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The Donaldson-Hitchin-Kobayashi
Correspondence for Parabolic Bundles over
Orbifold Surfaces
Brian Steer and Andrew Wren

Abstract. A theorem of Donaldson on the existence of Hermitian-Einstein metrics on stable holo-
morphic bundles over a compact Kähler surface is extended to bundles which are parabolic along an
effective divisor with normal crossings. Orbifold methods, together with a suitable approximation
theorem, are used following an approach successful for the case of Riemann surfaces.

In [6] it is shown that if E is a stable parabolic bundle over a Kähler surface
parabolic along a smooth divisor D then E admits an irreducible Hermitian-Einstein
metric. Here we give a different proof of this theorem, extending it to the case when
D is an effective divisor with normal crossings. The strategy of the proof is that of
[28], which was indeed undertaken as a test of the method. It rests on two pillars: the
proof of S. K. Donaldson in the ordinary (non-parabolic) case, a proof which extends
straightforwardly to orbifolds [18], [37], and an approximation argument [28] which
shows that if one has the result for rational weights one can extend to irrational ones.
(These are described in Section 2 and Sections 6 and 7 respectively.)

If D ⊂ Y is an effective divisor there is a notion of bundle with parabolic structure
along D [21], [17], extending that of curves [22], and a fairly simple correspondence
between parabolic bundles with rational monodromy and V -bundles over certain
associated orbifolds. It is described for curves in [12] and its extension to surfaces—
when the divisor D is made up of smoothly embedded curves intersecting normally—
is described briefly in [18], [37] and in some detail in Sections 3 and 4 here be-
cause we need the precise local forms of the metrics. As for curves, stability (with
respect to an underlying Kähler metric) is preserved and one immediately establishes
a Donaldson-Hitchin-Kobayashi correspondence when the parabolic weights are ra-
tional. However, to carry out the proof on the orbifold we need an orbifold Kähler
metric and on the underlying smooth surface this degenerates along the divisor: it
is what is called a cone-like metric in [17]. Moreover, the correspondence carries
genuine metrics on the V -bundle to singular ones on the parabolic bundle with the
singularity determined by the weight (that is, the connexion has specified holonomy
about D). Such metrics we call parabolic metrics. This is acceptable, but on the com-
plex manifold one’s preference is for a standard Kähler metric. With some effort one
can indeed pass from a (singular) Hermitian-Einstein connexion for a cone-like met-
ric to one for a standard Kähler metric lying in the same cohomology class and so
get the desired correspondence. It is much harder to carry out for surfaces than for
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curves and we are obliged first to reduce the case when the first Chern class is zero
(or ‘small’) by tensoring with a line V -bundle and then to argue over Y −D using the
theory of [19] and [23]. This is done in Section 5 and constitutes the arch linking the
2 pillars. The final theorem is the following which is proved in Section 7.

Theorem 7.4 If E is a stable parabolic over Y , parabolic along D where D is a divisor
with normal crossings, then E admits a parabolic Hermitian-Einstein metric with cur-
vature in Lp for some p a little larger than 2, where here Lp is taken with respect to an
ordinary metric.

Except in Section 5, and to a tiny extent in Section 7, the analysis takes place on
a compact space as in [28]. Because many of the ideas and proofs are known in
the case of Riemann surfaces and because there is a careful discussion of analytical
ideas in [18], [28] we have not laboured proofs. (For the analysis in this section it is
convenient to have parabolic weights in [−1/2, 1/2) rather than [0, 1) which, on the
other hand, is better for the geometry, as Section 2 suggests.)

Both authors thank A. Kovalev, E. B. Nasatyr and, in particular, S. K. Donaldson
from whom consciously and unconsciously they have learnt many things. The second
author is grateful to H. Tsuji for several conversations and for pointing out his paper
[34], and he thanks especially Professor F. Hirzebruch who invited both to Bonn.

1

Orbifolds occur naturally in certain situations and from some points of view they are
little harder to handle than manifolds. As for a smooth manifold a distinction has
to be made between the orbifold structure and the underlying space which may itself
be a topological manifold—as it is in the case of complex dimension 1. An orbifold
structure on a Riemann surface with chosen points enables one to consider fractional
powers of line bundles in the same way that one would ordinary bundles. The same
is true in higher dimensions and this section has a brief discussion, see [32], with the
case of complex surfaces especially in mind.

The definition of analytic subvariety is a local one and extends to complex orb-
ifolds. There is a theory of divisors, as is noted in [3] and to each divisor there is an
associated V -line bundle defined as for manifolds [13, p. 133] using an atlas or more
abstractly. The group PicV (X) of line V -bundles over a compact complex orbifold is
studied in [38]. (Because the local ring is a unique factorization domain, there is no
distinction between Weil and Cartier divisors [24].)

Later we shall use orbifolds as a tool—roughly as branched covers are needed—
so we are interested in the case when the underlying space |X| of an orbifold X is a
manifold. Suppose that X is a compact complex orbifold or V -manifold [30], [33]
of complex dimension n. Locally, then, any point P has a chart U = {π : Ũ →
Ũ/GU

∼= |U |} where Ũ is an open subset of Cn and Gu a finite group of analytic
maps acting faithfully. We can always suppose the chart is Euclidean in that Gu acts
via a faithful unitary representation. Then there is a simple criterion for Cn/Gu to be
Cn due essentially to Chevalley. It is in terms of complex reflexions: i.e., linear maps
of which all eigenvalues except one are 1.

https://doi.org/10.4153/CJM-2001-047-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-047-x


The Donaldson-Hitchin-Kobayashi Correspondence 1311

Lemma 1.1 [7], [20] If G is a finite group acting faithfully on Cn and G is generated by
complex reflexions then Cn/G ∼= Cn.

When n = 1, G has to be cyclic, and this criterion is trivially satisfied. In higher
dimensions, the situation is more complicated. Much of the time we shall restrict to
the cases where every Gu is abelian and the action satisfies the criterion above: such an
orbifold we will call an abelian orbifold. For an abelian orbifold, where the underlying
space is a smooth complex surface, the singular set (i.e., where the isotropy group is
non-trivial) is the union of smooth hypersurfaces intersecting normally. There are no
isolated points because then G would have to act freely away from P and intersections
are generic since G is abelian; in particular, for surfaces there are no triple or higher
intersections. For such orbifolds the relation between divisors and line bundles is
exact if the orbifold is algebraic.

Proposition 1.2 [32] If X is an abelian orbifold with |X| a smooth algebraic surface
then every line bundle is the line bundle of a divisor.

Suppose now that Y is a smooth compact Kähler surface and that D = Σ1∪· · ·∪Σd

is an effective divisor where Σ1, . . . ,Σd are smooth complex curves embedded in Y
and intersecting normally. Given integers n1, . . . , nd we can build, as for Riemann
surfaces, a corresponding orbifold X by declaring that

(i) a chart at P ∈ Y − D is an ordinary one;
(ii) a chart at P ∈ Σi \

⋃
i �= j Σ j is of the form ∆ ×∆ → ∆ ×∆/Zni → Y where

Zni acts by ζ(z,w) = (ζz,w), Σi∩|∆ × ∆/Zni | = {(0,w) : w ∈ ∆} and
∆×∆/Zni → Y is a chart for Y ;

(iii) a chart at P ∈ Σi∩Σ j (i 
= j) if of the form∆×∆ → ∆×∆/Zni × Zn j → Y
where (ζ, η)(z,w) = (ζz, ηw), Σi∩|∆×∆/Zni ×Zn j | = {(0,w) : w ∈ ∆}, and
∆×∆/Zni × Zn j → Y is a chart for Y .

(Here ∆/Zk is identified with ∆ ⊂ C in the usual way and we suppose that at P ∈
Σi − D · D the normal direction is given by first coordinate.)

Then LY
D = LY

Σ1
⊗ · · · ⊗ LY

Σd
and LX

D = LX
Σ1
⊗ · · · ⊗ LX

Σd
, but

(
LX
Σi

) ni
= LY

Σi

so that we have effectively extracted the roots. (Of course, LX
Σi
/Σi is probably not a

genuine bundle: it will only be if ni divides c1

(
LY
Σi

)
· Σi .)

A similar construction could also be made if a curve Σi should have a simple
double point.

As a rule we shall write (z,w) for coordinates on X and (u, v) for coordinates on
Y so that u = zni , v = wn j in case (iii).

Definition 1.3 X will be called the associated orbifold to (Y,D, n) and the notation
will often be amplified to (X,D, n).

Sections of bundles can be defined in the usual way and we have differential op-
erators as for manifolds. The Riemann-Roch theorem for complex orbifolds is due
to Kawasaki. We state it in the case of an abelian orbifold surface with singular set
D = Σ1 ∪ · · · ∪ Σd, where each Σi is a smooth complex curve.
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Theorem 1.4 [16] (Kawasaki, Riemann-Roch) If X is an abelian orbifold surface, as
above, and E a holomorphic V -bundle then

χ(E) =

∫
X

I(X,E) +
d∑
1

(1/ni)

∫
Σi

I(X,E) +
∑

i, j

(1/nin j)Σi · Σ j ,

where I(X,E) is the total Todd class of X coupled to E.

Theorem 1.5 [27] (Serre Duality) Hi(E∗ ⊗KX) ∼= Hn−i(E) for an abelian orbifold
X with canonical bundle KX.

An analogue of the adjunction formula also holds for orbifolds and, with the ap-
propriate definition of sheaf cohomology [32], one has PicV (X) ∼= H1(X,O∗) and
Div(X) ∼= H0(X,M∗/O∗).

2

Suppose that X is a compact Kähler orbifold-surface: this means that for each chart
U = {πU : Ũ → Ũ/Gu

∼= |U |} there is an invariant hermitian metric hu and an
associated 2-form w̃u on Ũ such that dw̃u = 0 and all fit together under the transition
functions. As one knows from the 1-dimensional case such a hermitian metric will
be singular on |U | if Gu 
= 1, even if |U | is a polydisc. Using the two form w̃, stability
can be defined in the usual way.

Definition 2.1 A holomorphic bundle E of rank l is stable if, for every holomorphic
bundle F of rank r < l and map i : F → E injective at some point, µF < µE where
µF = c1F · w/r = deg F/ rank F is the slope of F.

A connexion on a V -bundle E is, locally, an invariant operator on Ũ and so is
determined there by an invariant 1-form. The curvature FA of a connexion A is, as for
manifolds, a 2-form with values in End E. If E is holomorphic we insist that ∂̄A = ∂̄,
where ∂̄A is the anti-holomorphic part of dA. If E is hermitian there is a bijection,
described in [10], between holomorphic structures on E and orbits of the space A of
integrable- or (1, 1)-connexions under the group G of complex automorphisms of E.
The holomorphic structure on E associated to A may be written EA.

Definition 2.2 A connexion on E is Hermitian-Einstein if ΛFA = λI, where Λ :
Ω2 → Ω0 is the adjoint of the operator α→ α∧w and λ = −4πiµE (if we normalize
and suppose vol X = 1).

Theorem 2.3 [38], [17] A holomorphic bundle E is stable if and only if E admits an
irreducible Hermitian-Einstein connexion.

