r0 from the centre of D, and let Dx be the disc about x of
radius r − (1 + ε)r0, for some small ε > 0. Then x is at least εr0 closer to all points in Dx than
it is to any point in A1. If r = 3r0 and ε is sufficiently small, then |Dx ∩ A| ≥ ( 1

2 + δ)|Dx | for
some δ > 0, independent of ε. Hence, for sufficiently small ε, |Dx ∩ A| ≥ 2|A1|. If we move
the point x radially outwards from the centre of D, the discs Dx form a nested family. Thus,
|Dx ∩ A| ≥ 2|A1| for all x. If some Ai , i ≥ 3, intersects Dx ∩ A, then all points in Ai are
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Figure 1: Lower bound, undirected case.

closer to x than they are to any point of A1. Hence, the 2|A1|ρ = ρ1|Ai | points of the Poisson
process closest to x all lie outside A1. Clearly, if x ∈ A1 then any point in A1 is closer to x than
it is to any point outside A1. Hence, if we choose r0 so that ρ1|A1| = k + 1 = �c log n	 + 1,
the points in A1 form a connected component of Gn,k . If Sn contains such a configuration then
Gn,k is disconnected.

Now, ρ1|A1| = k + 1, ρ2|A2| = 0, and
∑

ρi |Ai | = 9ρ1|A1| = 9(k + 1) are all integers.
It is easy to see that if n (and, hence, k and r0) are large enough, one can choose the regions Ai ,
i ≥ 3, so that (i) ρi |Ai | ∈ Z for all i, (ii) the diameters of the Ai , i ≥ 3, are at most εr0, and
(iii) the number of regions N is bounded above by some function of ε, independently of n.
By Lemma 1, the probability of each Ai containing exactly ρi |Ai | points is

p = exp{−(log 50
18 + 8 log 25

18 )ρ1|A1| + O(N log |D|)} = n−c/c0+o(1).

Since we can place �(n/ log n) disjoint regions D in Sn, the probability of at least one such
configuration occurring in Sn tends to 1 as n → ∞ when c < c0.

To improve this bound, fix an α with 0 < α ≤ 1
3 . Let ε ∈ (0, α) and assume that the circles

in Figure 1 now have radii (α − ε)r0, r0, and (2 − α)r0, in increasing order. That is, let A1 be
the inner disc of radius (α − ε)r0, let A2 be the surrounding annulus with outer radius r0, and
divide the remaining area A into regions Ai , i = 3, . . . , N , each with diameter at most εr0,
and area at least 1 (which is certainly possible if εr0 is sufficiently large). We will define a
function ρ(r) that gives the approximate density of points in the regions Ai , where r is the
distance from O, the centre of D. Let B be the disc of radius αr0 about O, so B is just a little
larger than A1. For r ≤ αr0, ρ(r) will be a constant and we will require there to be exactly
ρ1|A1| = �ρ(r)|B|	 + 1 points of P in A1. For αr0 < r < r0, ρ(r) = 0 and we will require
that A2 contains no points of the process. For r ≥ r0, ρ(r) will be a continuous function and
the number of points in Ai will be ρi |Ai | = �∫

Ai
ρ(r) dA	 + 1. The function ρ(r) will be

determined later, but will be of the form ρ(r) = ρ0(r/r0), where ρ0 may depend on α but will
be independent of n, r0, and ε. We will also see that |log ρ(r)| is bounded on B ∪ A.

We now perform a similar calculation to the above, requiring that there be at least k+1 points
in A1 and, for each point x at distance r ≥ r0 from O, at least k + 1 points in A closer to x than
they are to any point of A1. As before, the worst case is when x is at a distance r = r0 from O,
and it is enough to ensure that the sets that intersect the disc D(1−α)r0(x) of radius (1 − α)r0
about x contain at least k + 1 points. Thus, it is enough to have

∫
D(1−α)r0 (x)∩A

ρr dA ≥ c log n.
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Now define

g(r) = 1

π
cos−1

(
r2 + r2

0 − (1 − α)2r2
0

2r0r

)
,

which is the proportion of the circle of radius r , centre O, that lies in D(1−α)r0(x). Hence,∫
D(1−α)r0 (x)∩A

ρ dA =
∫ (2−α)r0

r0

ρ(r) 2πrg(r) dr =
∫

A

ρg dA,

and it is enough to impose the following conditions on ρ(r):∫
B

ρ dA =
∫

A

ρg dA = c log n. (1)

Let δε bound the variation of ρ log ρ across any of the sets Ai , i ≥ 3. By the above assumptions,
we can choose δε independently of r0 and n, with δε → 0 as ε → 0. Now, by Lemma 1, the
probability p of such a configuration occurring is given by

−log p =
∫

D

(ρ − 1 − ρ log ρ) dA + O(N log |D| + N + δε|D| + εc(log n)/α), (2)

where the error terms include the error term of Lemma 1 plus N − 2 error terms of magnitude
O(1 + δε|Ai |) and one of magnitude O(1 + ερ1|A1|/α), these arising from the differences
between

∫
Ai

(ρ − 1 − ρ log ρ) dA and (ρi − 1 − ρi log ρi)|Ai |, for i = 1, . . . , N .
The function ρ(r) is chosen to maximize the above integral subject to (1). Using the method

of Lagrange multipliers, we maximize∫
D

(ρ − 1 − ρ log ρ) dA − µ

∫
B

ρ dA − ν

∫
A

ρg dA (3)

and, by applying the calculus of variations, we obtain

ρ(r) =

⎧⎪⎨
⎪⎩

exp(µ) if r ≤ αr0,

0 if r ∈ (αr0, r0),

exp(νg(r)) if r ≥ r0,

where the constants µ and ν are chosen so that∫
B

ρ dA =
∫

A

ρg dA and
∫

D

(ρ − 1) dA = 0.

(The second condition comes from varying the scale r0, which implies that the expression (3)
should equal 0.) It is easy to check that each value of α gives a unique value of µ and ν, and that
the conditions assumed for ρ(r) above do indeed hold. Also, |D| = O(log n) and N = O(ε−2),
so by taking, say, ε ∼ (log n)−1/3, εr0 → ∞ and the error term in (2) is o(log n). Substituting
this into (2), we get −log p = (c(µ+ν)+o(1)) log n. Since we can place �(n/ log n) disjoint
copies of D inside Sn, Gn,k is disconnected w.h.p. whenever c < (µ+ν)−1. Finally, optimizing
over α gives a value of (µ + ν)−1 just larger than 0.3043 when α = 0.3302.

Note that we were lucky that the optimum value of α was less than 1
3 . For α > 1

3 , the
distances between points in A1 could be larger than the distance from A1 to A. Hence, we
would need more points in A1, and we would need to cut A1 into smaller regions with varying
densities, in a similar manner as was A.
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Figure 2: Lower bound, directed case.

Theorem 5. If c ≤ 0.7209 then P( 
Gn,�c log n	 is connected) → 0 as n → ∞.

