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The actuator line method (ALM) is used extensively in wind turbine and rotor simulations.
However, its original uncorrected formulation overestimates the forces near the tip of the
blades and does not reproduce well forces on translating wings. The recently proposed
vortex-based smearing correction for the ALM is a correction based on physical and
mathematical properties of the simulation that allows for a more accurate and general
ALM. So far, to correct the forces on the blades, the smearing correction depended
on an iterative process at every time step, which is usually slower, less stable and less
deterministic than direct methods. In this work, a non-iterative process is proposed and
validated. First, we propose a formulation of the nonlinear lifting line that is equivalent to
the ALM with smearing correction, showing that the results are practically identical for
a translating wing. Then, by linearizing the lifting line method, the iterative process of
the correction is substituted by the direct solution of a small linear system. No significant
difference is observed in the results of the iterative and non-iterative corrections, in both
wing and rotor simulations. Additional contributions of the present work include the use
of a more accurate approximation for the velocity induced by a smeared vortex segment
and the implementation of a free-vortex wake model to define the vortex sheet, which
contribute to the accuracy and generality of the method. The results presented here may
motivate the adoption of the ALM by other communities, for example, in fixed-wing
applications.
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1. Introduction

The actuator line method (ALM) was developed to represent blades or wings as lifting
lines in numerical simulations of the Navier–Stokes equations (Sorensen & Shen 2002).
It allows the reduction of computational costs by replacing the geometry of the blades by
lines carrying body forces calculated using the local velocity and aerofoil data (Sørensen
et al. 2015).

In order to calculate the forces accurately, the local velocity needs to be corrected near
the tip of the blades. This correction has been a mildly controversial issue in the past, with
different proposed models (Shen, Sørensen & Mikkelsen 2005; Sørensen 2016) and even
arguments that it should not be needed (Martinez et al. 2012; Sørensen 2016) due to the
fact that the ALM creates tip vortices that should lead to lower loads near the tip. However,
the overestimation of loads near the tip on the numerical results indicates that a correction
is needed (Sørensen 2016; Dağ 2017).

Some recent discoveries have shed some light on this apparent controversy. Dağ &
Sørensen (2020) (originally in Dağ 2017) observed that the bound vortex created by the
actuator line showed a Gaussian vorticity distribution equal to a Lamb–Oseen vortex
model (Oseen 1911; Lamb 1932; Saffman 1992). The authors then conjectured that
this pattern would be extended to the vortex sheet, and proposed a correction based
on this model to approximate the velocity in the ALM to the velocity induced by
the singular vorticity distribution predicted by a discretized Prandtl lifting line. The
simulations of rotors showed clear improvements compared to the uncorrected ALM.
The method brings the forces smoothly to zero near the tip and the hub of the blades.
The results for a translating planar wing show that they approximate a lifting line
method for this case. Meyer Forsting, Pirrung & Ramos-García (2019a) compared the
results of a similar correction with the results of a lifting line technique for rotating
blades with and without a viscous core model. They showed that the forces of the
ALM without correction agree with a vortex method with finite core size, while the
ALM with a vortex-based smearing correction agrees with the vortex method using ideal
vortices.

The mathematical connection between the vortices generated by the ALM and a
Lamb–Oseen vortex model has been proven by Forsythe et al. (2015) for the bound vortex
and by Martínez-Tossas & Meneveau (2019) (originally in Martínez Tossas 2017) for the
vortex sheet of a translating wing. They showed that it is a consequence of the convolution
of the discrete forces with a Gaussian kernel, necessary to distribute the forces and avoid
numerical instabilities. The correction of Martínez-Tossas & Meneveau (2019), termed
‘subfilter-scale velocity correction’ or ‘filtered actuator line model’, is, in essence, a variant
of a vortex-based smearing correction. It was applied to a wind turbine by Stanly et al.
(2022).