The proof of this involves no more than checking that each stage of S. K. Donald-
son’s proof ([8], [9], or [11]) extends to orbifolds.

The Weitzenböck formulae are local and the orbifold operators obey the same
rules as for those on manifolds. So one has (correcting a sign and writing F̂A = ΛFA
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as in [11]) that, as operators on Ω0(E),

∂̄∗A∂̄ =
1

2
(∇∗A∇A − iF̂A) and ∂∗A∂A =

1

2
(∇∗A∇A + iF̂A).(2.4)

There are the two following consequences, where one uses integration by parts in the
first and considers the eigenspaces of iF̂A in the second.

Proposition 2.5 If A is a unitary (1, 1)-connexion on E and iFA ≤ 0 as a self-adjoint
endomorphism of E then any holomorphic section of EA is a covariant constant, zero
unless F̂A ≡ 0.

Proposition 2.6 If d∗AFA = 0 (i.e., A is a critical point of Yang-Mills functional) then
A is a direct sum of Hermitian-Einstein connexions.

Definition 2.7 E is polystable if E is a direct sum of stable bundles of the same slope.

Corollary If Theorem 2.3 is true for rank < r then any rank r bundle E which admits
a Hermitian-Einstein connexion is polystable and stable if the connexion is irreducible.

The essential part of the proof, the existence of such a connexion on a stable bun-
dle, uses the evolution equation

∂

∂t
At = d∗At

FAt(∗)

on the orbifold surface X.

Proposition 2.8 [8], [9], [37] If A is a (1, 1)-connexion, there is a unique solution At

to the equation (∗) valid for all t and with A0 = A. Moreover, there is a 1-parameter
family of complex gauge transformations gt such that At = gt (A).

The long-time existence follows exactly as in [8], [9] once one has short-time
existence for the initial value problem. As the linearization of (∗) is not parabolic a
modified problem has to be considered. We choose the approach of working directly
with the complex gauge transformations. The equation

∂gt

∂t
= iF̂gt Agt ; g0 = I

is still not parabolic. However, it is the unitary transformations which are redundant
and we can remove this problem either by taking gt to be self-adjoint or by consider-
ing ht = g∗t gt as in [8], [9]. The new equation for ht , namely

∂ht

∂t
= −2iht{F̂A0 + Λ∂̄A0 (h−1

t ∂A0 ht )}, h0 = I

is parabolic. Hence, as its linearization is linear parabolic, we have the short-term
existence and uniqueness from the inverse function theorem for Banach spaces [14,
Part 4, Section 11], given the existence and uniqueness for linear ones. The basis of
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the argument for this in [14, Part 3] is a local result which holds equivariantly. Hence
we have the local result for orbifolds and consequently the global result as in [8], [9].

But the solution was for ht . We now lift as in Section 6.3.1. of [11].
The next step is to show that a limit connexion A∞ exists. The patching argument

of [11, Lemmas 4.4.4 and 4.4.5] extends directly to orbifolds and yields a connexion
smooth over X − {x1, . . . , xk}, where {x1, . . . , xk} is a finite set of points, and such
that d∗A∞A∞ = 0. So, as in 4.4.5, either

(a) F̂A∞ = λI or
(b) A∞ is the direct sum of Hermitian-Einstein connexions.

Now the removal of singularities theorem [36] gives a smooth connexion on a bundle
E ′ and a sequence of unitary maps

ρα : E|X − {x1, . . . , xk} → E ′|X − {x1, . . . , xk}

such that ρ∗α(Aα)→ A∞ in L2
2 on every compact subset. From this, one deduces from

Hartog’s theorem that there is a holomorphic map

f : E→ E ′

and one shows it is non-zero. As tr(Fα) converges, we know that deg E ′ = deg E.
They have the same rank as well. Finally one shows that if E ′ = F+ ⊕ F− where
µ(F−) < µE and µ(F+) ≥ µE then f + : E→ F+ is non-zero, contradicting stability.

For the proof of Theorem 2.3 above, a hermitian metric is chosen on E. We take
the initial connexion for the equation (∗) to be that unitary connexion A associated
to the holomorphic structure E on E and the chosen hermitian metric. As the final
connexion is in the same orbit as A, it determines the same holomorphic structure E.

(If we carry this connection down onto the associated parabolic as in the next
section we get a Hermitian-Einstein one with respect to the orbifold metric, but at
the moment we cannot say much more than that it is in Lp.

Proposition 2.9 If E is a stable parabolic bundle on Y with the denominators of the
weights along Σi dividing ni then there is an irreducible continuous Lp

1 parabolic metric
on E, Hermitian-Einstein with respect to an orbifold metric on X = (X,D, n), and in
the same class as that of Y .)

3

Suppose that Y is a smooth Kähler surface with an effective divisor D. A general
definition of what it means for a bundle to be parabolic along D is given in [21]. We
take a simpler case where D is made up of smooth irreducible curves each embedded
in Y and with only normal crossings (of precisely two at any crossing) but generalize a
little and consider bundles on orbifolds parabolic along such divisors. (This is helpful
in an inductive proof, for then one can handle a single embedded divisor at a time.)
There are two possible conventions: the positive one, where weights are in the range
[0, 1) and representations of ∆/Zni are classified by an integer in {0, 1, . . . , k − 1},
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and the balanced one with weights in [−1/2, 1/2) and representations classified by
an integer in the set {−[k/2], . . . , [(k− 1)/2]}.

Definition 3.1

(a) A bundle with a quasi-parabolic structure along D = Σ1 ∪ · · · ∪Σd is a bundle E
together with a filtration E = F(i)

1 ⊃ F(i)
2 ⊃ · · · ⊃ F(i)

li+1
= 0 along Σi such that

on Σi ∩ Σ j these have common refinement.
(b) A (positive) weighted structure along D consists of a quasi-parabolic structure

and weights {λ(i)
j }, 1 ≤ j ≤ li , for each i such that

0 ≤ λ(i)
1 < λ(i)

2 < · · · < λ(i)
li
< 1.

The weights satisfy − 1
2 ≤ λ(i)

1 < λ(i)
2 < · · · < λ(i)

li
< 1

2 in the case of a balanced
weighted structure.

(c) If E is a holomorphic bundle and the filtration along each Σi is holomorphic,
then the bundle will be called parabolic (along D). Often the bundle will simply
be smooth, when it will be called weighted.

For notational reasons it is sometimes convenient to have a full set of weights and
write 0 ≤ λ(i)

1 ≤ λ(i)
2 ≤ · · · ≤ λ(i)

l < 1 with each repeated according to the rank
of the corresponding factor of the associated graded bundle—in the balanced case
similarly.

Definition 3.2 If each weight λs
i is rational and E is holomorphic we say the bundle

E is a rational parabolic one.

In this case, let ni be the lowest common multiple of the denominators along
the embedded surface Σi . Then we can associate an orbifold X to (Y ; D; n) as in
Definition 1.3.

We can also carry back a bundle, rational parabolic along D and with weights
whose denominators on Σi divide ni , to obtain a V -bundle over X. The simplest
case is that of a line bundle; as explained in [12] and [18] it is a generalization of the
construction of the line bundle of a divisor—indeed, if we took λ = 1 then the line
bundle we would get from L would be L(−D).

Suppose D = Σ1∪ · · ·∪Σd is such a divisor and n1, . . . , nd are associated positive
integers. We can think of D as a divisor on X and take the corresponding line bundle
LX

D = LX
Σ1
⊗ · · · ⊗ LX

Σd
defined as usual, so that (LX

Σi
)ni = LY

Σi
, a genuine line

bundle on Y . If (Uα), α ∈ A, is an orbifold atlas, take gαβ = 1 if |Uα| ∩ D =
∅ = |Uβ | ∩ D. If |Uα| ∩ D 
= ∅ and of type (ii) but |Uβ| ∩ D = ∅ then we have

Uα = {πα : ∆×∆
p
→ ∆×∆/Zni → Y}, Uβ = {πβ : ∆×∆→ Y}, and D ∩ |Uα|

given by z = 0. Suppose that θ : π−1
β (|Uα| ∩ |Uβ |) → Ũα is an inclusion of charts;

then take gθ : π−1
β (|Uα| ∩ |Uβ |) → C∗ to be the function z ◦ θ, because z is a local

defining function. (Similarly for the other charts; for example, if Uγ is another chart
like Uα such that

∣∣ |Uγ| ∩Σi

∣∣ 
= ∅ and φ : π−1
γ (|Uα| ∩ |Uγ |)→ Ũα is a morphism of

charts then gφ : π−1
γ (|Uα|∩|Uγ |)→ C∗ is the function (z◦φ)·w−1, where w : Ũγ → C
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defines D. Because both only vanish to first order the quotient is in C∗.) In this way
we manufacture a line bundle LX

D over X; it is a V -bundle because on Uα above we
have

∆×∆× C −−−−→ ∆×∆� �
∆×∆×C

Z/n −−−−→ ∆×∆
Z/n

where Z/n acts on C with the generator multiplicating by ζ = e2πi/n in order that the
transition function gθ : π−1

β (|Uα| ∩ |Uβ |)→ C∗ be z ◦ θ.

Suppose that L is a parabolic line bundle with weight λi = xi/ni along Σi .

Definition 3.3 ϕL = L⊗
(
LX
Σ1

) x1
⊗ · · · ⊗

(
LX
Σd

) xd
.

Proposition 3.4 ϕ : PicPar
n (Y,D) ∼= PicV (X).

The proof is as for Riemann surfaces [12] and as in [18]. The definition and
proposition hold in each convention, but starting from the same underlying bundle
one may well get a different V -bundle, and conversely. When we need to distinguish
we shall put dashes on the functors for the balanced convention.

To extend to rank l bundles we shall work with cocycle representatives. Recall
that D is a divisor with normal crossings such that each Σi is smoothly embedded.
Suppose that we have a covering (|Uα|)α∈A of Y and suppose E is given by ‘transition’
functions gαβ , where gαβ lies in the parabolic subgroup defined by the (partial) flags
along D at points on D. (So we are insisting that the local trivializations respect the
flags.) On X we take the orbifold covering (Uα)α∈A and declare that gX

αβ = gαβ if
|Uα| ∩ D = ∅ = |Uβ | ∩ D. If, however, |Uα| ∩ D ⊂ Σi − D · D and |Uβ | ∩ D = ∅

then for θ : π−1
β (|Uα| ∩ |Uβ |)→ Ũα we take (where z is a coordinate on Ũα defining

Σi)

gX
θ =




(zθ)x1

. . .
(zθ)xl


 · gθ = cθgθ.