Proof. We first illustrate the proof with a simpler proof that c < c1 = 1/(6 log 4
3 ) ≈ 0.5793

suffices in the statement of the theorem. Let D be a disc with radius 2r0 and centre O, let A1
be a disc with centre O and radius εr0, A2 an annulus with centre O and radii εr0 and r0, and
divide the remaining annulus A of D into regions A3, . . . , AN , each with diameter at most εr0,
as before (see Figure 2). We also define the densities ρi by ρ2 = 0 and ρi = ρ = 4

3 for i ≥ 3,
and suppose that there is one point of the Poisson process in A1 and that ρi |Ai | points of the
Poisson process lie in each Ai for i ≥ 2.

Pick a point x at distance r ≥ r0 from O and let Dx be the disc about x of radius r − 2εr0.
Then x is at least εr0 closer to every point in Dx than it is to A1. As r moves radially outwards,
Dx ∩ A increases, so |Dx ∩ A| is at least as large as its value for r = r0. In this case,
|Dx ∩ A| > 1

2πr2
0 for sufficiently small ε. If some Ai , i ≥ 3, intersects Dx ∩ A, then all points

in Ai are closer to x than they are to O, so the 1
2ρπr2

0 /2 points closest to x lie outside A1.
Choose r0 so that 1

2ρπr2
0 = k + 1 = �c log n	 + 1. Then the unique point in A1 has zero

in-degree and, if Sn contains such a configuration, 
Gn,k is disconnected. As before, by fixing
ε > 0 and assuming that n is sufficiently large, we can choose the Ai so that ρi |Ai | ∈ Z and N

is bounded by a function of ε, independently of n. Now, by Lemma 1, the probability of such
a configuration is

p = exp{−4πr2
0 log 4

3 + O((log |A1|)/|A1|) + O(N log |D|)} = n−c/c1+o(1).

Since we can find �(n/log n) disjoint copies of D in Sn, the probability of at least one such
configuration occurring tends to 1 as n → ∞, provided that c < c1.

To improve this bound, we follow the proof of Theorem 4 and make the assumption that the
ρi are given by a function ρ(r) of the distance r to the centre of D. We will define the Ai exactly
as in Theorem 4, with a small α > 0, but insist now that A1 contains precisely one point of P
and that ρ(r) = 0 for all r < r0. We obtain (2) again (with the last term in the error estimate
replaced with log |A1|), which we wish to maximize subject to the conditions that ρ(r) = 0 for
r ≤ r0 and

∫
A

ρg dA = c log n. To do this we maximize (3) without the µ
∫
B

ρ dA term. After
optimizing, we obtain

ρ(r) =
{

0 if r ≤ r0,

exp(νg(r)) if r > r0,
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where ν = ν(α) is chosen so that
∫
D

(ρ − 1) dA = 0. On substituting this back into (2)
and choosing ε ∼ (log n)−1/3, we find that −log p = (cν + o(1)) log n. As before, we can
find �(n/log n) disjoint discs D. Hence, provided that c < ν−1, the graph 
Gn,k is disconnected
w.h.p., with an isolated point as an in-component, with a vertex of in-degree 0. Finally, for
sufficiently small α, ν−1 is just larger than 0.7209.

4. Upper bounds

In this section, we will establish upper bounds for the directed and undirected cases. The basic
arguments are simple but, in both cases, the situation is complicated by points near the boundary.
In principle, these should be less of a problem than in the disc model; unfortunately, for both
problems the most natural arguments run into trouble at the boundary. For the moment we
will ignore boundary effects, and assume that all points are normal: a point P is normal if
the smallest circle containing its k nearest neighbours does not intersect the boundary. This
excludes O(n log n)1/2 points from consideration, and enables us to give the following ‘one-
line’ argument.

Theorem 6. Let c > 1/log 2 ≈ 1.4427. Then, the probability that Gn,�c log n	 contains a
component consisting entirely of normal points tends to 0 as n → ∞.

Proof. Suppose that Gn,�c log n	 has a component G′ containing only normal points. Let P

be the ‘northernmost’point of G′. Then P is ‘extreme’ in the sense that its k = �c log n	 nearest
neighbours all lie below it. The probability that a normal point is extreme is 2−k , and so the
expected number of extreme normal points is at most n2−k = o(1). Thus, the probability of
such a G′ arising tends to 0 as n → ∞.

As an aside, we can consider the analogous problem on the torus, rather than on the square Sn.
Unfortunately, the above proof does not show that the corresponding graph on the torus is
connected w.h.p. for c > 1/log 2, since a component on the torus need not have any extreme
points.

Next, we establish an upper bound. The proof splits into two parts. In the first part (Lemma 6,
below), we show that there do not exist two ‘large’ components; indeed, we show that, even if
k is far smaller than log n, two such components do not exist. Secondly we show that there are
no small components.

We will use the following simple lemma, which bounds the edge-lengths. There are many
results in the literature bounding the Poisson distribution; we give a simple bound in a form
convenient for our needs.

Lemma 2. Fix c > 0 and set

c− = ce−1−1/c and c+ = 4e(1 + c).

If r and R are such that πr2 = c− log n and πR2 = c+ log n, then, w.h.p., every vertex in
Gn,�c log n	 is joined to every other vertex within a distance r , and no vertex is joined to a vertex
at a distance greater than R. The same is true for the directed model 
Gn,�c log n	.

Proof. This lemma will follow from simple properties of the Poisson distribution. We write
Dρ(P ) for the open disc of radius ρ centred at P (a vertex of Gn,k), fix k = �c log n	, and
suppose that the vertex P is not joined to every other vertex of Gn,k in Dr(P ) ∩ Sn. Then
Dr(P )∩Sn, which has area at most λ := πr2 = c− log n, contains at least k additional vertices
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of Gn,k . The probability p of this happening can be bounded as follows (by comparison with
a geometric series):

p = e−λ
∞∑
l=k

λl

l! < e−λ k

k − λ

λk

k! < e−λ k

k − λ

(
λe

k

)k

= c

c − c−
nc(log(c−/c)+1)−c−(1 + o(1)),

which is o(n−1) provided that

c− < c and c(log(c−/c) + 1) − c− < −1,

which is true for c− as given in the statement of the theorem.
Since the expected number of vertices in Sn is n, the expected number of vertices P such

that Dr(P ) ∩ Sn contains at least k additional vertices is o(1) and, hence, the probability that
there is any such vertex P in Gn,k is o(1), as claimed.

The proof of the upper bound is almost the same. Let R satisfy πR2 = c+ log n. If a
vertex is joined to another at a distance at least R, then the circle of radius R about one of the
two, P say, contains at most k additional vertices of Gn,k . The area of DR(P ) ∩ Sn is at least
1
4πR2 = 1

4c+ log n =: λ, so the probability p that this occurs for a particular vertex can be
bounded by

p = e−λ
k∑

l=0

λl

l! < e−λ λ

λ − k

λk

k! < e−λ λ

λ − k

(
λe

k

)k

= c+
c+ − 4c

nc(log(c+/4c)+1)−c+/4(1 + o(1)),

which is o(n−1) provided that

c+ > 4c and c(log(c+/4c) + 1) − 1
4c+ < −1,

which holds for c+ as given in the statement of the theorem (using the inequality log((c+1)/c) ≤
1/c). Hence, the probability that we have any such vertex P is o(1).

