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(Received 1 September 2015; accepted 18 October 2015; first published online 8 January 2016)

Abstract

We study transcendence properties of certain infinite products of cyclotomic polynomials. In particular,
we determine all cases in which the product is hypertranscendental. We then use various results from
Mahler’s transcendence method to obtain algebraic independence results on such functions and their
values.
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1. Introduction and main results

For an integer ` > 1, let Φ`(x) denote the `th cyclotomic polynomial and put Φ1(x) :=
1 − x (which is minus the first cyclotomic polynomial). If d ≥ 2 is an integer, the
infinite product

Fd,`(z) :=
∏
j≥0

Φ`(zd j
) ∈ Z[[z]]

compactly converges on the open unit diskD and defines there a zero-free holomorphic
function. Note that F2,1(z) is the generating function of the Thue–Morse sequence on
{−1, 1} beginning with 1 and F2,3(z) is the generating function of the Stern diatomic
sequence.

Given the arithmetical characterisation of the Taylor coefficients of Fd,`(z) about
the origin, we deduce (using [10, pages 368–371] or [14, Aufgabe 167, page 143])
that Fd,`(z) is either a rational function or transcendental over C(z). Carlson’s famous
work [6] on power series with integer coefficients gives the stronger statement: Fd,`(z)
is either a rational function or has the unit circle as a natural boundary.

Very recently, Duke and Nguyen [9] studied the analytic properties of the above
infinite product for primes d and positive integers `. They proved in [9, Theorem 1.1]
that Fd,`(z) is rational if and only if d divides `, in which case

Fd,`(z) = 1/Φ`/dk (zdk−1
), k := ordd`.
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These authors did not consider the case of composite d. This question is completely
answered by our first main result, which we will formulate after recalling the following
definition. An analytic function is said to be hypertranscendental if it satisfies no
algebraic differential equation, that is, no finite collection of derivatives of the function
is algebraically dependent over C(z).

Theorem 1.1. For given positive integers d, ` with d ≥ 2, the following three statements
are equivalent:

(i) d is composite or does not divide `;
(ii) Fd,`(z) is hypertranscendental;
(iii) Fd,`(z) is not a rational function.

The proof of the hardest part of this theorem, the implication (i) implies (ii), will
be given in Section 2. Knowing (ii), it is trivial that Fd,`(z) is transcendental over C(z)
and hence also that Fd,`(z) is not a rational function. But, then, from the result of Duke
and Nguyen, statement (i) must be valid.

In Section 3, the implication (i) implies (ii) will be used to establish arithmetical
applications, such as the following theorem.

Theorem 1.2. Suppose that d is composite or does not divide `. Then, for any
algebraic α with 0 < |α| < 1, the numbers Fd,`(α),F′d,`(α),F′′d,`(α), . . . are algebraically
independent (over Q).

Note that the hypotheses on d and ` in this theorem just guarantee the
hypertranscendence of the function Fd,`(z).

In Section 4, we first study, for fixed d, the algebraic independence over C(z) of all
functions Fd,`(z), where ` satisfies gcd(d, `) = 1. We denote this infinite set by S d and
remark that it is a subset of

Td := {` : (d, `) satisfies condition (i) of Theorem 1.1}.

More precisely, one can easily see that Td = S d if d is a prime, and Td = N if d is
composite. By Theorem 1.1, for every ` ∈ Td, the function Fd,`(z) is transcendental
over C(z). Indeed, we can prove an algebraic independence result.

Theorem 1.3. For any fixed integer d ≥ 2, the functions Fd,`(z) with ` ∈ S d are
algebraically independent over C(z).

Problem 1.4. Is it possible to prove the same statement with Td instead of S d?

An arithmetical application of Theorem 1.3 is contained in the following result.

Theorem 1.5. Let d ≥ 2 be fixed. Then, for any algebraic α with 0 < |α| < 1, all
numbers Fd,`(α) with ` ∈ S d are algebraically independent (over Q).
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In Section 5, we shall extend these results by simultaneously considering the
functions Fd,`(z) and another class of functions.