In the other case if |Uα| ∩ D ⊂ Σi − D · D, |Uγ| ∩ D 
= ∅ too and φ:
π−1
γ (|Uα| ∩ |Uγ |)→ Ũα then we set

gX
φ =




(zφ)x1

. . .
(zφ)xl


 · gφ ·




f−x1

. . .
f−xl


 ,

where f is a coordinate function defining Σi in Uγ . If we are in the situation where
|Uα| ∩ D · D 
= ∅ and |Uβ | ∩ D ⊂ Σi − D · D with θ : π−1

β (|Uα| ∩ |Uβ |)→ Ũα then
we set
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gX
θ =




(zθ)x1 (wθ)y1

. . .
(zθ)xl (wθ)yl


 · gθ ·




f−x1

. . .
f−xl


 ,

where f definesΣi in Uβ . Notice that the ‘cocycle’ condition is still satisfied and that,
in fact, we get a V -bundle Ẽ = ϕ(E) over X. It is tedious to check that if we have two
altases and cocycles defining the same E then the corresponding new cocycles define
the same ϕ(E).

The correspondence works backwards, so that—just as for line-bundles—we have
a correspondence between V -bundles over X and parabolic bundles over Y with ra-
tional weights whose denominator divide n. The topological type of the V -bundles
might be quite distinct—as the case of elliptic surfaces shows.

The above maps cθ for the morphisms θ are referred to as clutching maps. Suppose
the curve Σi is defined by a holomorphic section si of the associated line bundle Li

on Y and LX
i , s̃i are those on X, so that

(
LX

i

) n
= Li and (s̃i)ni = si , where ni is the

isotropy order of Σi . Choose a hermitian metric on E and so decompose E over each
Σi , and then over ν(D), into E|ν(D) = p∗(E1⊕· · ·⊕El), where E1⊕· · ·⊕El = G(E) is
the associated graded bundle to the filtered bundle E|D and p : ν(D)−D is projection.
Form

E|(X − D) ∪ψ p̃∗(E1)⊗ (Lx)x1 ⊕ · · · ⊕ p̃∗(El)⊗ (LX)xl

by taking ψ(x) = diag(s̄x1 , . . . , s̄xl ) ◦ ϕ(x), where

φ : E|
(
ν(D)− D

)
→ p∗E1 ⊕ · · · ⊕ p∗El|

(
ν(D)− D

)
is the clutching map for E, p̃ : ν̃(D) → D is the projection of the tubular neigh-

bourhood in X, and (LX)xi =
∏d

1

(
LX

j

) xi ( j)
with each factor raised to the i-th index

corresponding to the j-th smooth component. This construction, modified by replac-
ing s̃ by s̃/|s̃|, i induces a map ϕ̄, used in Sections 5 and 7, from the parabolic unitary
connexions on Y to standard ones on X. It will be called unitary clutching and is
defined by ϕ̄(∂̄E)|Uα

= bα∂̄Eb−1
α on Uα, where

bα(x) = diag

(
s̃x1
a (x)

|s̃x1
a (x)|

, . . . ,
s̃xl
a (x)

|s̃xl
a (x)|

)
(3.5)

and s̃α = s̃|Uα is a representative function for s̃ over Uα in some local trivialization
of L.

If E and E ′ are two parabolic bundles a morphism E
f
→ E ′ is required to be

filtration preserving and such that the weights along each curve coincide: if E =
F1 ⊃ F2 ⊃ · · · ⊃ Fr+1 = 0 along Σ with weights 0 ≤ λ1 < · · · < λr < 1 and
E ′ = F ′1 ⊃ F ′2 ⊃ · · · ⊃ F ′s+1 = 0 along Σ with weights 0 ≤ µ1 < · · · < µs < 1 then
require that

(1) f (Fi) ⊂ F ′j if λi ≥ µ j ;
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(2) f (Fi) ⊂ F ′j = 0 unless λs weight of F ′j for some s ≤ i.

Given a map f : E → E ′ we can think of it as a section s of Hom(E,E ′), so we
need only discuss the case when E is trivial line bundle with weight 0. Then, taking
a cover (Uα), we have sα ∈ Γ(Uα,Cr) such that gαβsβ = sα where gαβ are transition
functions for E ′. Then we get t ∈ H0(ϕE ′) by procedure above: namely

tα = sα if |Uα| ∩ D = ∅;


zx1

. . .
zxl


 sα if |Uα| ∩ D ⊂ Σi ; and so on.

Thus we get an identification of morphisms too. If, then, we can define degree so that
degV and par deg coincide we will have a correspondance between stable bundles as
well as we already have a Kähler class. For V -bundles we already have Chern classes
defined in various ways—using connexions and differential forms, for example. For
parabolic bundles a definition is required. Essentially this is chosen so as to make
ci(E) = ci(ϕE) as classes in Hn(Y,R). It is given in the next definition, where we
denote Poincaré duals by stars.

Definition 3.6 If the bundle E is parabolic along D with weights λ1, . . . , λd then




par c1(E) = c1(E) +
∑d

i=1

∑l
j=1 λ

(i)
j [Σi]∗

par c2(E) = c2(E) + c1(E) · {
∑d

i=1

∑l
j=1 λ

(i)
j [Σi]∗}

−
∑
λ(i)

j d∗j +
∑d

i �=s

∑l
j �=k λ

(s)
k λ

(l)
j (Σs · Σi)∗.

Proposition 3.7 par ci(E) = ci(ϕE), and this holds in both conventions.

Proof For line bundles this follows exactly as in [12]. Now one checks for 2-plane
bundles and the general case follows by using the splitting principle or arguments of
[12, p. 400].

Theorem 3.8 The correspondence E → ϕE and s → ϕs gives a bijective correspon-
dence between Vpar(Y,D, n) and V (X,D, n). Moreover degree coincides and a parabolic
bundle E is stable if and only if ϕE is. (Here, Vpar(Y,D, n) denotes the bundles rational
parabolic along D with denominators dividing n. In fact, the functors ϕ and its inverse,
ϑ, define an equivalence of categories [38].)

In [18], and also [38], there is a more sophisticated description of this in terms of
sheaves.

It is much simpler to handle just one smooth divisor at a time by extending the
above definitions to orbifolds. Suppose that Y is an abelian orbifold surface (Sec-
tion 1) with underlying smooth surface |Y | and with the singularity setΣY = S made
up of smoothly embedded curves with normal crossings as described (1.3). If Σ is a
curve in Y meeting the divisor S normally and missing S · S, think ofΣ as an orbifold
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curve with multiplicity ni at any point P where Σ intersects Σi ⊂ S. We can talk
about V -bundles with a parabolic structure along Σ and the argument above gener-
alizes to such orbifolds. (The sole difference is that the weights along Σi have to lie
in the interval [0, 1

ni
].)

Theorem 3.9 If Y is an abelian orbifold surface with ΣY the union of smooth divisors
with normal crossings and if D ⊂ Y is a similar divisor meeting ΣY normally then there
is a bijective correspondance between V (X) and Vpar(Y,D, n).

The functor E→ ϕE and its inverse ϑ have good properties with respect to cotan-
gent bundles, though the analogous functors defined by the balanced convention—
denoted here by dashes—do not. (The relation between the two is explained in

[18]: if E is a V -bundle then ϑ ′(E) = ϑ(E) ⊗ L
−[

n1
2 ]

Σ1
⊗ · · · ⊗ L

−[
nd
2 ]

Σd
as bundles,

with translated weights. Similiarly, if F ′ is a balanced convention parabolic bun-
dle and F the same quasi-parabolic bundle but with weights shifted by [ ni

2 ], then

ϕ ′(F ′) = ϕ(F)⊗ L
−[

n1
2 ]

Σ1
⊗ · · · ⊗ L

−[
nd
2 ]

Σd
.)

Proposition 3.10 ϑΛ
p
XT∗X = Λ

pT∗Y with quasi-parabolic structure T|Σi ⊃ ν∗ ⊃ 0
along Σi and weights (0, ni−1

ni
) if p = 1, and weights ( ni−1

ni
) if p = 2.

The proof is straightforward.

Corollary

(1) Hi(X,E) ∼= Hi(Y, ϑE);
(2) Hi(X,L∗) ∼= H2−i(X,K⊗ L)∗ for a line bundle L.

The result shows that, as expected, the dimension of moduli spaces is unchanged
by changes in the weights—provided that the pattern of inequalities is preserved.

4

The correspondence of Section 3 extends to connexions and metrics as it does for
Riemann surfaces [28, p. 141], provided that one allows certain singularities (or de-
generacies); in the case of a connexion it is a logarithmic singularity. The connex-
ions and metrics obtained upon carrying across the standard orbifold definitions are
called parabolic connexions and metrics. (In order to carry out the correspondence
in the smooth category the bundle has to be hermitian. The bundles obtained from
the two constructions—holomorphic and hermitian—are topologically isomorphic
but the local trivializations are not related by smooth transformations so that, in par-
ticular, the ∂̄-operator is smooth for one but singular for the other, a situation seen
in the b-calculus of Melrose [23].) Recall that we write (z,w) for coordinates on the
orbifold and (u, v) for the corresponding ones on the smooth surface.

Definition 4.1

(a) A parabolic hermitian metric is a hermitian one over Y − D but which has the
form
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(i)


 |u|2λ

i
1

. . .
|u|2λ

i
l


 near P ∈ Σi − D · D, and

(ii)


 |u|

2λi
1 |v|2λ

j
1

. . .
|u|2λ

i
l |v|2λ

j
l


 near P ∈ Σi · Σ j

in some smooth, but probably not holomorphic, local trivialization respecting
the flags; where Σi is defined by u = 0 and Σi ∪ Σ j by uv = 0.

(b) A parabolic gauge transformation is an automorphism which preserves the para-
bolic metric.

(c) A parabolic unitary connexion is one which respects the flag along each Σi , has a
smooth ∂̄-operator of square 0 and respects the parabolic metric.

(d) A weighted hermitian metric on a weighted bundle E (Definition 3.1 (c)) is de-
fined as in (a) and a bundle with such a structure is called weighted hermitian.
Weighted unitary maps are similarly defined, as are weighted unitary connex-
ions.

(e) A frame near P ∈ Σi −D ·D is (parabolic or weighted) unitary if there the metric
has the standard form 


|u|2λ

i
1

. . .

|u|2λ
i
l




in some holomorphic coordinates (u, v), where Σi is defined by u = 0. (So this
depends upon the coordinates.)

(f) A weighted (or parabolic) unitary connexion is one which respects the flag along
each Σi , has a smooth ∂̄-operator of square 0 and respects the weighted metric.

(g) Given a genuine hermitian metric on E, a bundle automorphism is in Lp
k if it is in

the usual sense. An Lp
k -parabolic hermitian metric is one obtained from type (a)

by an Lp
k -automorphism. (Usually this will be applied when k − 4

p > 0 so that
the automorphisms form a group.)

(h) An Lp
k -weighted unitary connexion is one where the ∂̄-operator is Lp

k , again with
respect to a genuine hermitian metric. (A better definition is probably to say it is
Lp

k if it differs from a smooth weighted connexion by something in Lp
k .)

A parabolic hermitian metric can be constructed using the defining sections
si ∈ O(LΣi ), together with a hermitian metric on LΣi and compatible decomposi-
tions of E along eachΣi ; decompositions which are extended to ν(D), a small tubular
neighbourhood of D. Then, if h is a genuine metric on E such that the decomposi-
tions are perpendicular, define a parabolic one by taking over ν(D) the metric

h(z) ·



∏

i |si|2λ
i
1

. . . ∏
|si |2λ

i
l


 .
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Thus we have the first assertion of the next proposition, which is set in the holo-
morphic category. (Unitary clutching (3.5) is appropriate in the hermitian one and
produces a genuine hermitian bundle (with weights) over Y : the metric is not
weighted; it is only so when seen through holomorphic eyes.)