Remark. We claim only that the above result holds w.h.p. In fact, for any fixed constant K ,
we can find c− and c+ such that it holds with probability 1 − O(n−K).

The next two lemmas state simple facts about the components of Gn,k .

Lemma 3. No two edges belonging to different components of Gn,k may cross.

Proof. Let G1, G2, . . . , GN be the components of Gn,k . Suppose that i1i2 = ei ∈ E(Gi)

and j1j2 = ej ∈ E(Gj ) for i �= j , and that ei and ej cross. (Here, E(Gi) and E(Gj ) are
the edge sets of Gi and Gj , respectively.) Then, considering ei , if i2 is one of the kth-nearest
neighbours of i1, then ‖j1 − i1‖ > ‖i1 − i2‖ while, if i1 is one of the kth-nearest neighbours
of i2, then ‖j1 − i2‖ > ‖i1 − i2‖. Therefore, in either case, ei is not the longest edge of the
triangle i1i2j1, and so the angle i1j1i2 is less than 1

2π . However, this applies to all four angles
of the quadrilateral i1j1i2j2, which gives a contradiction.

Lemma 4. With r as in Lemma 2, w.h.p. the distance between any two edges belonging to
different components of Gn,k is at least 1

2 r .
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Proof. As before, let G1, G2, . . . , GN be the components of Gn,k , and let i1i2 = ei ∈ E(Gi)

and j1j2 = ej ∈ E(Gj ) for i �= j . Since ei and ej do not cross, the minimum distance between
them is attained at one of their vertices, say j1, and thus we need only show that j1 is not within
a distance 1

2 r of ei .
Suppose otherwise. Let z be the foot of the perpendicular from j1 onto the line through i1i2,

so that ‖j1 − z‖ ≤ 1
2 r . If z does not lie between i1 and i2 then the minimum distance between

ei and j1 is attained at one of the endpoints of the edge, say i1, and thus ‖i1 − j1‖ ≤ 1
2 r , so

that the edge i1j1 is in Gn,k , by Lemma 2. Now suppose that z does lie between i1 and i2, and
assume that the edge ei is present because i2 is one of the k nearest neighbours of i1. Also
suppose that z lies within a distance 1

2 r of i2. Then

‖i2 − j1‖ ≤ ‖i2 − z‖ + ‖z − j1‖ ≤ 1
2 r + 1

2 r = r

and, thus, by Lemma 2, the edge i2j1 is contained in Gn,k . Otherwise,

‖z − i2‖ > 1
2 r ≥ ‖z − j1‖

and so

‖i1 − j1‖ ≤ ‖i1 − z‖ + ‖z − j1‖ = (‖i1 − i2‖ − ‖i2 − z‖) + ‖z − j1‖ < ‖i1 − i2‖,
so that, since i1i2 is an edge, so is i1j1. In each case, j1 is in the same component as ei .

Next we need a geometric lemma.

Lemma 5. Let 	l be the graph of the l × l square integer grid {1, . . . , l}2 ⊂ R
2 with edges

of unit length. Suppose that A ⊂ V (	l), with both A and Ac = V (	l) \ A connected in 	l .
Let ∂A denote the set of vertices of Ac that are adjacent to vertices of A. Then the set ∂A is
diagonally connected, i.e. connected if we include all edges of length less than or equal to 21/2.

Proof. Let B be the set of edges from an element of A to an element of Ac and let B ′ be
the corresponding edges in the dual lattice. If we consider B ′ as a subgraph of the dual lattice
then every vertex has even degree except those vertices corresponding to the boundary of 	l .
Thus we can decompose B ′ into edge-disjoint subgraphs, each of which is either a cycle, or a
path starting and ending at the boundary. Any such cycle or path splits 	l into two components.
Since the entirety of any connected set must lie within the same component, we see that all
of A lies within the same component and all of Ac lies within the same component. This
implies that the cycle or path partitions 	l into exactly A and Ac, and hence comprises all
of B ′. Thus, ∂A is diagonally connected and the result follows.

The following lemma asserts that there are no two large components.

Lemma 6. Fix c > 0. Then there exists a constant c′ such that the probability that Gn,�c log n	
contains two components each of (Euclidean) diameter at least c′(log n)1/2 tends to 0 as
n → ∞.

Proof. Fix c′ to be chosen later, and let D = c′(log n)1/2. Let c− be as in Lemma 2 and let r

satisfy πr2 = c− log n. By Lemma 2, w.h.p. every vertex is joined to every other vertex within
a distance r . Thus, we may ignore all configurations for which this does not hold. Also, by
assumption and the definition of D, there exist two components G1 and G2 of G := Gn,�c log n	,
each of diameter at least D. Let G3 consist of the rest of the vertices.
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We tessellate the square Sn with squares of side r/201/2; letting l = (20n)1/2/r , we identify
the squares with the square grid 	l = Z

2
l . (Here, and in the proof of Lemma 7, below, we

assume for convenience that r/201/2 divides n1/2.) We colour the squares as follows: colour
red any square containing a vertex of G1 or intersecting an edge of G1; colour blue any square
containing a vertex of G2 or intersecting an edge of G2; and colour black the remaining squares
containing a vertex. All other squares we call empty and colour white. This colouring is well
defined, by Lemma 4. The same lemma also shows that a red square can only be adjacent to
another red square or to an empty square, since any two points in adjacent squares must be
within a distance 51/2(r/201/2) = 1

2 r . In addition, the set of red squares and the set of blue
squares each forms a connected component in 	l .

Since G1 and G2 have diameter at least D, the squares have diameter 21/2r/201/2 < r , and
the set of red squares and the set of blue squares are each connected, there must be at least
D/r red squares and D/r blue squares. Let U be the set of red squares and let V = U c be
the complement of U . V splits into components V1, V2, . . . , Vs for some s ≥ 1. Since the
blue squares are connected, at most one of these components, say V1, can contain blue squares.
Furthermore, let U1 = V c

1 ; i.e. U and all the components of U c that do not contain any blue
squares. Note that both U1 and U c

1 are connected, and that each contains at least D/r squares,
since all the red squares lie in U1 and all the blue squares lie in V1 = U c

1 . Finally, let ∂U1 be the
set of squares not in U1 but adjacent to at least one square in U1. Each square in ∂U1 is empty,
and the set is a diagonally connected component, since both U1 and U c

1 = V1 are connected.
By the vertex isoperimetric inequality in the grid [3],

|∂U1| ≥ min{(2|U1|)1/2, (2|U c
1 |)1/2} ≥ (D/r)1/2.