The main tool in most of our proofs in Sections 3–5 is Mahler’s method for
transcendence and algebraic independence. This method was created by Mahler as
early as 1929–1930. It is mainly applicable if the functions involved satisfy certain
functional equations, of which a particularly simple example is

Fd,`(z) = Φ`(z)Fd,`(zd) (1.1)

coming from the product definition of Fd,`(z).
Finally, in Section 6, we will show how more recent transcendence criteria based

on Schmidt’s subspace theorem can also be used in the present realm. Such criteria
have been systematically developed by Corvaja and Zannier [7]. As an example, we
will give a full proof of a very particular case in Theorem 1.2.

Theorem 1.6. Suppose that d is composite or does not divide `. Then, for any algebraic
α with 0 < |α| < 1, the number Fd,`(α) is transcendental.

2. Proof of the characterisation theorem (Theorem 1.1)

At the heart of the proof of the implication (i) implies (ii) in Theorem 1.1 are the
following two lemmas. The first of these can be found in [4, Theorem 1] and recently
has been generalised in [8, Proposition 3.1 and Remark 3.2].

Lemma 2.1. Let P ∈ C[z] be nonconstant with P(0) = 1. If the functional equation

w(z) − dw(zd) =
zP′(z)
P(z)

has no solution w ∈ C(z), then the infinite product
∏

j≥0 P(zd j
) is hypertranscendental.

Lemma 2.2. Suppose that d ≥ 2. If the functional equation

w(z) − dw(zd) =
zΦ′`(z)
Φ`(z)

(2.1)

has a solution in C(z), then d is a prime dividing `.

Having these two auxiliary results, we know from Lemma 2.2 that (i) implies that
the functional equation (2.1) has no rational solution. But, then, according to Lemma
2.1, the product defining Fd,`(z) is hypertranscendental, whence (ii) holds.

Proof of Lemma 2.2. Suppose that (2.1) has a rational solution, which we can write as
w(z) = U(z)/V(z) with coprime U,V ∈ Z[z]\{0}. Then, from (2.1),

Φ`(z)(U(z)V(zd) − dU(zd)V(z)) = zΦ′`(z)V(z)V(zd), (2.2)

implying deg U = deg V . Moreover, using the coprimality of U(zd), V(zd), we get
the divisibility relation V(zd) |Φ`(z)V(z) (in Q[z]). Thus, there exists v ∈ Q[z]\{0}
satisfying

V(zd)v(z) = Φ`(z)V(z), (2.3)
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leading to

deg v = ϕ(`) − (d − 1) deg V and hence deg V ≤
ϕ(`)
d − 1

,

where ϕ( . ) denotes Euler’s totient function. If deg V = 0, then deg U = 0 and (2.2)
gives a contradiction. Therefore, we have deg V > 0 and hence deg v < ϕ(`), implying
Φ`(z) - v(z). Hence, Φ`(z) |V(zd) and V(ζd

`
) = 0, where here and subsequently we write

ζt := e2πi/t for any positive integer t.
For the remainder of this section, we define k ∈ N0, ˜̀ ∈ N by ` = dk ˜̀ with d - ˜̀, and

set `i := `/di (i = 0, . . . , k), so that `0 = `, `k = ˜̀.
If this k is positive, then 0 = V(ζd

`
) = V(ζ`1 ) and thus Φ`1 (z) | V(z) and moreover

V(z) = Φ`1 (z)V1(z) with some V1 ∈ Q[z]\{0}. Then (2.3) leads to

Φ`1 (zd)V1(zd)v(z) = Φ`(z)Φ`1 (z)V1(z). (2.4)

Suppose that k ≥ 2. Since Φ`(z) |Φ`1 (zd) and ϕ(`) = ϕ(d`1) = dϕ(`1) (the last
equation being valid if k ≥ 2), we obtain Φ`(z) = Φ`1 (zd) and hence from (2.4)

V1(zd)v(z) = Φ`1 (z)V1(z) giving deg v = ϕ(`1) − (d − 1) deg V1. (2.5)

If deg V1 = 0, then V(z) = c1Φ`1 (z) with c1 ∈ Q
× and (2.2) leads, after cancellation by

c1Φ`(z) = c1Φ`1 (zd), to

U(z)Φ`(z) − dU(zd)Φ`1 (z) = c1zΦ′`(z)Φ`1 (z).