Proposition 4.2

(i) If E is a parabolic bundle over Y , with parabolic structure along D, then E admits
a parabolic hermitian metric. Moreover,

(ii) if h is a parabolic hermitian metric on E then the corresponding metric on ϑ(E) is
a genuine hermitian metric. However,

(iii) if h̃ is a (genuine) hermitian metric on Ẽ = (E) then ĥ, the induced metric on the
associated parabolic bundle E = ϕ(Ẽ), is not necessarily a parabolic one as it may
only be in Lp

1 , for 2 ≤ p ≤ 2
(1−2/n) . But,

(iv) if h̃ is Hermitian-Einstein with respect to a Kähler metric w on Y then ĥ is in Lp
2

for the same p.

Proof As the first claim is proved we turn to the second.
(ii) Let {e ′i }, 1 ≤ i ≤ l, be a local frame respecting the extension and {ei} the

corresponding one on Ẽ = ϑ(E). Let g be be the map carrying the frame {e ′i } to
a parabolic unitary frame { fi}. So g is smooth in the coordinates (u, v) on Y and
diagonal on the intersection of the domain of the coordinates with D. A short calcu-
lation shows that, when the intersection lies in a single embedded curveΣ defined by
u = 0, the form 〈ei, e j〉 = 〈e ′i , e

′
j〉u
−λi ū−λ j is non-degenerate, smooth in z = u

1
n and

so defines a hermitian metric. (The case of a crossing is no different.)
(iii) Take again a local holomorphic frame respecting the decomposition alongΣ.

We may suppose that 〈ei, e j〉 vanishes on Σ if i 
= j. Then if {e ′i } is a corresponding
frame for E = ϕ(Ẽ) we have again 〈ei, e j〉 = 〈e ′i , e

′
j〉u
−λi ū−λ j . Let g be an upper

triangular matrix carrying {ei} to a unitary frame { fi}. Then 〈ei|e j〉 = (g∗g)i, j and

so 〈e ′i |e
′
j〉 = ĝ∗qĝ, where ĝ = cgc−1, q = (cc∗)−1 and c =

(
u−λ1

. . .
u−λl

)
. (Here

interpret u−λi as z−xi , where λi · n = xi .)
The map ĝ is upper triangular and smooth in the coordinates (z,w) on X but

probably not in coordinates (u, v) on Y . It could perfectly well have a term like |u|
2
n

in its expression so that the most that we could hope in general is that, if 2 ≤ p ≤
2

(1−2/n) , ĝ should be in Lp
1 (with respect to a standard hermitian metric) near Σ. It is,

however, continuous. But if we know that all the derivatives, of order up to n− 1, of
g in directions perpendicular to Σ vanish on Σ then we may deduce that ĝ ∈ Lp

2 (Y ).
For the final clause (iv) we lift the bundle to X ′ = X(2) = (Y,D, 2n). (This is for

convenience because it means that on D equivariant transformations will differ from
diagonal ones by something of order |z|2.) We give the result as a separate lemma.

Lemma 4.3 If a metric h̃ is Hermitian-Einstein on Ẽ with respect to a Kähler metric
w on Y and smooth (or indeed just in Lp

3 (X)) with respect to a Kähler metric on X, then
the associated metric on E over Y can be taken in Lp

2 (Y ).
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Proof We shall argue on X ′, and the bundle Ẽ will be thought of over X ′. As usual,
we work locally with cocycles Φ = {ϕU}U∈U for a covering U and take local coordi-
nates (z,w) on X ′. As above, (part (iii)), let g be an upper triangular matrix carrying
a local holomorphic frame for Ẽ, say {ei}, to one { fi} unitary with respect to the
metric h̃. Suppose to start with that g is smooth. Equivariance implies that

g(z,w) = C + Bzz̄ + Az2 + A ′z̄2 + D(z, z̄),

where D has order greater than 2 in z, C is diagonal and A, A ′, C are triangular
matrices which are functions of w and w̄ alone. The connexion on X ′ has, locally, the
form

d + (gg∗)−1∂(g∗g) = d + Gdz + Hdw,

and the curvature is then

F = ∂̄{(g∗g)−1∂(g∗g)} =
∂G

∂z̄
dz̄ ∧ dz +

∂G

∂w̄
dw̄ ∧ dz +

∂H

∂z̄
dz̄ ∧ dw +

∂H

∂w̄
dw̄ ∧ dw,

since the connection is integrable.
Locally the Kähler form can be written

w = γ|z|4n−2dz ∧ dz̄ + βz2n−1dz ∧ dw̄ + β ′z̄2n−1dz̄ ∧ dw + δdw ∧ dw̄,

where γ, δ and γδ + ββ ′ do not vanish on Σ, and the volume form is

(γδ + ββ ′)|z|4n−2dz ∧ dz̄ ∧ dw ∧ dw̄ = vol .

Because the connexion is Hermitian-Einstein F∧w = λ vol. Consequently F∧w =
O(|z|4n−2):

δ
∂G

∂z̄
+ z̄2n−1β ′

∂G

∂w̄
− z2n−1β

∂H

∂z̄
+ |z|4n−2γ

∂H

∂w̄
= λ|z|4n−2.

This tells us that ∂G
∂z̄ vanishes to order 2n−1 onΣ. If, for fixed w, the partial Taylor

expansion of the connexion with respect to the variable z is written

d +
{ ∑

p+q<2n

ap,qzpz̄q + o(|z|2n−1)
}

dz + Hdw,

then (ap,q)i, j = 0 unless q = 0 and p ≡ 2(i − j)− 1 mod 2n. Hence the connexion
has the form

d +
2n−1∑
p=1

apzpdz + o(|z|2n−1)dz + Hdw,

where the terms ap(w) are given by an integral formula

ap(w) =
1

2πi
lim

∮
|ζ|=r

G(ζ,w)ζ−p−1dζ, as r → 0,
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and are thus as smooth as G is. So the connexion would vanish to order 2n − 1 if
the polynomial in z were not there. Now we use the following lemma, of which proof
later.

Lemma 4.4 There is a change of frame, given by a matrix which is upper triangular in
terms of the old frame (as in Proposition 4.2 (iii)) and of which the entries are polynomial
in z with coefficients as differentiable as G (so in Lp

k (w) if G is in Lp
k ), such that the

connexion has locally the form

d + O(|z|2n−1)dz + bdw + cdw̄.

From the above discussion and the lemma one can see that in the new frame the
curvature is locally

F = O(|z|2n−1)dz ∧ dz̄ + terms involving dw or dw̄,

and further, upon taking a partial Taylor expansion in terms of z and z̄ for the trans-
formation carrying this frame to a unitary one for h, the lemma tells us that there is
a change of frame such that the resulting transformation, a composition g̃ say, has
the form g̃ = C + O(|z|2n−1) in terms of z. Since g is already triangular we deduce
from this and the remark at the end of the first paragraph of Proposition 4.2 (iii)
that ˆ̃g ∈ Lp

2 for p < 2 + 1
2n−1 . Taking each Σi into account, we have ˆ̃g ∈ Lp

2 (Y )

for p < 2 + 1
2n−1 , where N = max(n1, . . . , nd). The curvature F of the Hermitian-

Einstein metric on the holomorphic V -bundle Ẽ is smooth or in LP
2n−2, so because

ˆ̃g ∈ Lp
2 the corresponding metric on the parabolic bundle E = ϕ(Ẽ) is indeed an Lp

2 -
parabolic one (with respect to a standard metric) and the curvature is in Lp. So we
have Lemma 4.3 in the smooth case. The argument goes through (over X ′) in much
greater generality, because once we have that ∂G

∂z̄ exists and is continous we know that
it is of order 2n and so has derivatives, vanishing onΣ, of orders up to 2n−1. Stokes’
theorem now gives an expansion of the same order in z as above, so that if the tran-
formation is only in Lp

3 then we may still conclude the existence of transformation in
Lp

2 on Y .

Proof of 4.4 Look for a holomorphic (in z) automorphism h(z) = A0 + B0z + · · · ,
such that

h−1∂zh = −
2n−1∑

1

apzpdz + higher terms.

Solve the equation successively, starting off with h = I − ( 1
2 )a1z2. Then

h−1∂zh =

(
I +

(
1

2

)
a1z2 +

(
1

4

)
a2

1 + · · ·

)
(−a1z)dz

=

(
−a1z −

(
1

2

)
a2

1z3 + · · ·

)
dz.

Now solve for h = I − ( 1
2 )a1z − ( 1

4 )b3z3. Equating coefficients we find that b3 =
a3 − ( 1

2 )a3
1. Similarly, adding a term −( 1

6 )b5z6 to h we can calculate the value of b5
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in terms of the a’s and the lower b’s and so on up to order 2n− 2. From the formula
above for the coefficients ap(w), we see that each is as differentiable as G is and in the
same Lp

k -space, k > 2n− 2 in this case.
Though at the moment one can only see, on a stable parabolic bundle, a conti-

nous Lp
1 -parabolic metric, Hermitian-Einstein with respect to the orbifold metric, in

Section 5 we prove the following result using Lemma 4.3.

Theorem 4.5 Let E be a stable parabolic bundle on Y , parabolic along the divisor D
with normal crossings, and with rational weights. Suppose that the denominators divide
n. Then there is, for some p with 2 < p < 2 + 1

(2N−1) , N = max(n1, . . . , nd), an

Lp
2 -parabolic Hermitian-Einstein metric, so one with curvature in Lp. (Here, Lp is with

respect to a genuine metric on E and the Kähler metric on Y .)

Notes 1) The full connexion form in Theorem 4.5 is in Ω1(log D) completed with
respect to Lp

1 for 2 < p < 2 + 1
(2N−1) . If there are two Hermitian-Einstein Lp

2 -

metrics on E they will differ by an Lp
2 -automorphism η and one can set σ(η) =

tr η + tr η−1 − 2r as in [9]. As there, ∆(tr η) ≤ 0 and ∆(tr η−1) ≤ 0; hence ∆(σ)
too. But η and so σ are in Lp

2 for some p > 2. Consequently one may use the formula∫
Y
|∇σ|2 =

∫
Y
σ∇σ ≤ 0,

and deduce that∇σ = 0 and hence σ = 0.
2) Even if the ∂̄-operator is smooth, the ∂-part of the connexion will, in general,

be much less regular. It is determined solely by the condition that the connexion be
‘unitary’ and so the (i, j)-th entry has terms of the order of |u|2(λi−λ j ).

3) In the special case when the divisor is ample we might hope to argue completely
over X, using Theorem 8.7.1 on principally normal operators in [15].