Caprace, Chatelain & Winckelmans (2019) modified the Prandtl lifting line by
distributing the vorticity using a Gaussian kernel. Even though this work does not concern
the ALM directly, the connections between the mollified (smeared) lifting line and the
ALM were stated clearly by the authors. They studied the effect of three-dimensional,
two-dimensional (normal to the line) and one-dimensional (normal to the line and
streamwise directions) regularizations. Both the three-dimensional and two-dimensional
regularizations are used in the ALM; see Mikkelsen (2003). In that work, a variable
smoothing parameter approaching zero or a very low finite value near the tip leads to
improved results, a result also observed in ALM works (Shives & Crawford 2013; Jha et al.
2014; Jha & Schmitz 2018). However, in the ALM, a low value of smoothing parameter ε

may lead to numerical instabilities. Since the minimum ε is usually around 2–3 times the
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grid spacing (Troldborg 2009), a variable smoothing parameter may impose a very refined
grid near the tips.

Other methods may allow a more compact representation of the effect of the forces. For
example, one strategy in finite-volume methods to represent an actuator disk or surface
is to model the effects of the forces as pressure jumps, allowing it to be restricted to one
grid element (Réthoré & Sørensen 2012; Troldborg et al. 2015). Also, for vortex particle
methods, which shed vortex elements in the wake, the smoothing parameter may be equal
to the grid spacing (Caprace, Winckelmans & Chatelain 2020). Nevertheless, in numerical
methods, the compactness of the representation of the effects of the forces is limited by
the grid spacing and is guided by numerical reasons, not by the physical properties of the
flow.

Depending on the numerical method or application, a larger ε may be necessary or
desirable in the ALM. For example, Kleusberg, Schlatter & Henningson (2019b), using a
spectral-element method, observed spatially growing oscillations for ε = 2�x (where �x
is the average grid spacing), while the amplitude of oscillations was bounded for 3�x ≤
ε ≤ 4�x. The oscillations for ε = 2�x were not sufficient to cause numerical instabilities
on force calculations; however, they may affect applications that require low numerical
disturbances in the wake. For this reason, Kleine et al. (2022) used ε = 3.5�x for a vortex
stability study. Also, Shives & Crawford (2013) recommended a smearing parameter at
approximately ε = 4�x if lower errors in the angle of attack are desirable (see also Meyer
Forsting & Troldborg 2020).

For this reason, corrections that take into account the difference between the vorticity
created by the convoluted forces and the vorticity created by discrete singular forces, such
as proposed by Dağ & Sørensen (2020), Martínez-Tossas & Meneveau (2019) and Meyer
Forsting et al. (2019a), seem to be more cost-effective than reducing ε. Some techniques
to further reduce the computational cost of the smearing correction are explored by Meyer
Forsting, Pirrung & Ramos-García (2020).

Meyer Forsting, Pirrung & Ramos-García (2019b) investigated the wake created by the
actuator line with smearing correction, confirming that the smearing parameter continues
to have an influence on the wake, despite its influence on the forces at the blades being
greatly reduced.

The corrections of Dağ & Sørensen (2020) and Meyer Forsting et al. (2019a) apply
an iterative process at each time step. The circulation is dependent on the local induced
velocity, which depends on the circulation. For this reason, at each iteration, the velocity or
circulation is updated using a relaxation iterative process. From our experience, the choice
of a relaxation factor close to unity can lead to numerical instability, while a low relaxation
factor increases the number of iterations and can increase the run time of the simulation.