This equation implies Φ`1 (z) |U(z)Φ`(z) and hence Φ`1 (z) |U(z), and so Φ`1 (z) is a
common factor of U(z), V(z), contradicting the coprimality of these polynomials.
Thus, we conclude that deg V1 > 0 and hence deg v < ϕ(`1) from (2.5), and therefore
Φ`1 (z) - v(z). By (2.5), we have V1(ζd

`1
) = V1(ζ`2 ) = 0, whence Φ`2 (z) | V1(z), giving

V1(z) = Φ`2 (z)V2(z) with some V2 ∈ Q[z]\{0}. Using (2.5) we find, as an analogue to
(2.4), that

Φ`2 (zd)V2(zd)v(z) = Φ`1 (z)Φ`2 (z)V2(z).

If k ≥ 3, then Φ`2 (zd) = Φ`1 (z) holds and therefore

V2(zd)v(z) = Φ`2 (z)V2(z) implying deg v = ϕ(`2) − (d − 1) deg V2.

By repeating this procedure,

Vk−1(zd)v(z) = Φ`k−1 (z)Vk−1(z), giving deg v = ϕ(`k−1) − (d − 1) deg Vk−1. (2.6)

If now deg Vk−1 = 0, then Vk−1(z) = ck−1 ∈ Q
× and

V(z) = Φ`1 (z)V1(z) = Φ`1 (z)Φ`2 (z)V2(z) = · · · = Φ`1 (z) · · ·Φ`k−1 (z)ck−1 (2.7)

and substitution of this in (2.2) yields, after cancellation by ck−1Φ`(z) · · ·Φ`k−2 (z),

U(z)Φ`(z) − dU(zd)Φ`k−1 (z) = ck−1zΦ′`(z)Φ`1 (z) · · ·Φ`k−1 (z),

implying Φ`k−1 (z) |U(z). By (2.7), V(z) has the same divisor, which is a contradiction.
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Thus, we conclude that deg Vk−1 > 0 and hence deg v < ϕ(`k−1) by (2.6), and this
implies Φ`k−1 (z) - v(z). But then, again by (2.6), we see that Vk−1(ζd

`k−1
) = Vk−1(ζ`k ) = 0,

whence Φ`k (z) | Vk−1(z), say Vk−1(z) = Φ`k (z)Vk(z) with some Vk ∈ Q[z]\{0}. This,
together with (2.6), leads to

Φ`k (z
d)Vk(zd)v(z) = Φ`k−1 (z)Φ`k (z)Vk(z), (2.8)

implying
deg v = ϕ(`k−1) − (d − 1)ϕ(`k) − (d − 1) deg Vk. (2.9)

To end our proof, we consider the two possible cases for δ := gcd(d, `k), where we
introduce the coprime integers d̂, ˆ̀ by d = δd̂, `k = δ ˆ̀.

If first δ > 1, then ϕ(d`k) < dϕ(`k) and, by (2.9), deg v < ϕ(`k), whence Φ`k (z) - v(z).
Thus, Vk(ζd

`k
) = Vk(ζ d̂

ˆ̀ ) = 0 and Φ ˆ̀(z) |Vk(z) and, by (2.9) again,

ϕ( ˆ̀) ≤ deg Vk ≤
ϕ(`k)
d − 1

.

The left-hand inequality also holds in case k = 0 from (2.3), since V(ζd
`
) = V(ζ d̂

ˆ̀ ) = 0,
implying Φ ˆ̀(z) |V(z) and so ϕ( ˆ̀) ≤ deg V . Now `k = δ ˆ̀ gives ϕ(`k) ≤ δϕ( ˆ̀) and hence
ϕ( ˆ̀) ≤ δϕ( ˆ̀)/(d − 1), leading to δ ∈ {d − 1,d}. If δ = d − 1, then d ≥ 3 and this δ cannot
divide d, which is a contradiction. Thus, δ = d, implying d | `k = ˜̀, which is again a
contradiction.