4) For the case of ordinary bundles one has, once a hermitian metric has been
fixed, an exact correspondence between holomorphic structures and orbits of the
space A of integrable unitary connexions under the complexified gauge group Gc [8].
This correspondence extends in a fairly obvious way to the situation of parabolic
bundles [6]. Suppose now that a decomposition of E along D, together with an ex-
tension to ν(D)—by parallel translation, say—has been chosen, and a corresponding
parabolic metric, as in Proposition 4.2. Then one may apply the construction ϑ̄,
and its inverse ϕ̄, of Section 3. Let Aw be the space of weighted integrable (1, 1)
connexions and Gc,w the group of smooth automorphisms preserving the flags. The
Newlander-Nirenberg theorem says that Aw/Gc,w is just the set of holomorphic struc-
tures. (As in the usual case, if we take ∂̄-operators which are simply in Lp

1 and com-
plex transformations in Lp

2 (p > 2) then the correspondence extends to this.) The
weighted hermitian metric gives a choice of decomposition along D. Suppose now
that we are in the situation above and that the weights are all rational with denom-
inators dividing n. We can construct the orbifold X associated to (Y,D, n), as in
Section 1, and, extending the decomposition to ν(D) and noting Proposition 4.2,
find

ϕ̄ : Aw → AX, ϕ̄ : Gc,w → Gc
X,
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inducing ϕ̄ : Aw/Gc,w → AX/Gc
X .

Proposition 4.6 ϕ̄ : Aw/Gc,w ∼= AX/Gc
X is a bijection.

Proof Here we use Lp
k on the orbifold X for some p > 2 and consider the compo-

sition Aw/Gc,w → AX/Gc
X → (AX)p

k/(Gc
X)p

k . Lemmas 14.6–14.8 of [2] apply to this
situation and we may conclude the following:

(i) dF : (Gc
X)p

k → (AX)p
k is a Fredholm map near g = I, where Fg = gA;

(ii) every Gc,w-orbit contains a smooth connexion;
(iii) if A and B are in Aw and gA = B then g ∈ Gc,w.

The points to check are (ii) and (iii), where here we are thinking of Aw as embedded
in AX by ϕ̄. The latter holds because ∂̄A is smooth, and the essential question for (ii)
is whether ϕ̄(Aw) ⊂ (AX)p

k is dense. It is if 3 > p > 2 and we can conclude that
ϕ̄ : Aw/Gc,w ∼= Ax/Gc

X .

5

Here we prove Theorem 4.5 using results of [17], [19] and [23]. The section cor-
responds to Section 5b and part of Section 6 of [28] and the argument takes place
over Y using weighted spaces since we no longer have equivariance to control growth
(or decay). We work on a hermitian bundle with singular operators so the hermitian
structure will appear as parabolic with respect to any underlying complex structure.
When we say Lp

k we shall mean with respect to this hermitian metric so that Lp
k results

will not have the meaning as in Section 4: Theorem 5.4 is different from Theorem 4.5.
Let X = (Y,D, n) be an abelian Kähler orbifold surface with an underlying smooth

complex surface Y = |X|, as in Section 1. Let E = ϑ(Ẽ) be a stable rational parabolic
bundle of rank l over Y with denominators dividing n, where Ẽ is a stable holo-
morphic V -bundle with Hermitian-Einstein metric k. Suppose that w = w|X| is a
Kähler metric on the underlying smooth complex surface Y = |X| in the same class
as wX = w̃. Because |w|X|| = |wX|, the definition of stability is the same with respect
to wX as with respect to w|X|. We show that there is a bundle automorphism carrying

the metric k on Ẽ Hermitian-Einstein with respect to w̃ (given by Theorem 2.3) to
one which is Hermitian-Einstein with respect to w|X|: a metric which, thought of on
X, degenerates along the singularities. At some point we also need X(q) = (Y,D, qn)
with a Kähler metric w̃(q).

We continue to write w̃ for wX , w̃(q) for wX(q) and w for w|X| and suppose that

w̃ = w +
∑d

j=1( ε2i )∂∂̄β jϕ j , with a similar relation between w and w̃(q), where ε is

suitably small, each ‖∂∂̄ϕ j‖∞ ≤ 1 and each β j is zero outside a small neighbourhood
of Σ j . This can be achieved as follows: see [18]. Let D = Σ1 ∪ · · · ∪ Σd where each
Σ j is embedded, any two intersect normally in at most one point, and there are no

triple points. Let L
|X|
D = LΣ1 · · ·LΣd be the corresponding line bundle on |X|, and

let s j ∈ O(LΣ j ) be a section vanishing solely on Σ j and to order 1. Let ‖ • ‖ j be the

norm coming from a hermitian metric on LΣ j and set ϕ =
∑d

j=1 ‖s j‖
2

n j

j =
∑d

j=1 ϕ j .
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Then ϕ is continuous on |X| and smooth on X. Moreover each ( 1
2i )∂̄∂ϕ j is bounded

below with respect to w|X| = w: that is, ( 1
2i )∂̄∂ϕ j ≥ −K j w for some constant K j . As

( 1
2i )∂̄∂ϕ j = (ϕ j

2i ){FLΣ j
+ ∂̄ϕ j∧∂ϕ j

2iϕ2
j
}, this is because the first is bounded and the second

is non-negative. Now set β(ϕ j) to be a cut-off function, equal to 1 near Σ j and
zero outside a neighbourhood of D. Then ( 1

2i )∂̄∂(β jϕ j) is still closed and for small

enough ε the form w̃ = w +
∑d

j=1( ε2i )∂∂(β jϕ j) is positive on X and non-degenerate.
So it defines an orbifold Kähler metric which is in the same class. (In one approach
we would write

w = w̃ −
d∑

j=1

( ε
2i

)
∂∂
(
β j

∏
s�= j

(1− βs)ϕ j

)

−
d∑

j=1

( ε
2i

)
∂∂

(
β j

(
1−

∏
s�= j

(1− βs)
)
ϕ j

)

= w0 −
d∑

j=1

( ε
2i

)
∂∂
(
β j

∏
s�= j

(1− βs)ϕ j

)

and first find a metric Hermitian-Einstein with respect to w0, and then with respect
to w.)

The basic idea is to consider the limit of the Hermitian-Einstein connexions with
respect to the metrics w̃ε = w +

∑d
j=1( ε2i )∂̄∂β jϕ j as ε → 0. Unfortunately, if we

choose an orbifold reference metric w̃ε0 the curvatures are not obviously L2-bounded
with respect to it nor, on the other hand, do they lie in L2(Y ).

Suppose, then, that the holomorphic V -bundle Ẽ is stable and Ã is a connexion
associated to the metric k on Ẽ and Hermitian-Einstein with respect to the Kähler
class w̃ on X. We look for a metric h such that the unitary connexion A associated
to h is Hermitian-Einstein with respect to w. If, following [11], we take a local holo-
morphic frame (s1, . . . , sr) and write Hi j = h(si , s j), Ki j = k(si , s j) and η = K−1H,
H = Kη then

A = H−1∂H = η−1K−1∂(Kη) = η−1∂Kη + K−1∂K.

So ∂H = ∂K + η−1∂Kη and consequently FH = FK + ∂̄(η−1∂Kη). Let Λ̃ denote the
adjoint of∧w̃ and ∗̃ the star operator for w̃—similarly for w and w̃(d). We now suppose
c1Ẽ = 0. (This can be achieved by tensoring with a line-bundle.) In this case we need
to solve the equation

ΛFH = 0.

This becomes

Λ(FK ) + ∂̄(η−1∂Kη) = 0.
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Now ∗(Λα) = α ∧ w and [Λ, ∂̄] = −i∂∗H . Therefore

∗Λ{FK + ∂̄(η−1∂Kη)} = {FK + ∂̄(η−1∂Kη)} ∧ w

= {FK + ∂̄(η−1∂Kη)} ∧
{

w̃−
( ε

2i

)∑
β j∂∂̄ϕ j

}
= −FK ∧ µ + ∂̄(η−1∂Kη) ∧ w̃− ∂̄{(η−1∂Kη)} ∧ µ

writing

µ =
( ε

2i

)∑
β j∂∂̄ϕ j .

So we must solve the equation

Fk ∧ µ = ∂̄(η−1∂Kη) ∧ w,(5.1)

where both µ and FK are smooth on X (so that, off the diagonal, FK ∧ µ ∈ Lp
k,δ−2(Y )

provided that δ < 3
n and all entries if δ < 2

n ). Applying the star operator ∗̃ on X
does not give an elliptic operator; applying ∗ on Y does, but because the functions are
multivalued we use unitary clutching to solve what is formally the same equation, but
with FK replaced by F ′K = bFK b−1 and η by ξ = bηb−1, on the associated (genuine)
hermitian bundle E = ϑ̄(Ẽ) on Y . (So we are at the moment using a metric on
End(E) which is not smooth with respect to the holomorphic structure: in terms of
a holomorphic chart it is weighted.) The ∂̄-operator in (5.1) ′—the transform of
equation (5.1)—is now singular, having locally near a typical Σ (the subscript j is
suppressed) the form ∂̄A = ∂̄ + A + B, where B is a matrix of 1-forms, smooth when
lifted to X, and A is a diagonal matrix with entries αi

2 dz̄ = xi
2n dz̄, where xi is isotropy

about the component Σ of the divisor; so xi is the difference of 2 isotropies of Ẽ.
More generally, for use in Section 7, we need to consider αi

2 =
τi
2 + xi

2n , where the τi

are weights, xi the isotropy again and the τi are small.
We would like that the singular operator ∂̄A + ∂̄∗A, ∂̄∗A∂A, or ∂A + ∂∗A , for the Her-

mitian bundle E = ϑ̄(Ẽ) be Fredholm on certain weighted Lp
k -spaces. Difficulties

arise because applying ∗may introduce singularities so that we can only suppose that
∗F ′K ∧ µ ∈ Lp

k, 2
n−2−σ

(
Y, End(E)

)
for σ > 0 and the spaces we are forced to use are

the following. (Here, and always, X has the metric w̃, Y has w and the Hermitian
bundle is E.)

Definition 5.2

Lp
k,δ(Y ) =

{
f ∈ Lp

k,loc (Y − D) :
d∏

j=1

(‖s j‖
l j−δ j−

2
p )∇l f ∈ Lp

k (Y );

0 ≤ l j ≤ k,
d∑

j=1

l j = l ≤ k
}
.

Observe that,
f ∈ Lp

k,δ(Y )⇐⇒ fπ ∈ Lp
k,nδ(X),
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where π : X → Y and from the Sobolev embedding we have, [5], [17], that if f ∈
Lp

k,σ(Y ) and δ = 2
n (1 − 1/qp), p > 2, as f π ∈ Lp

k,2q−2/p(X(q)) then fπ is r =

min(k− 2, 2q− 2)-times differentiable and these derivatives vanish on D.
We prove that if ε is small enough we can solve the equation (5.1) for ξ ∈ Lp

k,δ(Y ),

where δ = 2
n − σ for some σ = (σ1, . . . , σd) > 0. The value of ε is determined by

the operators ∂∗A and ∂A which do not depend upon it. If the left-hand side is small
enough this follows from the Fredholm alternative for the linearisation ∗F ′K ∧ µ =
−i∂∗A∂Aξ if we know that the operator is Fredholm between the appropriate spaces.