The correction of Martínez-Tossas & Meneveau (2019) avoids an iterative procedure at
each time step by using the circulation of the previous time step to calculate the induced
velocity. Then a weighted average of the correction velocity of the previous time step and
the correction velocity of the current time step is used as the correction term. Hence the
induced velocities are calculated from the values of circulation of the previous two time
steps, without taking into consideration the current value of circulation. Conceptually,
it is equivalent to a first iteration of the iterative method of other works. For steady
simulations, the values converge to the steady solution. However, for unsteady problems,
this procedure does not guarantee compatibility between the current circulation and local
velocity at each time step. This approach can be justified due to the small difference
between the circulations between time steps, for most simulations. Nevertheless, an error
is introduced, which is dependent on the difference of the circulation between time steps
and the weighting factor (in that work, called the ‘relaxation factor’).
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In this work, a method is introduced that avoids the iterative method while maintaining
the compatibility between the current circulation and velocities. We propose a direct way
of computing the smearing correction, based on a linearized version of the lifting line.
Using this method, the correction at each time step is found by solving a linear system of
equations of the order N, where N is the number of actuator line control points. In order to
achieve this, two formulations of the discretized lifting line method based on the actuator
line are presented: the nonlinear formulation and its linearized version.

Additionally, some other aspects of the smearing correction are discussed, such as the
choice of correction function and formation of the vortex sheet. Regarding these aspects,
we aim to keep the method as general as possible. Previous works (Martínez-Tossas &
Meneveau 2019; Meyer Forsting et al. 2019a; Dağ & Sørensen 2020) already showed that
the smearing correction can make the forces calculated by the ALM match closely the
results of the lifting line method. By introducing fewer assumptions, avoiding especially
assumptions related to rotating blades, the method could be applied to other problems
beyond rotor simulations, such as simulations of fixed-wing aircrafts.

This work is structured as follows. First, we present the general idea of the actuator line
method with smearing correction in § 2. Then, in § 3, we draw on the theoretical work
of Martínez-Tossas & Meneveau (2019) to develop the specific correction for velocities
induced by vortex segments, and describe the formation of the vortex sheet. The iterative
lifting line method based on the actuator line is presented in § 4. The linearization of this
lifting line method (Appendix A) is the basis for the non-iterative smearing correction
detailed in § 5. The numerical solver employed in the simulations and the parameters of
the lifting line method are described in § 6. Results of the simulations of a translating
wing and the NREL 5-MW wind turbine are shown in § 7. Finally, the main conclusions
are summarized in § 8.

2. The actuator line method

The incompressible Navier–Stokes equation written in primitive variables (pressure p and
velocity u) is

∂u
∂t

+ u · ∇u = − 1
ρ

∇p + ν ∇2u + f , (2.1)

where ρ and ν are the density and kinematic viscosity of the fluid, respectively. The
body force term f , in the case of the actuator line method, is used to model the turbine
(Sorensen & Shen 2002; Mikkelsen 2003; Troldborg 2009). The body forces are based on
the two-dimensional force per spanwise unit length, F 2D, given by

F 2D = (Fl, Fd) = (1
2ρu2

r cCl,
1
2ρu2

r cCd), (2.2)

where Fl and Fd are the lift and drag forces (lift is perpendicular to the relative
velocity, and drag is parallel to the relative velocity; see figure 1), calculated from the

relative velocity ur =
√

u2
y + u2

z , the local chord c, and the two-dimensional lift and drag

coefficients Cl and Cd, which are obtained from the aerofoil data at the local Reynolds
number and angle of attack α (calculated using the local relative velocity).

The dimensions of F 2D are not consistent with the dimensions of the body force f . As
an intermediate step, an idealized three-dimensional body force f i is defined based on
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Figure 1. Local reference system defined by a cross-section of the blade.

F 2D, where at each cross-section, the body force is given by

f i = 1
ρ

F 2D δ( y) δ(z), (2.3)

where δ is the Dirac delta function, which can be interpreted as the limit of the Gaussian
function

δ( y) = lim
ε→0

1
π1/2ε

exp
(

−y2

ε2

)
. (2.4)