Suppose secondly that δ = 1. In case k = 0, (2.3) implies deg v < ϕ(`) since
deg V > 0. Therefore, Φ`(z) - v(z), whence V(ζd

`
) = 0, giving Φ`(z) |V(z) and therefore

ϕ(`) ≤ deg V ≤ ϕ(`)/(d − 1), leading to d = 2 and V(z) = cΦ`(z) with some c ∈ Q×.
Then (2.3) implies Φ`(z2)v(z) = Φ`(z)2 and hence v(z) = 1, and Φ`(z2) = Φ`(z)2 is
contradictory. So, we are left with the case k ≥ 1, where we use (2.8). The roots
of Φ`k (z

d) are the roots of zd − ζ
j
`k

with gcd(`k, j) = 1. For fixed j, these are

ζ
j+h`k
d`k

(h = 0, . . . , d − 1),

where gcd( j + h`k, `k) = 1. For each u modulo d, the congruence j + h`k ≡ u (mod d)
has a unique solution h ∈ {0, . . . , d − 1}. Thus, the above roots contain one primitive
`kth and ϕ(d) primitive (d`k)th roots of unity. Therefore, Φ`k−1 (z)Φ`k (z) divides Φ`k (z

d).
Define

N := dϕ(`k) − ϕ(`k) − ϕ(`k−1) = (d − 1)ϕ(`k) − ϕ(d`k) = (d − 1 − ϕ(d))ϕ(`k)

(note here that δ = gcd(d, `k) = 1). By comparing the degrees on both sides of (2.8),

N + (d − 1) deg Vk + deg v = 0.

This shows that N = 0, deg Vk = 0, deg v = 0 and hence ϕ(d) = d − 1 and k ≥ 1.
Consequently, d is a prime and (k =) ordd` is a positive integer, proving our lemma. �
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3. Arithmetical consequences of hypertranscendence

Combination of the implication (i) implies (ii) from Theorem 1.1 and the following
algebraic independence criterion for infinite products yields an immediate proof of
Theorem 1.2. As usual, Q denotes the field of all complex algebraic numbers.

Lemma 3.1 [4, Theorem 2]. Let P ∈ Q[z] be nonconstant and satisfy P(0) = 1. Suppose
that the function fd(z) :=

∏
j≥0 P(zd j

) defined in D is hypertranscendental. Then,
for any algebraic α with 0 < |α| < 1 and P(αd j

) , 0 for each j ∈ N0, the numbers
fd(α), f ′d(α), f ′′d (α), . . . are algebraically independent.

So far, the statement of Theorem 1.2 concerns algebraic α ∈ D\{0}, and one may
ask what happens if α ∈ D is transcendental. This question has first been treated by
Philippon [13, Théorème 4], whose results lead to the following theorem.

Theorem 3.2. Let d, ` satisfy the conditions of Theorem 1.2. Then, for any m ∈ N0 and
for any nonzero α ∈ D, the following estimate holds for the transcendence degree:

trdegQQ(α, Fd,`(α), . . . , F(m)
d,` (α)) ≥ m + 1.

4. Algebraic independence of several functions Fd,`(z)

To prove Theorem 1.3, we give some preliminary results on cyclotomic polynomials
collected in Lemmas 4.1 and 4.2. Having these, we shall apply Kubota’s criterion for
the algebraic independence of Mahler-type functions to be quoted as Lemma 4.3.

Lemma 4.1. For coprime d, `, the equation

Φ`(zd) = Φ`(z)Ψ`(z)

holds with some Ψ`(z) ∈ Z[z] satisfying Φ`(z) - Ψ`(z).

Proof. Since {ζ j
`

: gcd( j, `) = 1} = {ζd j
`

: gcd( j, `) = 1},

Φ`(zd) =
∏

( j,`)=1

(zd − ζ
j
`
) =

∏
( j,`)=1

(zd − ζ
d j
`

) = Φ`(z)
∏

( j,`)=1

zd − ζ
d j
`

z − ζ j
`

=: Φ`(z)Ψ`(z).