Lemma 5.3 Let Fε denote the curvature of the Hermitian-Einstein connection on Ẽ

corresponding to the metric w̃ε = w− ( ε2i )
∑d

j=1 ∂∂β jϕ j = w−µε. Then in Lp
0,δ−2(Y )

the curvatures are bounded and ‖ ∗ F ′ε ∧ µε‖ → 0 as ε→ 0. (Here δ = 2
n − σ.)

Let Λ− and Λ+ denote the positive and negative spaces with respect to w = w|X|
and let mε : Λ− → Λ+ be the map which gives the relative position of the positive
space Λ+

ε for the metric w̃ε [11]. A straightforward computation using this map gives
the lemma, because mε → 0 pointwise as D is approached.

Theorem 5.4 Let X be a compact V -surface with underlying space a compact Kähler
manifold (|X|, w|X|) and E = ϑ(Ẽ) a rank l rational parabolic bundle over |X|, endowed

with the parabolic metric associated to a Hermitian-Einstein one on θ(Ẽ) and stable
with respect to w|X|. Suppose that the denominators of the weights divide the orders
of isotropy. Then there is a p ≥ 2 such that E admits a parabolic metric which is
Hermitian-Einstein with respect to w|X| and in Lp

2, 2
n−

2
pnq

, measured with respect to the

original parabolic metric.
Moreover, the stable V -bundle Ẽ has a Hermitian-Einstein metric in Lp

2 (|X|).

Proof For line bundles the result holds by Hodge theory—as in [28]—so we may
indeed reduce the general case to that when c1(Ẽ) = 0 by tensoring with a line V -
bundle at the expense, perhaps, of working on an orbifold where some ni have to be
replaced by multiples.

As described above, we use unitary clutching and look for a solution to the trans-
formed equation

F ′K ∧ µ = ∂̄A(ξ−1∂Aξ) ∧ w.(5.1) ′

We can proceed in several ways: directly using [23], but preferably for a p a little
bigger than 2; by proving, as in [16] but using a patching argument with model the
product of two copies of CP1 with orbifold points of isotropy n and m at∞, that the
linearized operator is Fredholm; or inductively on the number d of smooth compo-
nents of D, after having first proved that there is a metric Hermitian-Einstein with
respect to w0. (Here in the last method, again an argument using the product of
complex projective lines with orbifold points and separation of variables is needed.)

It is simplest to use [23] with p a little bigger than 2, but using Sobolev embedding
we can in fact deduce the result from the case of p = 2 because once we have a
solution in Lp

2,2q− 2
p
(X(q) − D) and smooth on X(q) we have that it is in Lp

2q−2(X(q)).
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The general case needs the results of [23] for manifolds with corners. However, to
begin with, consider the more familiar case (A) of a single smooth divisor Σ, where
there are no corners.

(A) Using Lemma 5.3 we first choose the parameter ε in the definition of w̃ suffi-
ciently small so that then we can solve the nonlinear equation if the linear equation is
Fredholm: this depends only on w and a choice of q. There is a metric k, Hermitian-
Einstein with respect to w̃, on the bundle Ẽ and we argue over Y = |X|with E = ϑ̄(Ẽ),
the associated hermitian bundle. The end of Y − Σ is a circle bundle over the curve
Σ. LetΛ be the adjoint of∧w and ∗ the star operator. As the relation [Λ, ∂̄A] = −i∂∗A
is still valid for a singular connexion the linearization of (5.1) ′ is

∗F ′ ∧ µ = −i∂∗A∂Aξ,

where F ′ = bFb−1, the symbol F denotes the curvature of the metric k and b is the
unitary clutching map of Section 2. So, as a matrix near Σ, the (r, s)-entry of ξ is

ξr,s = ( z
|z| )

xr
ni ηr,s(

z
|z| )

−xs
ni .

We know [10], [19], [23] that for fixed A the operators ∂̄A + ∂̄∗A : Lp
k−1,δ−1(Ω1,0, E)

→ Lp
k−2,δ−2(Ω1,1E), ∂̄A + ∂̄∗A : Lp

k,δ(E) → Lp
k−1,δ−1(Ω1,0, E) and both ∂∗A∂A and ∂̄∗A∂̄A:

Lp
k,δ

(
Ω0 End(E)

)
→ Lp

k−2,δ−2

(
Ω1,1 End(E)

)
will be Fredholm except for an isolated

set of weights δ. There is thus a q—as large as we wish—for which they are Fredholm
when δ = 2

n −
2

pqn . From the Fredholm alternative for ∂∗A + ∂A we have that

Lp
k−1,δ−1(Ω1,0E) = Im(∂A + ∂∗A)⊕ Ker ∂A ∩ Ker ∂∗A,

and we can solve the equation γ = ∗F ′ ∧ µ = ∂∗A∂Aξ for ξ in the standard way using
this because the cohomology class ofµ and so of ∗F ′∧µ is zero, but it is simpler to use
the operator ∂∗A∂A directly. The inverse function theorem for Banach spaces now tells
us that, for k = 2, because we chose ε small we may solve the non-linear equation.
Consequently, we have a transformation ξ solving the equation. The solution ξ is
not very regular because all we know on |X| is that ∗F ′ ∧ µ ∈ Lp

2,δ−2(|X|), where

δ = 2
n −

2
pqn . However, lifted to X, ξ − I will lie in Lp

2,2− 2
pq

(
Ω0 End(E)

)
, and lifted

to X(q) it will lie in Lp
2,2p− 2

p
. As it is also smooth on X(q) − D by elliptic regularity

we may suppose ξ ∈ Lp
2q, and vanishes, together with its first derivative, on Σ. The

transformation η is still, over X(q), in Lp
2,2q− 2

p

(
Ω0 End(Ẽ)

)
since the clutching b is

unitary, so we have Theorem 5.4.

(B) The General Case is exactly the same as case A, but using now the full force of
Theorem 51 of [23, p. 224].

On the underlying space |X| there will be a continuous Lp
2 parabolic transforma-

tion of E carrying the metric, k, to h by the additional observations on Lemma 4.3.
So in the end we find a metric on E Hermitian-Einstein with respect to the Kähler
metric on the underlying manifold Y and with curvature in Lp(Y ), as Theorem 4.5
claims.
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6

In order to handle irrational weights we need to consider singular connexions on
orbifolds—as in [28]. We use Lp

k -spaces over an orbifold defined using a genuine
hermitian metric on the bundle and an underlying orbifold Kähler metric. (It might
be more natural to use weighted spaces as in [6], [17], [25], [29] and as forced in
the last section, but this choice gives us the advantage of a compact base space.) We
follow [28], with a slight modification, and fix an integer k0 > 3; though if we are
working with p = 2 we shall take k0 > 4 so as to be in L2

3 at least. We exploit the fact
that, for weighted bundles with a fixed underlying bundle filtered over D, proximity
can be measured by the difference in weights, but (when the weights are rational)
work on orbifolds where the corresponding bundles will be topologically different.

Let E be a weighted hermitian bundle of rank l with weights 0 ≤ λ(i)
1 ≤ · · · ≤

λ(i)
l < 1, as in 3.1(e), if we are using the positive convention. Extend the decomposi-

tion of E over D to v(D). Take a coordinate z—appropriate to the weighted hermitian
metric—such Σi is given locally by z = 0. Now take a representative cocycle for E,

choose rational weights x(i)
1
ni
,

x(i)
2
ni
, . . . ,

x(i)
l
ni

along each Σi and form the approximation

Ẽ over (X,D, n) by ‘clutching’ with

t(z,w) =




(
z
|z|

)x(i)
1

|z|−λ
(i)
1 ni

. . . (
z
|z|

)x(i)
l
|z|−λ

(i)
l nl


 .(6.1)

The point of this choice—which is distinct from the clutchings c and b already
used—is that it carries the weighted hermitian metric on E into a genuine one on Ẽ.
If E should have a holomorphic structure, then the pullback of the ∂̄-operator is no
longer smooth: in the given frame it will have the form

∂̄ +




x(i)
1 − λ

(i)
1 ni

. . .

x(i)
l − λ

(i)
l ni


 dz̄

2z̄
+ B

so that the corresponding Chern (unitary) connexion will have the form

d +




x(i)
1 − λ

(i)
1 ni

. . .

x(i)
l − λ

(i)
l ni


 η + B ′,

where η = idθ locally. (In terms of a holomorphic frame the pull-back is ∂̄+( 1
2 )Λds̄i/s̄i

near Σi − D · D, where si is a defining section and Λ is a diagonal matrix with en-
tries xp

i − λ
p
i /ni . The formulae we have given are local ones, corresponding global

ones would be given by replacing z by s̃.) The next definition is the same for each
convention: the crucial matter is the pattern of ordering.
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Definition 6.2 [28, Section 4b] Such a V -bundle Ẽ over (X,D, n) constructed using
6.1 and with isotropy x(i)

1 , . . . , x
(i)
l along Σi , where n = (n1, . . . , nd), is said to be a

k0-approximation to E if

(i) k0−1
ni

< |λ(i)
s − λ

(i)
t | < 1− k0−1

ni
for each i,

(ii) if any λ(i)
s is rational then the denominator divides ni ,

(iii) x(i)
1 ≤ x(i)

2 ≤ · · · ≤ x(i)
l with equality if and only if the corresponding λ’s are

equal,

(iv) |λ(i)
s −

x(i)
s
ni
| < 1

2ni
for all s.

By taking the ni ’s big enough and choosing the xi ’s appropriately this can be achieved.
A consequence of the inequalities is the following:

(v) k0 − 2 < |x(i)
s − x(i)

t | < ni − k0 + 2 for all i, whenever x(i)
x 
= x(i)

t .

To obtain a k0-approximation, just choose the n’s and x’s appropriately in 6.1.
Suppose henceforth that such a k0-approximation Ẽ has definitely been chosen for

some k0 > 3.
Let Λk = diag(k1, . . . , kl) and let B0 be a unitary connexion on Ẽ with ∂̄-operator

of the form ∂̄ − Λk(i) (dz̄/2z̄) plus a smooth term near each Σ j , and appropriately
near each point of D · D. As in [17], [28] call it the model connexion. We write
Λ = Λ0,1 + Λ1,0 for the form Λk(i) (dz̄/2z̄ + dz/2z).

Definition 6.3 [28, p. 147] AΛ = connexions differing from the model connexion
B0 by a smooth 1-form.

Note that G, the gauge group of Ẽ, is independent of Λ as is its complexification
Gc; it just depends upon the V -bundle Ẽ and so on the xi ’s.

Lemma 6.4 [28, 4.1] If g is a weighted automorphism of E then g̃ = t−1gt is an Lp
k0

automorphism of Ẽ, for any p > 1.

The proof is simply a matter of observing that gs,t has order at least α(λi
s − λ

i
t ) in

|z|; and similarly with respect to both z and w at a point P ∈ Σi ∩ Σ j .

Definition 6.5

(i) Ap
Λ,k = {connexions A such that A−B0 ∈ Lp

k}, where B0 is the model connexion
of 6.3.

(ii) Gp
k = Lp

k gauge transformations of the V -bundle Ẽ.