This body force f i, where the superscript i indicates the idealized case, is concentrated
at the origin of the local reference system (figure 1). Considering all cross-sections of a
wing, the space of non-zero f i defines a line, which can be interpreted as the limit of the
actuator line method, when the smearing parameter ε goes to zero. It is easy to see that f i

is singular at the origin, but its integration in the two-dimensional plane gives F 2D/ρ.
In the ALM, to avoid numerical problems related to singularities, the forces need to

be distributed smoothly on several mesh points. This is usually performed by convolving
the force with a regularization kernel. A common choice for the regularization kernel is a
three-dimensional Gaussian kernel. Considering the same constant Gaussian width in the
three directions,

η3(x, y, z) := 1
π3/2ε3 exp

(
−x2 + y2 + z2

ε2

)
= η(x) η( y) η(z), (2.5)

where

η(x) := 1
π1/2ε

exp
(

−x2

ε2

)
, (2.6)

and symbol := denotes equal to by definition. The smeared force is

f = f i ∗ η3. (2.7)

Non-uniform and anisotropic kernels have also been proposed (Mikkelsen 2003; Shives &
Crawford 2013; Churchfield et al. 2017; Martínez-Tossas, Churchfield & Meneveau 2017;
Jha & Schmitz 2018; Cormier, Weihing & Lutz 2021), but these are not investigated in the
present work.

This presentation of the convolution operation in the actuator line method using
an idealized body force formed by Dirac delta functions as an intermediate step may
seem like an unusual approach, but it is mathematically equivalent to the method
of classical works (Sorensen & Shen 2002; Mikkelsen 2003; save for possible typos
regarding the density term, which is not relevant for incompressible flows), which employ
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one-dimensional integrals. This procedure, which was already applied by Martínez-Tossas
& Meneveau (2019), formalizes the connection between the two-dimensional forces and
the convolution in three dimensions, which is relevant for § 3.

Similarly to previous studies (Martínez-Tossas & Meneveau 2019; Meyer Forsting et al.
2019a; Dağ & Sørensen 2020), we focus on the lift force, which has a greater influence
on the forces of the turbine, and leave the effects related to the smearing of the drag
force for future studies. (A two-dimensional correction for drag has been proposed by
Martínez-Tossas et al. (2017), and an outline for a three-dimensional drag force correction
can be found in Kleine (2022).)

2.1. Lift force in the basic formulation of the actuator line method
In the general formulation of the actuator line (Sorensen & Shen 2002), the lift force Fl at
each spanwise section j of the wing (force per spanwise length) is obtained from aerofoil
data from

Flj = 1
2ρu2

r cj Cl(αj), (2.8)

where cj is the local chord of the aerofoil, and Cl(αj) is the local lift coefficient, obtained
from aerofoil data at an angle of attack αj. The local reference system of figure 1 is
used here. The velocities uz and uy, relative to the actuator line, are obtained from
the computational fluid dynamics (CFD) simulation at the control point position xj of
the actuator line segment. The lift coefficient Cl(αj) is calculated by the interpolating
tabulated aerofoil coefficients using the effective local angle of attack

αj = αgj + arctan
(

uy

uz

)
, (2.9)

where αgj is the geometric angle of attack given by the twist and incidence of the wing (or,
in the case of rotating blades, the opposite of the local pitch angle; Troldborg 2009).

If needed, the circulation at each spanwise section can be calculated from the
Kutta–Joukowski theorem

Γj = Flj

ρur
= 1

2
urcj Cl(αj). (2.10)

Usually, some form of tip or smearing correction is applied to this basic formulation. The
smearing corrections employed in the present work are described in §§ 2.3 and 5.

2.2. Vortex-based smearing correction
In the actuator line method with smearing correction, the velocity us, sampled from the
CFD simulation at control point xj, is summed to the ‘missing velocity’ um to arrive at the
corrected velocity

uc(xj) = us(xj) + um(xj). (2.11)

The ‘missing velocity’ is defined as the difference between the velocities induced by
the vortices created by the actuator line and ‘reference’ vortices. The concept of what
is considered a ‘reference’ vortex varies between the works. Dağ & Sørensen (2020)
and Meyer Forsting et al. (2019a) consider a vortex filament with an infinitesimal core,
while Martínez-Tossas & Meneveau (2019) consider the vortex created using the optimum
smearing parameter developed in Martínez-Tossas et al. (2017). A viscous core model with
the radius of the vortex core evolving in time could also be implemented easily. If there
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is the possibility of the vortices impinging the actuator lines, then it might be useful to
employ some desingularization method.