The roots of zd − ζ
j
`

are just the ζ j+k`
d` with k ∈ {0, . . . , d − 1}. Such a root is a primitive

nth root of unity, where ` | n, and n = ` holds if and only if j + k` ≡ 0 (mod d). Since
gcd(d, `) = 1, this congruence has, for each j, a unique solution k ∈ {0, . . . , d − 1}.
From this, the roots of Ψ`(z) are roots of unity of order greater than `, whence
Φ`(z) - Ψ`(z). �

Lemma 4.2. If d, ` are coprime, then, for any a(z) ∈ Z[z]\{0}, the multiplicities of Φ`(z)
in a(z) and in a(zd) are equal.
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Proof. Assume that a(z) = Φ`(z)ku(z) with u(z) ∈ Z[z], Φ`(z) - u(z). By Lemma 4.1,

a(zd) = Φ`(z)kΨ`(z)ku(zd) = Φ`(z)k̂U(z)

with Φ`(z) - U(z), whence the multiplicity k̂ of Φ`(z) in a(zd) is at least k.
Define m := ϕ(`) and let j1, . . . , jm be those j ∈ {1, . . . , `} coprime to `. Write

a(z) = c(z − α1) · · · (z − αn) with c, α1, . . . , αn ∈ C, c , 0. If k̂ > 0, for each jµ, there
exists an iµ such that αiµ = ζ

d jµ
`

. Moreover, αiν , αiµ for ν , µ and, by Lemma 4.1,

Φ`(z) =

m∏
µ=1

(z − αiµ) and
m∏
µ=1

(zd − αiµ) = Φ`(z)Ψ`(z).

Without loss of generality, we may assume that iµ = µ for µ = 1, . . . ,m, leading to

a(z) = Φ`(z)
n∏

i=m+1

(z − αi), a(zd) = Φ`(z)Ψ`(z)
n∏

i=m+1

(zd − αi).

If k̂ > 1, then we may repeat this procedure and, after k̂ repetitions,

a(z) = Φ`(z)k̂
n∏

i=k̂m+1

(z − αi), a(zd) = Φ`(z)k̂Ψ`(z)k̂
n∏

i=k̂m+1

(zd − αi).

Since Φ`(z) - U(z), none of the αi with k̂m < i ≤ n equals ζd jµ
`

, whence k̂ = k. �

Lemma 4.3 (Special case of [11]; see also [12, Theorem 3.5]). Suppose that the series

fi, j ∈ C[[z]] (1 ≤ i ≤ h, 1 ≤ j ≤ n(i)) and fi ∈ C[[z]]\{0} (h < i ≤ k) (4.1)

converge on D and satisfy the functional equations

fi, j(zd) = ai(z) fi, j(z) + ai, j(z) (1 ≤ i ≤ h, 1 ≤ j ≤ n(i)),
fi(zd) = bi(z) fi(z) (h < i ≤ k)

with ai, ai, j, bi ∈ C(z)\{0}, where none of the quotients ai/ai′ (1 ≤ i < i′ ≤ h) has the
form s(zd)/s(z) for some s ∈ C(z)\{0}. Then the functions (4.1) are algebraically
independent over C(z) if the ai, ai, j, bi satisfy the following additional conditions.

(i) For no i ∈ {1, . . . , h} is there a (ci,1, . . . , ci,n(i)) ∈ Cn(i)\{0} such that the equation

g(zd) = ai(z)g(z) −
n(i)∑
j=1

ci, jai, j(z)

has a solution g ∈ C(z).

(ii) If h < k and (nh+1, . . . , nk) ∈ Zk−h\{0}, the functional equation

r(zd) = r(z)
k∏

i=h+1

bi(z)ni

has no solution r ∈ C(z)\{0}.

https://doi.org/10.1017/S0004972715001550 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972715001550


382 P. Bundschuh and K. Väänänen [8]

Proof of Theorem 1.3. Assuming that {`1, . . . , `m} is any finite subset of S d, we
have to show that Fd,`1 (z), . . . , Fd,`m (z) are algebraically independent over C(z). For
this purpose, we try to apply Lemma 4.3. Since all functional equations (1.1) are
homogeneous, we may take h = 0, k = m and need only check condition (ii).