Hence, if we have G1 and G2, both with diameter at least D, we can find a set, connected in 	l

and of size K = (D/r)1/2 = (πc′2/c−)1/4, consisting entirely of empty squares. To complete
the proof we just need to show that such a set is unlikely to exist.

We use the following graph-theoretic lemma: for any graph G with maximum degree �, the
number of connected subsets of size n containing a particular vertex v0 is at most (e�)n.

Define 	∗
l as the graph with vertex set 	l and edges joining diagonally connected vertices.

The graph 	∗
l has maximum degree 8, so the number of connected sets of K squares in 	∗

l ,
containing a particular square, is at most (8e)K . There are l2 ≤ n squares in 	l , so the total
number of connected sets of size K is at most n(8e)K . Therefore, the probability p that any
connected set K consists entirely of empty squares satisfies

p ≤ n(8e)Ke−Kr2/20

≤ n exp(K(log(8e) − 1
20 r2))

≤ n1−Kc−/20π+o(1),

which tends to 0 provided that we chose c′ and, thus, K large enough. Hence, the probability
that there are two components with diameter at least D tends to 0 as n tends to infinity.

Theorem 7. If c > 1/log 7 ≈ 0.5139 then P(Gn,�c log n	 is connected) → 1 as n → ∞.

Proof. Let k = �c log n	. We will show that, for any fixed c′ > 0, there is no component
G′ of G := Gn,k with diameter less than c′(log n)1/2 w.h.p. This, together with Lemma 6, will
prove the result. By Lemma 2, we may assume that the k nearest neighbours of any point all
lie within a distance R, where πR2 = c+ log n, as above.
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Figure 3: The hexagon H .

Firstly, let us assume that such a small component G′ exists and that G′ contains only normal
points. Consider the six tangents ti , i = 1, . . . , 6, to the convex hull of G′ that are inclined at
angles 0, 1

3π , and 2
3π to the horizontal. These tangents form a hexagon H containing G′, as

shown in Figure 3, and each tangent ti intersects G′ at a point Pi ∈ V (G′) (some of the Pi may
coincide). The bisectors of the exterior angles of H divide the exterior of H into six regions Hi ,
each of which is bounded by two bisectors and ti . Consider the smallest disc Di centred at Pi

and containing its k nearest neighbours. By assumption, all of the Di are contained in Sn. Write
Ai = Hi ∩ Di and number the sets so that, without loss of generality, |A1| ≤ |Ai | for all i.
Then, writing A = H ∩ D1 and noting that |A| ≤ |A1| (since A1 does not meet the boundary
of Sn), we obtain |A| ≤ 1

7 |A ∪ ⋃
i Ai |.

Now we require that there be exactly k points in the region A ∪ ⋃
i Ai , and that they all lie

within A. The probability of this happening is at most 7−k . However, the number of choices
for the regions A and Ai , i = 1, . . . , 6, can be estimated as follows. There are O(n) choices for
the point P1 (w.h.p.), and, fixing P1, there are, w.h.p., O(log n) choices for each of P2, . . . , P6
(since they lie within a distance c′(log n)1/2 of P1), and O((log n)6) choices for the six radii
of the Di , since each is determined by a point within a distance R of the corresponding Pi .
Thus, the number of choices for the A and Ai is O(n(log n)11), which is n1+o(1), and the
probability that we have a G′ of diameter at most c′ log n is at most n1+o(1)7−k , which is o(1)

for c > 1/log 7.
The above argument applies if G′ is not too close to the boundary of Sn. Suppose now that

G′ is within a distance R of the boundary, but a distance greater than R from a corner of Sn.
In this case, we ignore the two tangents whose normal vectors point out of Sn, and define H

and the relevant Hi and Ai as the intersections of the previously defined H , Hi , and Ai with Sn

(see Figure 4(a)). (For the horizontal boundaries, we rotate the tangents by 90 degrees.) Now,
supposing again that |A1| ≤ |Ai | for all i, and writing A = H ∩ D1 as before, we obtain
|A| ≤ 1

5 |A ∪ ⋃
i Ai |. Therefore, the probability that all k points in A ∪ ⋃

i Ai are actually
contained in A is at most 5−k . Thus the probability of finding such a small component lying
near the boundary is n1/2+o(1)5−k , which is o(1) for c > 1/log 7 > 1/2 log 5. (Note that there
are now only O((n log n)1/2) choices for P1.)
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Figure 4: The region H when G′ lies near (a) an edge or (b) a corner.

Finally, if some point of G′ is within a distance R of a corner of Sn, we have
|A| ≤ 1

3 |A ∪ ⋃
i Ai | (see Figure 4(b)) and, thus, the probability of all k points in A ∪ ⋃

i Ai

lying in A is at most 3−k . Here, the shape of the region H is not critical – we only need to
ensure that the reflections of H in the tangents ti are disjoint and lie within Sn. Hence, the
probability of finding a small component lying at a corner is no(1)3−k = o(1), there now being
only O(log n) choices for P1.

4.1. The directed case

As in the undirected case, we first show that, w.h.p., there do not exist two large components.
The proof is very similar to that in the undirected case, so we sketch the parts that are the same
and concentrate on the differences. The first key difference is that in a directed graph there
is no clear idea of what constitutes a component. We define two such notions, which will be
sufficient to satisfy our needs: a set C is an out-component if, for some x0, it is of the form
{y : there exists a directed path from x0 to y}; and it is an in-component if it is of the form
{y : there exists a directed path from y to x0}. If the graph is undirected then both of these
reduce to the normal definition of component. The following lemma is analogous to Lemma 6.

Lemma 7. Fix c > 0 and let k = �c log n	. Then there exists c′ such that the probability that

Gn,k contains an in-component and an out-component that are disjoint and both of diameter
at least c′(log n)1/2 tends to 0 as n → ∞.

Proof. As before, fix c′ to be chosen later and let D = c′(log n)1/2. This time, since we will
also need an upper bound on the edge-length, let c− and c+ be as in Lemma 2 and let r and R

satisfy πr2 = c− log n and πR2 = c+ log n, respectively. We may ignore all configurations
that have two points separated by a distance at most r and which are not joined, or have two
points separated by a distance at least R and which are joined.

Let G1 be an out-component and G2 an in-component, both of diameter at least D, and let
G3 comprise the rest of the vertices. This time, edges of Gi and Gj may cross for i �= j ;
however, it is still true that no vertex outside G1 may lie within a distance 1

2 r of an edge of G1.
Indeed, the proof of Lemma 4 shows that (with notation as in that proof), in this case, either

i1j or 
i2j is a directed edge in 
Gn,k . Thus, since G1 is an out-component, j ∈ G1. (Note that

it is important that G1 is an out-component: j �∈ G, if the latter is an in-component.)
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Again, we tessellate the square with squares of side r/201/2; letting l = (20n)1/2/r , we
identify the squares with the square grid 	l . We colour the squares almost exactly as before;
that is, we colour red the squares containing a vertex of G1 or intersecting an edge of G1,
colour blue the squares containing a vertex of G2 (note that we do not colour the squares
intersecting an edge of G2, as that might conflict with the squares already coloured), colour
black the remaining squares containing a vertex, and, finally, colour the empty squares white.
As before, the colouring is well defined and, also, we see that a red square can only be adjacent
to another red square or to an empty square. In addition, the set of red squares forms a connected
component of squares.