In the present work, we adopt the definition of reference vortices as vortex filaments with
an infinitesimal core. In this method, the missing velocity is calculated from the difference
of velocities induced by ideal, singular, vortices (superscript vi) and vortices with finite
core created by the actuator lines (superscript v):

um(xj) = uvi(xj) − uv(xj). (2.12)

Using this definition of missing velocity, the aim of the method is to reproduce the results
of a lifting line method. The idea behind the vortex-based smearing correction is that the
velocity sampled from the numerical simulation, in a linear approximation, is given by the
sum of the local undisturbed velocity U and the velocity induced by the vortices created
by the actuator line:

us(xj) ≈ U(xj) + uv(xj). (2.13)

From (2.11), the corrected velocity becomes

uc(xj) ≈ U(xj) + uvi(xj), (2.14)

which reproduces the results of a lifting line method. It should be noted that the local
undisturbed velocity U is not known in ALM simulations (except for simple cases, used
mostly as validation). Only the velocity sampled from the simulations us is known. From
this comes the need to model the velocity induced by the vorticity created by the actuator
lines, uv , described in § 3.

On top of the results from the vortex-based smearing correction, other corrections can be
introduced, based on the known limitations of the lifting line method. For example, Dağ
(2017) combined the smearing correction with the decambering correction of Sørensen,
Dag & Ramos-García (2016). Limitations and further corrections of the lifting line method
are out of the scope of the present work, and we consider it as the reference for validation
of the vortex-based smearing correction.

2.3. Iterative smearing correction
The missing velocity is calculated from the circulation of the bound and wake vortices. At
the same time, the circulation is calculated from the corrected velocity, using (2.10). For
this reason, an iterative procedure was used by Dağ & Sørensen (2020) and Meyer Forsting
et al. (2019a). The approach of Meyer Forsting et al. (2019a) applies the relaxation factor
to the velocity. In this work, we apply the relaxation factor to the circulation, because we
solve for the circulation in § 5.

The steps of the iterative smearing correction, for each time step, are as follows.

(i) Start from a guess of the circulation distribution, usually the circulation from the
previous time step.

(ii) Form the vortex sheet by:
(a) prescribing the vortex sheet, for example, by assuming helical or horseshoe

vortices; or
(b) employing a free-vortex wake method, for example, by advecting the vortices

with the CFD velocity or by a combination of the CFD velocities and the
velocities induced by the free vortices.

(iii) Calculate the missing velocity um(xj) at every control point. Find the local corrected
velocities according to (2.11).
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(iv) Calculate the effective angle of attack using (2.9).
(v) Find the local lift coefficient Cl, interpolating from the aerofoil data table.

(vi) Calculate the new value of circulation Γ new
j using (2.10).

(vii) Update the current value of circulation using a relaxation factor r:

Γj = rΓ new
j + (1 − r)Γ old

j . (2.15)

(viii) Restart from step (ii) if the local velocity affects the formation of the vortex sheet,
or from step (iii) otherwise, using the value of circulation calculated in the previous
step. Iterate until a chosen convergence criterion is reached.

The forces are calculated after convergence. There is an ambiguity regarding the choice
of velocity used to calculate the forces. This ambiguity is resolved for the lift force
in Kleine, Hanifi & Henningson (2023). For the present simulations, the difference is
negligible, because the error is of second order (see Kleine et al. (2023) for further
discussion on this topic). In the present work, all forces are calculated using the corrected
velocities.