Suppose that (n1, . . . , nm) ∈ Zm and assume that the functional equation

r(zd) = r(z)
m∏

i=1

Φ`i (z)−ni (4.2)

has a rational solution r , 0. Then it also has a solution r̃ ∈ Q(z)\{0}, which we may
write as r̃(z) = a(z)/b(z) with a, b ∈ Z[z]\{0}. On rewriting (4.2) for r̃ instead of r, we
are led to the new polynomial equation

a(zd)b(z)
∏
i∈U1

Φ`i (z)ni = a(z)b(zd)
∏
i∈U2

Φ`i (z)−ni ,

where U1 ∪ U2 = {1, . . . ,m} and ni ≥ 0 exactly for i ∈ U1. By Lemma 4.2, Φ`i (z) has
the same multiplicity in a(z), a(zd) (and similarly in b(z), b(zd)) for each i = 1, . . . ,m.
So, n1 = · · · = nm = 0, and Theorem 1.3 is proved. �

Remark 4.4 (Remark on the Open Problem 1.4). As we saw above, the proof of
Theorem 1.3 is a rather direct consequence of Lemmas 4.1 and 4.2. Both may not
hold if d and ` are not coprime (for example, if d = 6 and ` = 3). Therefore, some new
ideas seem to be necessary to attack the problem.

Proof of Theorem 1.5. Theorem 1.3 combined with [12, Theorem 4.2.1] immediately
yields Theorem 1.5, since all Φ`(z) are zero-free in D. �

Combining Theorem 1.3 with [13, Théorème 4] gives a more general result.

Corollary 4.5. Let `1, . . . , `m ∈ S d be distinct. Then, for any nonzero α ∈ D, the
following inequality holds:

trdegQQ(α,Φ`1 (α), . . . ,Φ`m (α)) ≥ m.

Of course, for algebraic α, this inequality is contained in Theorem 1.5. For
transcendental α, it was already proved in [1, Theorem 3] in case m = 2 (see also
the remark after [12, Theorem 4.5.1]).

5. The functions Fd,` and another class of functions

In this section, we simultaneously study, for fixed d, the functions Fd,`(z) and the
functions Gd, j(z) ( j ∈ N0), defined in D by

Gd, j(z) :=
∞∑

n=0

zdn

1 − zdn+ j ,
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with respect to algebraic independence over C(z). Note that each Gd, j satisfies the
functional equation

Gd, j(zd) = Gd, j(z) −
z

1 − zd j . (5.1)

Observe that G2,1(z) = z/(1 − z) in D, whereas all Gd, j(z) with (d, j) , (2, 1) are
transcendental over C(z) (and have the unit circle as natural boundary). This
transcendence statement is a consequence of combining [12, Theorem 1.3] with the
following lemma from [15, Lemmas 1 and 2], which excludes the rationality of the
function under consideration.

Lemma 5.1. Let (c0, . . . , cm) ∈ Cm+1\{0} with m ∈ N. If the functional equation

g(zd) = g(z) −
m∑

j=0

c jz

1 − zd j

has a solution g ∈ C(z), then d = 2 and c1 , 0 hold.

Lemma 5.1 is not only used en passant to prove the functional transcendence of all
Gd, j with (d, j) , (2, 1). Much more essential is its application in the following proof
of the algebraic independence over C(z) of all these functions (for fixed d).

Theorem 5.2. For any fixed integer d ≥ 3, the functions Gd, j(z) ( j ∈ N0) and
Fd,`(z) (` ∈ S d) are algebraically independent over C(z).

Proof. We apply Lemma 4.3 to the 2m + 1 functions Gd,0(z), . . . ,Gd,m(z) and Fd,`(z)
with ` ∈ {`1, . . . , `m} ⊂ S d for some m ∈ N. Thus, take h = 1, n(1) = m + 1, k = m + 1
such that the f1, j(z) are the functions Gd,0(z), . . . ,Gd,m(z), and f1+i(z) := Fd,`i (z) for
i = 1, . . . ,m. We only have to settle conditions (i) and (ii) in Lemma 4.3: for (i), we
use Lemma 5.1 with d ≥ 3, whereas the validity of (ii) follows (independently of d ≥ 3
or d = 2) along the lines of our proof of Theorem 1.3. �

As we already know, a direct analogue of Theorem 5.2 for d = 2 cannot hold without
removing the rational function G2,1(z). But, instead, we may include the so-called
twisted version B(z) of F2,3(z) introduced in [2] and studied arithmetically by the
present authors [5]. Notice that B(z) satisfies the functional equation

B(z) = 2 − Φ3(z)B(z2) (5.2)

that leads to the power series solution about the origin.