This time, since no point is joined to another at a distance greater than R, there must be
at least D/R red squares, and at least D/R blue squares. Let U be the set of red squares
and let V = U c be the complement of U . V splits into components V1, V2, . . . , Vs for
some s ≥ 1. This time the blue squares need not be connected and so need not all be in
the same set Vi : suppose that the components that contain blue squares are V1, V2, . . . , Vt .
Furthermore, let U1 = U ∪ ⋃s

i=t+1 Vi ; i.e. U and all the components of U c that do not
contain any blue squares. U1 and U c

1 each contain at least D/R squares, since all of the
red squares lie in U1 and all of the blue squares lie in U c

1 . Finally, let ∂U1 be the set of
squares not in U1 but adjacent to at least one square in U1. Each square in ∂U1 lies in
∂U , so is empty. The set ∂U1 is not necessarily a connected component of squares in 	l ;
however, we will show that for some d , it is connected in 	l,d , the dth power of the lattice 	l ,
where we join vertices if their separation distance in the lattice (i.e. their ‘l1-distance’) is at
most d.

Let d = 2�201/2R/r�, in which case the blue squares are joined in 	l,d , and suppose that
∂U1 is not connected in 	l,d ; i.e. that we can partition ∂U1 into two nonempty sets A and B

with no square in A within a distance d of any square in B. For i ≤ t , write ∂Vi for ∂U1 ∩ Vi .
Since Vi and V c

i are both connected in 	l , ∂Vi is connected in 	l,2 and, hence, A and B are
both the unions of such ∂Vi . Every Vi with i ≤ t contains a blue square, so there must be a
pair i, j ≤ t with ∂Vi ⊆ A and ∂Vj ⊆ B, and blue squares bi and bj with bi ∈ Vi , bj ∈ Vj ,
and l1-distance d(bi, bj ) ≤ d . The shortest path from bi to bj in 	l passes through ∂Vi and
∂Vj and has length at most d , so d(∂Vi, ∂Vj ) < d , contradicting the assumption that ∂Vi and
∂Vj were in different components of 	l,d .

As before, by the vertex isoperimetric inequality in the grid [3],

|∂U1| ≥ min{(2|U1|)1/2, (2|U c
1 |)1/2} ≥ (D/R)1/2.

Hence, if we have G1 and G2 both with diameter at least D, we can find a set, connected in 	l,d

and of size K = (D/R)1/2 = (πc′2/c+)1/4, consisting entirely of empty squares. Once again,
to complete the proof, we will show that it is unlikely that such a set exists.

	l,d has maximum degree 2d2 + 2d . Thus, applying the graph-theoretic lemma stated in
the undirected case, the number of connected sets of K squares in 	l,d , containing a particular
square, is at most (e(2d2 + 2d))k ≤ (4ed2)k . Since there are l2 ≤ n squares in 	l , the
probability p that there exists a set of empty squares connected in 	l,d satisfies

p ≤ n(4ed2)Ke−Kr2/20

≤ n exp(K(log(4ed2) − 1
20 r2))

≤ n1−Kc−/20π+o(1),
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Figure 5: Upper bound, directed case. (B not shown.)

which, again, tends to 0 provided that we chose c′ and, thus, K large enough. Hence, the
probability that we have an in-component and an out-component each of size at least D tends
to 0.

Theorem 8. If c ≥ 0.9967 then P( 
Gn,�c log n	 is connected) → 1 as n → ∞.

Proof. Suppose that k = �c log n	 and that 
G := 
Gn,k is not connected. Then there will
be two points x, y ∈ V ( 
G) such that there is no directed path from x to y. We consider two
subsets of V ( 
G), Cx and Cy , defined as follows:

Cx = {x} ∪ {x′ : there is a directed path from x to x′}
and

Cy = {y} ∪ {y′ : there is a directed path from y′ to y}.
Cx and Cy are disjoint since, if we had z ∈ Cx ∩ Cy , there would be a directed path from x to
z and another directed path from z to y, giving us a directed path from x to y.

Lemma 7 shows that there exists a c′ > 0 such that the probability that both Cx and Cy

have diameter more than c′(log n)1/2 tends to 0. The proof of Theorem 7 shows that the
probability that an out-component Cx exists with diameter less than c′(log n)1/2 tends to 0,
since c > 1/log 7. We can then complete the proof by showing that, for all c′ > 0, the
probability that an in-component Cy exists with diameter less than c′(log n)1/2 also tends to 0.

However, we first illustrate the proof with a simpler proof that c ≥ 1.0293 > 1/log γ is
sufficient in the statement of the theorem, where γ = ( 4

3π+ 1
2 31/2)/( 1

3π+ 1
2 31/2). Suppose first

that no point of Cy lies within a distance R of the boundary of Sn, where R is as in Lemma 2. Let
z /∈ Cy be the closest point of V ( 
G) \ Cy to Cy and let yz be its nearest neighbour in Cy . Write
ρ = ‖z− yz‖ for the distance between them, and, for an arbitrary point P , write Dρ(P ) for the
open disc of radius ρ, centred at P . Consider the left-most point yl and the right-most point yr

of Cy : there can be no points in B = Dl
ρ(yl) ∪ Dr

ρ(yr), i.e. in the left half of Dρ(yl)(D
l
ρ(yl))

or the right half of Dρ(yr)(D
r
ρ(yr)). By the proof of Lemma 2, we may assume that Dl

R(yl)

contains at least k points. Hence, ρ < R, B is contained within Sn, and |B| = |Dρ(x)| = πρ2.
On the other hand, there are at least k points in A = Dρ(z)\Dρ(yz) (shown in Figure 5(a)), since
otherwise z would send a directed edge to either yz or to a point y′ ∈ Dρ(z)∩Dρ(yz). The first
possibility contradicts the hypothesis that z /∈ Cy and, for the second possibility, we must have
y′ /∈ Cy to ensure that z /∈ Cy ; then, however, y′ /∈ Cy is closer to Cy than is z, contradicting
the choice of z. Therefore, there must be at least k points in A∪B, and they must all lie in A\B.
The probability of this happening is at most (|A \ B|/|A ∪ B|)k ≤ (|A|/(|A| + |B|))k = γ −k .
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The number of choices for z, yz, yl , and yr is O(n(log n)3), so the probability that such a
configuration occurs anywhere is at most n1+o(1)γ −k , which is o(1) for c > 1/log γ .