Proposition 6.6 [28, 4.2 and 4.3] Let p ≥ 2, k ≥ 1 and let ( fn)∞n=1 be an Lp
k -Cauchy

sequence of smooth functions converging to f and with support in ∆ × ∆, where ∆ is
the unit disc in C, and equivariant with respect to Z/n acting via ζ · (z,w) = (ζx · z,w),
where both x ≤ k and n− x ≤ k.

(i) There is a sequence, each function supported away from 0 ×∆, converging to the
same limit.

https://doi.org/10.4153/CJM-2001-047-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-047-x


1332 Brian Steer and Andrew Wren

(ii) If p ≥ 2 then there is a positive constant c(p, i, j) such that∥∥ f /|z|i
∥∥

Lp
j
≤ c(p, i, j)‖ f ‖Lp

i+ j
if i + j ≤ k.

(iii) c(2, 1, 0) ≤ 1/min(x, n− x).
(iv) The map f → f /ri from Lp

i+ j → Lp
j is compact on equivariant functions—

provided always that i + j ≤ k. (Here r denotes |z|.)
(v) For any y, with −k ≤ y < 1 and [y] ≤ j ≤ k + [y],

∥∥ |z|y f
∥∥

Lp
j
≤

c ′(p, y, j)‖ f ‖Lp
j−[y]

.

Moreover, if each function fn is equivariant with respect to Z/n × Z/m acting by
(ζ, η)(z,w) = (ζxz, ηyw) with k ≤ min(x, y, n − x,m − y), then similar results hold
with |z|i replaced by |w|s |z|i−s upon repeating the argument on the second factor.

Corollary 1

(i) If g is an Lp
k endomorphism of Ẽ and a an Lp

k 1-form with values in End(Ẽ), both
supported in v(Σi), then

g → [g,Λ] and a→ [a,Λ]

are bounded linear maps from Lp
k to Lp

k−1, provided that k ≤ k0− 1 in the first case
and k ≤ k0−2 in the second. (Here,Λ denotesΛk(i) (dz̄/2z̄ +dz/2z) as noted before
6.3.)

(ii) The operator norm of the map L2
1 → L2

0 is no greater than 1/(k0 − 2).

Corollary 2

(i) For any p > 2 the group (Gc)p
2 of automorphisms of Ẽ acts on Ap

Λ,1 and these
connexions have curvature in Lp.

(ii) For p = 2 and k > 2 a similar statement holds for connexions in A2
Λ,k−1 and group

(Gc)2
k with k not necessarily integral.

The proof of these corollaries is as that of the corresponding results (4.4 and 4.5)
in [28]. For part (ii) of the second we use Lp

k -spaces defined as in [14] for possibly
non-integral k.

Corollary 3 [28, 4.6] If A0 is the initial connexion on Ẽ determined by a holomorphic
structure on Ẽ then, for any p ≥ 2 and k ≤ k0 − 2, A0 ∈ Ap

Λ,k. Moreover, given P ∈ Σi

there exists g̃0 ∈ (Gc)p
k+1 such that d−Λ = g̃0A0 near P with respect to the chosen frame.

Proof Take the unitary frame used in the ‘clutching’. As it is a genuine unitary
frame for Ẽ we need only check the (0, 1)-part. Let g0 be a weighted change of
frame carrying the weighted unitary frame to a holomorphic one. Then g̃0 ∈ (Gc)p

k0

by Lemma 6.4. Now g̃0 carries the unitary frame to a frame which is no longer
holomorphic because t is not (see (6.1)). However, the new ∂̄-operator is given by
∂̄ + t−1∂̄t = ∂̄ + Λ0,1 in this frame. Finally, as g̃0 ∈ (Gc)p

k0
and ∂̄ + Λ0,1 ∈ Ap

Λ,k for all
p and k, we have the first assertion. At P ∈ Σi ∩ Σ j one argues in the same way.

The second claim follows as in [28].

Proposition 6.7 [28, 5.1] Every (Gc)p
k -orbit contains a model connexion, at least for

p = 2 and k ≥ 3, or p > 2 and k ≥ 2.
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(This may be proved as in [28], but using the product of complex projective lines
as a model. When p = 2 or in case k ≥ 3 it is, maybe, easier to use the second
proof there. That proof compares the holomorphic clutching c with the clutching t
of 6.1. If F is a hermitian weighted bundle with a compatible holomorphic structure
one notes that the automorphism c−1gt = c−1tg̃ on F̃ over X replaces the singular
∂̄-operator by one, ∂̄0, without singularity. One shows that the orbit of ∂̄0 contains
a smooth point. For this observe, using Hölder’s inequality and Corollary 1 to 5.4,
that the connection is in Lq

2, where 2 = p < q < 2/(1 − δ) and δ > 0 is such that
|εi | < 1/2(1 − δ), where εi = xi − λin, for all i. By condition 6.2 (iv) this may be
achieved since |εi | < 1/2. One now argues that if g ∈ L2

3 then c−1gt = c−1tg̃ ∈ Lq
2

and proceeds as in [2].)

Corollary A (Gc)p
k -orbit determines a holomorphic structure on E, unique up to the

action of Gc, and conversely.

As in [28] this follows from the preceding proposition because an Lp
k -orbit deter-

mines an Lq
2-one, where 2 = p < q < 2/(1− δ).

In order to prove the existence of a Hermitian-Einstein connexion on E we need a
weak compactness theorem like Uhlenbeck’s. Such a theorem is proved in [17], [29]
and for Riemann surfaces in [28]. As we are working over a compact orbifold with
an elliptic operator there is no essential problem provided that ‖Λ‖p is small, where
‖Λ‖p denotes the operator norm of the map Λ : Lp

k → Lp
k−1, defined by a → [a,Λ]

as in Corollary 1 to Proposition 6.6. For p = 2 the operator norm tends to 0 as k0

increases by clause (ii) of Corollary 1 to Proposition 6.6. For p > 2 this is not clear.
However, we can always choose a p and k0 such that the operator norm is as small
as desired by the Riesz-Thorin convexity theorem [1], which says that the norm is
continous near 2.

Theorem 6.8 There is a p > 2 and a constant k1 ≥ 4 such that if E is a weighted Her-
mitian bundle, Ẽ a k0-approximation to E with k0 ≥ k1 then Ap

Λ,k has the standard weak

compactness property: namely that if ‖FAn‖
p
k−1 < C for some constant C and all An in

the sequence then there is a finite set {P1, . . . , Ps} of points and a subsequence such that,
modulo Lp

k+1 gauge transformations, the subsequence converges over X \ {P1, . . . , Ps}.
(Here k ≥ 1.)

Theorem 6.9 If E is a weighted Hermitian bundle and Ẽ a k0-approximation to E
with k0 ≥ k1, then if (An) is a sequence of connections in Ap

Λ,k × [−1/2, 1/2]ld with

p = 2 +ε and ‖FAn‖2+ε < C then An has a weakly convergent subsequence modulo L2+ε
2

gauge changes.

(Unlike the case of a Riemann surface, we cannot deduce a priori that curvature
does not blow up at points, even if the connexions are Hermitian-Einstein.) These
are proved, as 4.9 and 4.10 of [28], using a local gauge-fixing theorem which is a
direct analogue of 4.8 there. The local gauge-fixing theorem requires the singular ex-
terior differential dΛ to be Fredholm. (This, together with certain Sobolev constants,
controls the value of the constant k1.) We shall need such a result in the next section
and state it here for reference.

Proposition 6.10 For k0 ≥ k1 the operators ∂̄Λ and ∂̄∗Λ are Fredholm.

https://doi.org/10.4153/CJM-2001-047-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-047-x


1334 Brian Steer and Andrew Wren

7

We prove the Kobayashi-Hitchin correspondence for all weights by using
Theorem 6.9 following the arguments of Section 5 of [28]. Here we use almost ex-
clusively the balanced convention.

Let E be a stable bundle over Y with at least one irrational weight and equipped
with a parabolic hermitian metric h̃. Let A be the associated connexion. Let Ẽ be a k0-
approximation (see 6.2) over (X,D, n) to the underlying bundle E with k0 so big that
both Theorems 6.8 and 6.9 can be applied and also condition (4) below holds. For
each Σi choose a sequence of rational approximations (x(k)

j /n(k))∞k=1 to the weights
λ j . (Here we have dropped the index (i) corresponding to Σi .) Let this be done in
such a way that

(1) n(1) = n and x(1)
j = x j , 1 ≤ j ≤ l, each Σi ;

(2) 1/2n(i) < 1/2n− |x j/n− λ j | for each i and j;
(3) n(k) divides n(k+1) for all k ≥ 1 and for each i;
(4) |x(k)

j /n(k) − λ j | < 1/2n(k) for all k and each i, j;

(5) E remains parabolically stable when the λ j are replaced by x(k)
j /n(k).

The crucial condition (5) can be achieved by the argument of Mehta and Seshadri
[22]. (It does not seem to be true—unlike the case of Riemann surfaces—that to any
irrational weight there is a close by rational weight so that the moduli spaces of stable
bundles are homeomorphic.) Let E(k) be the parabolic bundle over Y with the same
quasi-parabolic structure as E but with weights x(k)

j /n(k). By condition (5) it is stable.

Write k(k)
j = x(k)

j − λ jn(k) and e(k) = k(k)
j /n(k). Define an automorphism ϕk of E,

singular along D = Σ1 ∪ · · · ∪ Σd, by setting

ϕk(u, v) =






|u|e

(k)
1

. . .

|u|e
(k)
l


 near P ∈ Σi − D ∩ D



|u|e

(k)
1 |v|e

′(k)
1

. . .

|u|e
(k)
l |v|e

′(k)
l


 near P ∈ Σi ∩ Σ j ,

where the decomposition is with respect to that given by extending E = E1⊕· · ·⊕El

(given by the weighted metric) out along νD using the Kähler metric.
Applying ϕk manufactures a weighted hermitian metric hk on E corresponding to

the weights x(k)
j /n(k): call this weighted Hermitian bundle E(k). By the hypothesis (5)

E(k), the parabolic bundle with those weights, is still stable and has a corresponding
connexion Ak. (Again, this is a local formula for a global automorphism.)

Let Xk = (X,D, n(k)), the orbifold constructed as in Section 1 with n(k) =
(n(k)

1 , . . . , n(k)
d ). Then, as the denominators of E(k) are the n(k)’s, we have a corre-

sponding holomorphic stable V -bundle Ẽ(k) over Xk and ordinary Hermitian met-
ric h̃k—and corresponding connexion A(k)—on Ẽ(k) induced by ϕk (as in Proposi-
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tion 4.2(ii)). As we intend to argue over X = X1 we think of Ẽ(k) as a parabolic V -
bundle over X1 and apply an adaptation of Theorem 4.5. (The notion of a parabolic
V -bundle is briefly indicated in Section 3. The sole change in the definition is that
the weights along Σ have to lie in (−1/2n, 1/2n), where n is the isotropy around Σ.)
Only the special case where the weights are constant on each isotypic component is
needed. Suppose that (X,D, n) is an abelian orbifold with |X| = Y a compact Kähler
surface—as in Section 1.

Exactly as in the standard case one can establish an equivalence between rational
parabolic V -bundles and holomorphic V -bundles over another orbifold.