Theorem 5.3. The functions G2, j(z) ( j ∈ N0\{1}), B(z) and F2,`(z) (` ∈ S 2) are
algebraically independent over C(z).

Proof. Once again, we use Kubota’s Lemma 4.3, which we apply to the 2m + 1
functions G2,0(z),G2,2(z), . . . ,G2,m(z), B(z) and F2,`(z) (` ∈ {`1, . . . , `m} ⊂ S 2) for some
m ∈ N. This time, we take h = 2, n(1) = m, n(2) = 1, k = 2 + m. The functions f1, j(z)
are the functions G2,0(z),G2,2(z), . . . ,G2,m(z), f2,1(z) := B(z) and f2+i(z) := F2,`i (z)
for i = 1, . . . ,m. By (5.1) and (5.2), the two ai(z) appearing here are a1(z) := 1,
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a2(z) := −1/Φ3(z). Their quotient −Φ3(z) cannot be of the form s(z2)/s(z) with some
s ∈ C(z)\{0}, as is easily seen from Lemma 4.2.

Concerning conditions (i) and (ii) in Lemma 4.3, the second one was already
checked when proving Theorem 5.2. To establish the first, we have to ensure that
neither of the two equations

g(z2) = g(z) −
m∑

j=0
j,1

c1, jz

1 − z2 j and g(z2) = −
g(z)

Φ3(z)
−

2c2,1

Φ3(z)

has a rational solution g for (c1,0, c1,2, . . . , c1,m) , (0) and c2,1 , 0, respectively. The first
assertion follows from Lemma 5.1. For the second, the rational insolubility was proved
in [5, Section 2] for c2,1 = −1 (which is equivalent to the general case c2,1 , 0). �

Analogously to the end of Sections 3 and 4, Theorems 5.2 and 5.3 combined with
[12, Theorem 4.2.1] (or with [12, Theorem 4.5.1]) immediately lead to the following
arithmetical applications, which we formulate this time only for algebraic points.

Corollary 5.4. Let d ≥ 3 be fixed. Then, for any nonzero algebraic α ∈ D, the numbers
Gd, j(α) ( j ∈ N0) and Fd,`(α) (` ∈ S d) are algebraically independent. The same holds
verbatim in case d = 2 if G2,1(α) is replaced by B(α).

The case d = 2 of this corollary gives the algebraic independence of some well-
known numbers. Using the notation of [3], we define

fT MM(z) :=
∞∑

n=0

tnzn, fRPF(z) :=
∞∑

n=0

unzn,

where (tn) is the Thue–Morse sequence (t0 = 0, t2n = tn, t2n+1 = 1 − tn (n ≥ 0)) and (un)
is the regular paper-folding sequence (u4n = 1, u4n+2 = 0, u2n+1 = un (n ≥ 0)). Then

F2,1(z) =
1

1 − z
− 2 fTMM(z), G2,2(z) = z fRPF(z).

As was noted earlier, F2,3(z) is the generating function of the Stern diatomic sequence
and B(z) its twisted version. The following result is a special case of Corollary 5.4.