If some point of Cy is close to either an edge or a corner of Sn, we use a single half-disc or
quarter-disc for B, and an argument similar to the one used to complete the proof of Theorem 7
shows that the probability of finding a small Cy near the boundary is also o(1). (With a little
more work, we can obtain a slight improvement by showing that there is a region C ⊆ A

containing no points in its interior.)
Suppose that w ∈ Dρ(z). Write ρ′ = ‖w − yz‖ and set

A1 = (A \ Dρ′(w)) \ B,

A2 = (A ∩ Dρ′(w)) \ B,

A3 = (Dρ′(w) \ (Dρ(z) ∪ Dρ(yz))) \ B,

A4 = B,

as illustrated in Figure 5(b) (for simplicity, the set B is not shown). Writing ni for the number
of points (other than yz, z, or w) in region Ai , we see that the following relations must hold:

n1 + n2 ≥ k − 1, n3 + n2 ≥ k − 1, n4 = 0. (4)

We need to show that, for some w, the probability p of such an arrangement is small. By
Lemma 1, we have

log p =
3∑

i=1

(ni − |Ai | − ni log(ni/|Ai |)) + O(log
∑

ni). (5)

We now maximize the right-hand side of (5). Since (4) becomes more likely if |A1|, |A2|,
or |A3| is increased, we may assume that B is disjoint from A ∪ Dρ′(w). Also, as we will only
be interested in ratios of areas, we first maximize (5) under uniform scaling of areas, giving

n1 + n2 + n3 = |A1| + |A2| + |A3| + |A4|.
We now vary the ni , subject to the constraint that n1 + n2 and n3 + n2 are fixed. This gives

η := n2

|A2| = n1

|A1|
n3

|A3| .

Also, by varying n1 alone, we see that either n1 + n2 = k − 1 or n1 = |A1|. Similarly, by
varying n3 alone, we see that either n3 + n2 = k − 1 or n3 = |A3|. Hence,

log p =
3∑

i=1

−ni log
ni

|Ai | + O

(
log

3∑
i=1

ni

)

= −n1 log
n1

|A1| − n3 log
n3

|A3| − n2 log

(
n1 n3

|A1||A3|
)

+ O

(
log

3∑
i=1

ni

)

= −(n1 + n2) log
n1

|A1| − (n3 + n2) log
n3

|A3| + O

(
log

3∑
i=1

ni

)

= −(k − 1) log

(
n1 n3

|A1||A3|
)

+ O

(
log

3∑
i=1

ni

)
.

https://doi.org/10.1239/aap/1113402397 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1113402397


18 • SGSA P. BALISTER ET AL.

Therefore,
p = η−(k−1)no(1).

Define γ ′ by (log γ ′)−1 = 0.9967 and let C be the set of points w ∈ A such that

3∑
i=1

|Ai | > γ ′|A2| + √
4γ ′|A1||A3| and |A3| < 2|A1|.

We will show that, with the above constraints,

η = n2

|A2| = n1n3

|A1||A3| > γ ′.

If n3 + n2 > k − 1 = n1 + n2 then n3 = |A3| and, so, 2|A1| > |A3| = n3 > n1 = η|A1|.
However, then η < 2 and |A1| + |A2| + |A4| = n1 + n2 < 2(|A1| + |A2|), contradicting
the fact that |A1| + |A2| < |A4|. On the other hand, if n1 + n2 > k − 1 = n3 + n2 then
|A1| = n1 > n3 = η|A3|; but |A3| ≥ |A1|, so this means that η ≤ 1. Then, however,
n1+n2+n3 ≤ |A1|+|A2|+|A3| and so |A4| ≤ 0, a contradiction. Similarly, if n1+n2 > k−1
and n3 + n2 > k − 1 then η = 1 and, again, |A4| ≤ 0. Hence, we may assume that
n1+n2 = n2+n3 = k−1 and n1 = n3, so that

∑3
i=1 |Ai | = n2+(n1+n3) = n2+(4n1n3)

1/2 =
η|A2| + (4η|A1||A3|)1/2. This then implies that η > γ ′, as required. Computer calculations
show that (|B| + |A \ C|)/|A \ C| > γ ′. Supposing that the region C contains no points in its
interior, we have at least k points in the region (A \ C) ∪ B, all of which are constrained to lie
in A′ = A \ (C ∪ B) (see Figure 5(c)). This event has probability at most γ ′−kno(1) = o(n−1).
On the other hand, the probability that there exists a configuration with a point w ∈ C is also
at most γ ′−kno(1) = o(n−1). Therefore, w.h.p. 
G is connected.

5. A sharp threshold

Theorems 4 and 7 show that if n = n(k) ≤ ek/0.5139 then limk→∞ P(Gn,k is connected) = 1,
and that if n = n(k) ≥ ek/0.3043 then limk→∞ P(Gn,k is connected) = 0. The authors have
no doubt that there is a constant c, 1/0.5139 < c < 1/0.3043, such that if ε > 0, then, for
n = n(k) ≤ e(c−ε)k , we have limk→∞ P(Gn,k is connected) = 1 and, for n = n(k) ≥ e(c+ε)k ,
we have limk→∞ P(Gn,k is connected) = 0. Although the authors cannot show the existence
of this constant c, let alone determine it, in this brief section we will show that the transition
from connectedness to disconnectedness is considerably sharper than these relations indicate:
the length of the window is O(n) rather than n1+o(1). To formulate this result, for k ≥ 1 and
0 < p < 1, we set

nk(p) = max{n : P(Gn,k is connected) ≥ p}.
Theorem 9. Let 0 < ε < 1 be fixed. Then, for sufficiently large k,

nk(ε) < C(ε)(nk(1 − ε) + 1),

where
C(ε) = �(6/ε) log(1/ε) + 1�2.

Proof. Write M = �(6/ε) log(1/ε)+ 1� and N = nk(1 − ε)+ 1, so that the probability that
we have at least two components in GN,k is at least ε. By Theorems 4 and 7, we may assume,
by taking k sufficiently large, that 0.3043 log N < k < 0.5139 log N . Therefore, by Lemma 2,
we see that, w.h.p., no edge in GN,k has length greater than R = (c+(log N)/π)1/2.
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We say that a point x ∈ V (GN,k) is close to a side s of SN if x is less than a distance 2R

from s, and call a component G′ of GN,k close to s if it contains points that are close to s.
Furthermore, we say that x ∈ V (GN,k) is central if it is not close to any side s of SN , and
call a component G′ of GN,k central if it consists entirely of central points. Finally, we call a
component G′ of GN,k small if it has diameter at most c′(log N)1/2, where c′ is as in Lemma 6.