Theorem 7.1 Suppose that E is a parabolic V -bundle over X with weights ϑi
j = di

j |lini ,

where |di
j | < li/2ni. Then there is associated a holomorphic V -bundle E ′ on X ′, the

orbifold with isotropy lini about Σi . Moreover, the correspondence is bijective between

(a) parabolic bundles with rational denominators divisible by ni and dividing lini , and
(b) holomorphic V -bundles on X ′.

Also the correspondence preserves stability.

Thus, to each d-tuple n(k) there is a parabolic bundle E(k)
1 over X1 with weights

x(k)
j /n(k)−x j/n of modulus< 1/2n by condition (2). On Ẽ(1) choose the Hermitian-

Einstein metric given by Theorem 2.3. An adaptation of Theorem 4.5 would prove
that there is an irreducible parabolic connexion A(k) for Ẽ(k)

1 , Hermitian-Einstein with
respect to the standard (orbifold) Kähler metric w̃ on X = X1, corresponding to that
(Ã(k)) on Ẽ(k). We know that both Ak and Ã(k) may be taken in Lp

2 on the orbifold X1,
but because the isotropies of X1 are widely spaced we can do better.

Theorem 7.2 Associated to Ẽ(k) there is a (k0 − 1)-times differentiable connexion Ã(k)

Hermitian-Einstein with respect to the (orbifold) Kähler metric on X1.

Proof We could follow through the argument of [11] as in Section 2, checking at
each stage that it extends, but it is simpler to use Theorem 2.3 and the argument of
Section 6. (If we used Theorem 5.4 we should not have so much regularity. It is
not surprising [18], [28] that we get much better regularity when the isotropies or
weights are far apart.) From the choice of Ẽ(1) and the inequalities at the beginning
of the section we have

(n(k)/n)(k0 − 1)− 1 < |x(k)
i − x(k)

j | < (n(k)/n)(n− k0 + 1)− 1.

Let k denote the metric on Ẽ(k) Hermitian-Einstein with respect to w̃(k). We need
to solve the equation Λ̃

(
FK + ∂(η−1∂η)

)
= λ. Again we take unitary clutching

so as to work over X1 with the (now) singular operators ∂̄∆ and ∂∆, where ∆ =
1/2 diag(nx(k)

j /n(k) − x j). Applying ∗̃, the star operator on X1, we have to solve the
equation

(FK − λw̃) ∧ w̃ = ∂∗∆η
−1∂∆η,

where now we know that the operators are Fredholm on Lp
k0

by Proposition 6.10 since
we have chosen p close to 2 and k0 sufficiently big. On the left-hand side, the term
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involving the curvature may not be very small on the diagonal, so first we take a scalar
automorphism, say ζI, as on p. 162 of [28], to remove completely the diagonal terms.
The inequalities above and equivariance now imply that FζK∧ w̃ = O(|u|k0−1), where

un = zn(k)
. We solve the equation with FζK ∧ w̃ replacing FK ∧ w̃. The equation has a

Fredholm linearization and so we have a solution as required. (The operators depend
solely on X1 so that we can always choose w̃(k) close enough to w̃.)

(If we do wish to follow [11], then we note that Proposition 7.2 of [18] or the ana-
logue of 4.8 of [28] provides the local gauge-fixing; we have chosen k0 large enough
for this to apply. The functional J(A) is well defined on singular connexions A with
fixed singularity. The identities

∂̄∗A = i[∂A,Λ], ∂∗A = −i[∂̄A,Λ],

∂̄∗A∂̄A =
1

2
(∇A∇

∗
A − iF̂A),

where here Λ denotes the Hodge operator, still hold. Consequently, the argument of
Section 6.2 of [10] goes through up to the L2

2 bound on the connexions. But here we
may argue locally as in 2.35 of [11]. So we have L2

2 convergence and a limit connexion
as there. The limit is smooth away from D and on D we must then “bootstrap” to get
more derivatives.)

Naturally we expect that the parabolic Hermitian-Einstein connexions A(k) on E(k)

will converge to one on E. To prove this we argue over the orbifold X1, recalling that
n(1) is so big that Ẽ(1) is a k0-approximation with k0 ≥ k1, where k1 is the constant of
Theorem 6.8. We prove that the singular connections on the bundle Ẽ(1) correspond-
ing under Theorem 7.2 to the Hermitian-Einstein one on Ẽ(k) converge to one with
singularity and which is thus a Hermitian-Einstein parabolic one on the parabolic
bundle over X1 associated to E. We use Lp

k -spaces taken for the moment with re-
spect to the orbifold Kähler metric w̃ on X1; and Hermitian-Einstein will also be with
respect to the orbifold Kähler metric w̃.

The argument can be carried out, as in [28] for a Riemann surface, by splitting
the construction ϕ into two steps or one may argue slightly differently as follows.
The bundle E(k)

1 is the one over X1 corresponding to Ẽ(k) in Theorem 7.1. From
Theorem 7.2 we get a singular Hermitian-Einstein connexion, to be written also Ã(k),
on E(k)

1 . It is (k0 − 1)-times differentiable on X1 and so lies in Lp
k0−1 for any p >

1. Since the underlying bundle to E(k)
1 is the Hermitian bundle underlying Ẽ(1) and

since k0 ≥ k1, the constant of Theorem 6.9, that theorem may be applied once it is
known that |F(Ã(k))| is bounded in L2+ε for some ε > 0 and all k. (In this section we
write F(A) rather than FA for the curvature of A.) This is essentially because all the
connexions are manufactured out of one given at the start.

To check this argue locally. Suppose first that P ∈ Σi − D · D and let s1, . . . , sl

be a local holomorphic frame with e1, . . . , el an orthonormal one (with respect to
the Hermitian-Einstein metric on Ẽ(1)), chosen so that g(ei) = si where g is lower
triangular. Then Ã(1) = (g∗g)−1∂(g∗g). On Ẽ(1) take the weighted metric hk given

by hk(ei , ei) = δi, j |z|
2dk

j , where dk
j = n(x(k)

j /n(k) − x j/n). The parabolic unitary
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connexion associated to the holomorphic structure and this metric is

Ak = d + (g∗hkg)−1∂(g∗hkg) = g−1h−1
k (g∗)−1∂(g∗hkg).

Therefore,

Ak = A(1) = g−1(δi, jd
k
j)(dz/z)g + g−1(αi, j ){|z|

2(dk
i−dk

j ) − 1}g,

where round brackets denote the matrix whose (i, j)-th entry is exhibited and where
αi, j =

(
(g∗)−1∂g∗

)
i, j

. Because g is differentiable, equivariant and triangular, and

because we have k0 ≥ 4, clause (ii) of Proposition 6.6 says that each entry of the
matrix expansion of the first term is in Lp

2 independently of k, whilst the second
is bounded in Lp

1 by clause (v) of the same proposition since 2|dk
i − dk

j | < 2. A
similar calculation checks this at points of D · D. The passage from an arbitrary
connexion to a Hermitian-Einstein one reduces curvature [9] so that we know that
|F(Ã(k))| is a bounded sequence in L2+ε and hence the sequence Ã(k) converges mod-
ulo gauge over X − {P1, . . . , Pr}—for some points P1, . . . , Pr—to a connexion A∞

by Theorem 6.9, and A∞ is Hermitian-Einstein with singularities Λ1(dz/z) and may
be supposed twice differentiable because k0 ≥ 4. The problem is that A∞ may be a
connexion on a different bundle E ′ so that to complete the proof we must show that
there is a non-trivial map j : E(1) → E ′ between them. Then, from the stability of
each, we have that j is an isomorphism. (Since A∞ is Hermitian-Einstein, the bundle
E ′ is polystable.) Argue as in [11, Section 6.25]. There is a series of smooth complex
automorphisms (gk) of Ẽ(1) such that ∂̄A∗k ,Ã

(k) gk = 0 works in local holomorphic co-
ordinates on X1. In such coordinates, although the connexions do have singularities
the ∂̄-operators do not, so that standard elliptic theory may be applied. Normalize
so that det(gk) = 1 and ‖gk‖L2 = 1. Then

‖gk‖L2
3
≤ K(‖∂̄kgk‖L2

2
+ ‖gk‖L2 ) ≤ K ′;

writing ∂̄k = ∂̄A∗k Ã(k) . Consequently gk → g over X − {P1, . . . , Pr} and we get

g : E(1) → E ′ by Hartog’s theorem. So if g 
= 0 we are done. A formal argument
with curvature as in [11] establishes this, and thus the following theorem.

Theorem 7.3 If it is stable, the parabolic bundle E(1) over X = (X,D, n(1)) with weights
λi

j − (xi
j/ni) along Σi has a parabolic connexion Hermitian-Einstein with respect to w̃.

Moreover this connexion may be supposed to be (k0 − 1)-times differentiable. (Recall
that n = n(1).)

The two final steps are to exchange this connexion for one Hermitian-Einstein
with respect to the Kähler metric w on Y and then to carry it down from X to Y =
|X| as in Lemma 4.3. The first step is the same as in Section 5 because we know
that for enough weights the operator is Fredholm. On the other hand, the second is
perhaps a little more complicated because of the singularity. Take local holomorphic
coordinates on X with z transverse and w along Σ, and choose a local holomorphic
frame for E. Then one can write

A∞ = d + Λ(dz/z) + Gdz + Hdw,

https://doi.org/10.4153/CJM-2001-047-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-047-x


1338 Brian Steer and Andrew Wren

where (Λ)p,q =
(
λp − (xp/n)

)
δp,q, n = n(1); and the Kähler metric

w = γ|z|2n−2dz ∧ dz̄ + βzn−1dz ∧ dw̄ + β ′z̄n−1dz̄ ∧ dw + δdw ∧ dw̄,

with α, β, β ′, γ, δ functions of (z,w) such that neither δ nor γδ + ββ ′ vanish on Σ.
The volume form is (γδ +ββ ′)|z|2n−2dz∧ dz̄∧ dw∧ dw̄. Write F = F(A∞). Because
F ∧ w = λ (volume form), as in Section 4, one deduces that F ∧ w = O(|z|2n−2) and
hence that

∂G/∂z̄ = O(|z|n−1).

The explicit formula for ∂G/∂z̄ tells us that for fixed w the function ∂G/∂z̄ is
(k0 + n − 1)-times differentiable in z and z̄. As there, one now finds a change of
frame such that

A∞ = d + Λ(dz/z) + O(|z|n−1dz) + b ′dw + c ′dw̄,

so that, in fact, we may suppose that A∞ ∈ Lp
1 (Y ) and the transformation in Lp

2 ,
p = 2 + ε for some tiny ε which is bounded above by various constants of Section 6.
This proves the final theorem.

Theorem 7.4 If E is a stable parabolic bundle over Y , parabolic with respect to the
divisor D = Σ1 ∪ · · · ∪ Σd, where each Σi is smoothly embedded and if i 
= j then Σi

meets Σ j in at most one point and there transervally, then there is for some p = 2 + ε,
ε > 0, an Lp

2 parabolic Hermitian-Einstein metric with curvature in Lp.
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