Corollary 5.5. For every b ∈ Z\{0,±1}, the five numbers

fTMM

(1
b

)
, fRPF

(1
b

)
, F2,3

(1
b

)
, B

(1
b

)
,

∞∑
n=0

1
b2n

+ 1

are algebraically independent.
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6. Transcendence via Schmidt’s subspace theorem

We first make some notational remarks following the presentation in [7]. Let K be
a number field and M(K) be the set of normalised absolute values of K. For every
v ∈ M(K), let | . |v denote a continuation of it to Q, to be normalised with respect to K:
according to this normalisation, the absolute logarithmic Weil height of x ∈ K× is

h(x) :=
∑

v∈M(K)

log+ |x|v (6.1)

(where log+ t := max(0, log t) for t ∈ R+) and the product formula
∏

v |x|v = 1 holds.
Furthermore, let ν be a fixed absolute value of K and let Cν denote a completion of

an algebraic closure of Kν. The notion of convergence, as used in the following lemma
(to be found in [7, Corollary 1]), refers to Cν.

Lemma 6.1. Let f (z) :=
∑

j≥0 b jz j be a nonpolynomial power series with algebraic
b j ∈ Cν and converging in |z|ν < 1. Let α ∈ C×ν be algebraic with |α|ν < 1. Suppose that
there exist an infinite setN ⊂ N and a finite set S ⊂ M(K) containing all archimedean
absolute values of K such that f (αn) ∈ K× and | f (αn)|v ≤ 1 hold for any n ∈ N and
v ∈ M(K)\S . Then

lim
n→∞,n∈N

1
n

h( f (αn)) =∞.

Proof of Theorem 1.6. Consider f (z) := 1/Fd,`(z) ∈ Z[[z]] satisfying

f (zdt
) = f (z)

t∏
τ=1

Φ`(zdτ−1
) (6.2)

for any t ∈ N0. Since Fd,`(z) is not a rational function, we know that f is not a
polynomial. Let us assume, contrary to Theorem 1.5, that there is a nonzero algebraic
α ∈ D such that f (α) is algebraic, and apply Lemma 6.1 to K := Q(α, f (α)). For any
β ∈ K×, the set {v ∈ M(K): |β|v , 1} is finite, so the set {v ∈ M(K): |α|v = 1, f (α)|v ≤ 1}
is infinite. Since the set of (normalised) archimedean absolute values of K is finite, we
may choose a finite set S of places of K containing all archimedean ones such that

|α|v = 1 and | f (α)|v ≤ 1 (6.3)

for every v ∈ M(K)\S . From (6.2) and (6.3), f (αdt
) ∈ K× and | f (αdt

)|v ≤ 1 for every
t ∈ N0 and v ∈ M(K)\S (since all these v are nonarchimedean). By Lemma 6.1,

lim
t→∞

h( f (αdt
))

dt =∞. (6.4)

To show that (6.4) is wrong, that is, that we have the desired contradiction, we
state the following properties of h( . ). The case m = 2 can be found in [16, Property
3.3], whereas the cases m ≥ 3 are easily settled by induction. Note that, in contrast
to (6.1), the absolute logarithmic Weil height in [16] is defined for any x ∈ K by∑

v log max(1, |x|v), coinciding with the sum in (6.1) if x , 0.
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Lemma 6.2. If γ1, . . . , γm are m ≥ 1 nonzero algebraic numbers, then

h
( m∏
µ=1

γµ
)
≤

m∑
µ=1

h(γµ) and h
( m∑
µ=1

γµ
)
≤ (m − 1) log 2 +

m∑
µ=1

h(γµ).

To conclude the proof interrupted after (6.4), we estimate h(Φ`(β)) for certain
powers β of α. To this end, note that Φ`(β) is a sum of at most 1 + ϕ(`) terms of
the shape aλβλ, where the aλ are just the nonzero rational integer coefficients of the
polynomial Φ`(x). Then we deduce from Lemma 6.2 that

h(Φ`(β)) ≤ ϕ(`) log 2 +

ϕ(`)∑
λ=0
aλ,0

(h(aλ) + λh(β)) ≤ c0(`) + c1(`)h(β)

with positive constants c0, c1 depending only on `. Thus, we conclude from (6.2) that

h( f (αdt
)) ≤ h( f (α)) +

t∑
τ=1

h(Φ`(αdτ−1
)) ≤ h( f (α)) + c0(`)t + c1(`)h(α)

t−1∑
τ=0

dτ ≤ c2 dt

for any t ∈ N0, where c2 > 0 is independent of t. The last chain of inequalities shows
that (6.4) is not valid. �
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