By Lemma 6, with probability greater than 1
2ε, GN,k contains a small component, which

can be close to at most two sides of SN . We write α for the probability that we have a small
central component of GN,k , β for the probability that we have a small component of GN,k that
is close to exactly one side of SN , and γ for the probability that we have a component of GN,k

that is close to two sides of SN (so that it lies at a corner of SN ). Thus, we have α+β +γ > 1
2ε,

and the proof of Theorem 7 shows that

γ = no(1)3−k → 0

as k → ∞. Therefore we may assume that at least one of α and β is greater than 1
6ε (although

we do not know which one). If we specify one side s of SN , the probability that we obtain a
small component G′ that is close only to s is thus at least 1

24ε.
Now we take a larger square SM2N , and tessellate it with copies of SN . We only consider

the small squares of the tessellation that are incident with the boundary of SM2N . In particular,
considering the sides of these copies of SN lying on the boundary of SM2N , we see that we have
4(M −1) independent opportunities to obtain a small component G′ in one of the small squares,
S say, in such a way that G′ can only intersect the boundary of S on the boundary of SM2N .
Such a component will also be isolated in GM2N,k , since, w.h.p., no edge of GM2N,k has length
greater than (c+(log M2N)/π)1/2 < 2R for sufficiently large k (and, thus, N ). Therefore, if p

is the probability that GM2N,k is connected, we have

p < (1 − 1
24ε)4(M−1) < e−(ε/6)(M−1) < ε,

completing the proof.

6. Coverage

Let Pn be a Poisson process of intensity 1 in the square Sn. For any x ∈ Pn, let r(x, k) be
the distance from x to its kth-nearest neighbour (or infinite, if no such neighbour exists), and
let Bk(x) = Dr(x,k)(x) ∩ Sn. Also, let Ck(Pn) = ⋃

x∈P Bk(x); we say that Pn is a k-cover if
Ck(Pn) = Sn.

Before proving Theorem 3, we first prove a short lemma bounding the Poisson distribution.

Lemma 8. Suppose that P is a Poisson process of intensity 1 in the square Sn, and fix c and
ε > 0. Then, there exists δ > 0 such that, w.h.p., there does not exist a point x of the process
with

r(x, �c log n	) − r(x, �(c − ε) log n	) < δ
√

log n. (6)

Proof. Let k = �c log n	 and k′ = �(c − ε) log n	. By Lemma 2, we may assume that no
edge in Gn,k is longer than R = cm(log n)1/2, where cm = (c+/π)1/2 in our earlier notation.
For a fixed point x, condition (6) only holds if the annulus of width δ(log n)1/2 and outer
diameter r(x, k) contains at least �ε log n	 − 1 points. This annulus, A say, has area at most
2πRδ(log n)1/2 = 2πδcm log n.
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The number of points in A is stochastically dominated by a Poisson distribution with mean
2πδcm log n. Thus, the probability p that there are more than �ε log n	− 1 points in A satisfies

log p ≤ −2πδcm log n − ε log n log

(
ε

e2πδcm

)
+ O(log log n),

which is less than −log n provided that we choose δ small enough. Hence, the probability that
any point fails to satisfy (6) is o(1).

Theorem 10. Fix c > c′ > 0. If, w.h.p., 
Gn,�c′ log n	 does not have a vertex of in-degree 0, then
(w.h.p.) Pn is a �c log n	-cover. Conversely, suppose that, w.h.p., Pn is a �c′ log n	-cover; then
(w.h.p.) 
Gn,�c log n	 does not have a vertex of in-degree 0. Consequently, if c ≤ 0.7209 then,
w.h.p., Pn is not a �c log n	-cover while, if c ≥ 0.9967, w.h.p. Pn is a �c log n	-cover.

Proof. Let k = �c log n	 and k′ = �c′ log n	. Suppose that it is not true that, w.h.p., Pn is a
k-cover. Then there exists ε > 0 such that, for infinitely many n, the probability that Pn is not
a k-cover is at least ε. Let n′ = n(1 + 1/log n). We will show that

P( 
Gn′,k′ has a vertex of in-degree 0) > ε′

for some ε′ > 0.
By Lemma 8, there exists δ > 0 such that, w.h.p., r(x, k) − r(x, k′) ≥ δ(log n)1/2 for every

x ∈ Pn. Thus,

P(Sn \ Ck′(Pn) contains a ball of radius δ
√

log n) ≥ (1 − o(1)) P(Pn is not a k-cover)

≥ (1 − o(1))ε.

We identify Pn′ with Pn ∪ Pn/log n, where all squares are scaled to be the same size as Sn.
Let R = (c+(log n)/π)1/2 = cm(log n)1/2 be as in Lemma 2, fix Pn such that 
Gn,k′ has no
edge of length more than R, and that Ck′(Pn)

c contains a disc of radius δ(log n)1/2, and let y be
the centre of such a disc. The probability that the disc Dδ(log n)1/2(y) contains exactly one point
of Pn/log n is a constant independent of n, as is the probability that the disc D(cm+δ)(log n)1/2(y)

contains no other point of Pn/log n. Hence, there exists ε1 > 0 such that

P( 
Gn′,k′ has a vertex of in-degree 0 | Pn) ≥ ε1,

since this event occurs provided that both the previous events do. Combining these facts, we
see that

P( 
Gn′,k′) has a vertex of in-degree 0) ≥ (1 − o(1))εε1,

as claimed.
Conversely, suppose that it is false that, w.h.p., 
Gn,k does not have a vertex of in-degree 0.

As before, this implies that there exists an ε > 0 such that, for infinitely many n, the probability
that 
Gn,k has a vertex of in-degree 0 is at least ε.

Let R be as in Lemma 2, and fix a configuration Pn with a point y of zero in-degree, no
edge-length longer than R, and no vertex with more than c1 log n neighbouring points within a
distance 2R. The first condition occurs with probability at least ε and the second condition fails
with probability tending to 0, as does the final one, provided that c1 is large enough. (To verify
this last assertion, set c0 = 4c+/c− and apply Lemma 2 with n replaced with nc0 . Then no
vertex of Snc0 ∩P ⊃ Sn ∩P has more than �c log nc0	 ≤ cc0 log n neighbouring points within
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a disc of area c− log nc0 = π(2R)2.) Now fix δ > 0 and let n′ = (1 − δ)n. As before, we
identify Pn with Pn′ ∪ Pδn (both scaled to be the same size Sn) by independently assigning
each vertex of Pn to Pδn with probability δ. Then

P(Pn′ is not a k′-cover | Pn) ≥ ε′,

since this event occurs under the conditions that, firstly, the point y is in Pδn and, secondly,
no disc of radius R, containing y, contains more than k − k′ ≥ (c − c′) log n − 1 points
of Pδn. The number of points in D2R(y) is at most c1 log n, so the number of points in
D2R(y) ∩ Pδn is stochastically dominated by the distribution Binomial(�c1 log n	, δ). Thus,
with probability at least 1

2 , D2R(y) contains at most c1δ log npoints ofPδn. Hence, provided that
c − c′ > c1δ, the second condition is satisfied with probability at least 1

2 , for large enough n.
The first condition is independent of the second, and occurs with probability δ. Combining
these, we see that

P(Pn′ is not a k′-cover) ≥ 1
2 (1 − o(1))δε′.

7. Numerical results

Computer simulations suggest that, for k ≥ 3, there exists a giant component in Gn,k , which
contains almost all of the vertices (over 98.5% of them, for k = 3) with a few small isolated
components. On the other hand, for k ≤ 2, all components are small. As we are interested
mainly in large k, we have confined our numerical results to k ≥ 3, since these are more likely
to reflect the situation in which k is large.

For k ≥ 3, the small components are relatively sparse (more so for larger k). As a result, we
would expect that, for a large rectangular region A, the small components are roughly Poisson
distributed with constant density throughout the area A, with perhaps a somewhat different
density near the sides and corners of A. Hence, we would expect the average number of small
components in A to be approximately Poisson distributed with mean αk|A| + βk|∂A| + 4γk ,
where αk represents the density of components far from the boundary of A, βk gives a correction
for ‘edge effects’, and γk gives a correction for ‘corner effects’. By considering rectangles of
various sizes and aspect ratios, we can evaluate the constants αk , βk , and γk numerically.
To do so, computer simulations were performed on large rectangular regions for 3 ≤ k ≤ 8,
and the numbers and sizes of the small components were recorded. The numbers of components
found were fitted according to the linear formula αk|A|+βk|∂A|+4γk and, for all k considered,
this did indeed fit the data extremely well. In total, an area of over 1012 was simulated for each
k from 3 to 8. Estimates of αk , βk , and γk are given in Table 1.

Table 1: The best-fit data for αk , βk , and γk , and E(|C|), the average size of the small components.
The numbers in square brackets indicate the error in the fourth decimal place to one standard deviation.

k −log αk −log βk −log γk E(|C|)
3 6.2259 [1] 4.9876 [3] 2.8685 [13] 7.1031 [2]
4 9.1828 [1] 7.1871 [6] 4.6905 [22] 6.7519 [3]
5 12.0917 [4] 9.3145 [13] 6.2918 [33] 7.3551 [9]
6 15.0052 [17] 11.4542 [31] 7.8476 [53] 8.1728 [30]
7 17.9340 [71] 13.6015 [79] 9.4211 [93] 9.0659 [116]
8 20.8979 [310] 15.7770 [221] 11.0057 [179] 10.0022 [425]
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Figure 6: The probability that Gn,k is connected (solid line, left scale), the average number of components
(dotted line, right scale), and theoretical predictions based on the number of components being given by
1 + Poisson(αkn + 4βkn

1/2 + 4γk) (dashed line, either scale). Note that, for a given k, the lines are
indistinguishable for k > 5 and sufficiently large n. The left-hand scale is exponentially related to the

right-hand scale.

The values of βk and γk are positive, indicating that small components are more common near
the boundary and corners of A. In Figure 6, we plot both the probability that Gn,k is connected
and the average number of components against n, for 3 ≤ k ≤ 8. The predictions based on the
assumption that the number of components is distributed as 1 + Poisson(αkn+ 4βkn

1/2 + 4γk)

are also given and are in excellent agreement for large n. We know, from Theorem 7, that
γk → 0; however, it also appears that βk � α

1/2
k . Hence, if A is the square Sn and n is large

enough that the k-nearest-neighbour model has a reasonable chance of being disconnected, the
expected number of components is dominated by the term αkn. We would therefore expect the
probability that the model is connected to be approximated very well by exp{−αkn}, and to be
fairly insensitive to the shape of the region Sn, provided that the boundary is reasonably smooth
and not excessively long. We would also expect that, for fixed n, the critical value of k occurs
when αk ∼ 1/n. The data suggests that this critical k is between approximately 0.3 log n and
0.4 log n – consistent with the theoretical bounds – and closer to the lower bound.

If one believes that the lower bound construction of Theorem 4 is in fact asymptotically
correct, then the sizes of the components in the interior should be geometrically distributed
with minimum value k + 1 and ratio approximately e−µ ≈ 0.3016, where µ is the constant
found in the proof of Theorem 4. Of course, this assumes that k is very large. For more
modest values of k, the lower bound construction suggests that the density of components of
size t ≥ k + 1 should be about exp{−ηkt

1/2} for some constant ηk . To see this, consider a disc
of area t containing t points, and insist that a vertex-free annulus of constant width surrounds
it. If this width is large enough, the t points inside the disc should form a component, and the
vertex-free region is of area O(t1/2), so this configuration has a probability of approximately
exp{−ηkt

1/2}. The component-size distribution for components near the edge of A is different
than that for components near the centre of A, so we have only considered components far
from the boundary of A. (Numerical evidence suggests that the components near the boundary
are, on average, slightly larger than components far from the boundary.) Table 2 gives the total
number of components found in our simulations and the maximum size of a small component.
In Figures 7 and 8, we plot the proportion of small components found against their size, first

https://doi.org/10.1239/aap/1113402397 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1113402397


Connectivity of random k-nearest-neighbour graphs SGSA • 23

Table 2: The number and maximum size of the small components in simulation results in an area of size
240 ≈ 1012.

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

nC 2174 360 691 113 019 084 6163 109 334 633 17 923 924
max |C| 547 106 65 37 27 20

k = 3

k = 4

k = 5

k = 6
k = 7

1.000

0.100

0.010

0.001
1 2 3 4 5 6 7 8 9 10

Figure 7: The proportion of small components that are of size k + x versus x. The dashed line is the
theoretical prediction for large k based on the lower bound argument. The error bars represent one standard

deviation.
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Figure 8: The proportion of small components that are of size x versus x1/2 for 3 ≤ k ≤ 6. The error
bars represent one standard deviation.

using a scale linear in the component size (in Figure 7) and, second, using a scale proportional
to the square root of the component size (in Figure 8). For k ≥ 4, the plot against x1/2 does
indeed appear to be close to linear; however, for k = 3 there appears to be some deviation from
linearity. The average small component sizes for components far from the boundary, given by
E(|C|), are displayed in Table 1.
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8. Conjectures

We end with three extremely natural open questions that we would very much like to see
answered. The first was mentioned briefly in the introduction.

Open Question 1. Is there a critical value of c such that, for c′ < c, Gn,�c′ log n	 is disconnected
w.h.p., and, for c′′ > c, Gn,�c′′ log n	 is connected w.h.p.? In the terminology introduced in the
introduction, is it true that cl = cu? Is it true for the directed graphs 
Gn,k?

Open Question 2. For the directed graphs 
Gn,k , write


cl = sup{c : P( 
Gn,�c log n	 is connected) → 0}, and


ciso = sup{c : P( 
Gn,�c log n	 contains a vertex with zero in-degree) → 1}.
Trivially, we have 
cl ≥ 
ciso. Is it in fact true that 
cl = 
ciso?

Open Question 3. Is the threshold for connectivity of Gn,k sharp in k? In other words, setting

kn(p) = min{k : P(Gn,k is connected) ≥ p},
is it true that, for any 0 < ε < 1, there exists C(ε) such that kn(1 − ε) < C(ε) + kn(ε) for all
sufficiently large n?

‘Sharpness in n’ was proved in Section 5, but perhaps this is more natural.
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