3. Vorticity created by body forces and the missing velocity

3.1. Vorticity generated by body forces
Some of the development of Martínez-Tossas & Meneveau (2019) is reproduced in this
section for completeness. Neglecting viscous effects in a steady flow, the vorticity equation
in steady flow becomes

u · ∇ω = ω · ∇u + ∇ × f . (3.1)

Equation (3.1) can be linearized considering a uniform base flow U = const., arriving at

U · ∇ω = ∇ × f . (3.2)

Considering uniform flow aligned with the z-axis, U = (0, 0, Uz), for a straight wing with
only lift forces, that can be considered to act aligned with the y-axis, f = (0, fy, 0), we
have

Uz
∂ωx

∂z
= −∂fy

∂z
=⇒ ωx = − fy

Uz
, (3.3)

Uz
∂ωz

∂z
= ∂fy

∂x
=⇒ ωz =

∫ z

−∞
1

Uz

∂fy
∂x

dz, (3.4)

while ωx, ωz 	 ωy ≈ 0. (For a more detailed derivation, the reader is referred to Kleine
2022.)

The bound vorticity ωi
x generated by an ideal concentrated force f i

y = −Fl(x)/ρ δ( y) δ(z)
is

ωi
x = − f i

y

Uz
= 1

Uzρ
Fl(x) δ( y) δ(z), (3.5)

where it is relevant to note that a positive lift force Fl applies a negative force to the fluid.
The integral of the vorticity in the spanwise direction is equal to the circulation Γ at the
section. For the case with concentrated force,

Γ (x) =
∫ +∞

−∞

∫ +∞

−∞
ωi

x dy dz = 1
Uzρ

Fl(x) δ( y) δ(z) = 1
Uzρ

Fl(x), (3.6)

which agrees with the Kutta–Joukowski theorem.
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3.2. Vorticity generated by a discontinuous distribution of force
In numerical methods, usually the force is discretized and represented by interpolating
functions inside segments. The theory for the semi-infinite wing of Martínez-Tossas
& Meneveau (2019) can be used to construct a discretized method. In the current
implementation of the actuator line method, for each segment j, the force is calculated
at control point xj and considered constant for x-positions between the boundaries of the
segment, xj− ≤ x ≤ xj+ . The two-dimensional force can be defined based on

F 2D(x) =
N∑

j=1

(H(x − xj−) − H(x − xj+)) F 2D(xj), (3.7)

where H(z) is the Heaviside step function with the half-maximum convention. From (2.3),
the ideal body force is then given by

f i(x, y, z) =
N∑

j=1

(H(x − xj−) − H(x − xj+)) δ( y) δ(z)
F 2D(xj)

ρ
, (3.8)

which, in most cases, will be discontinuous at the boundary of the segments (the average
is considered at the boundary of the segments). The convolution with a Gaussian function
(2.7) transforms the body forces to

f (x, y, z) =
N∑

j=1

(Hε(x − xj−) − Hε(x − xj+)) η( y) η(z)
F 2D(xj)

ρ
, (3.9)

where the function

Hε(x) =
erf
(x
ε

)
+ 1

2
(3.10)

is defined as a smeared (mollified) Heaviside step function (Caprace et al. 2019).
Equation (3.9) is employed directly in the current simulations. As far as the authors

are aware, this may be the first implementation of the analytical convolution in an ALM
code. However, it should be noted that most works do not describe how the convolution
operation is performed in practice. We are aware, however, that many implementations,
including the previous version of our code (Kleusberg 2019), perform the convolution
operation numerically.

Considering only lift force, the bound vortex is (from (3.3))

ωi
x =

N∑
j=1

(H(x − xj−) − H(x − xj+)) δ( y) δ(z) Γj, (3.11)

ωx =
N∑

j=1

(Hε(x − xj−) − Hε(x − xj+)) η( y) η(z) Γj, (3.12)

where Γj = Fl(xj)/(Uzρ). We can notice that the vorticity not only spreads as a Gaussian
function in the directions normal to the actuator line, but also spread outside the
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boundaries of the line in the spanwise direction (terms Hε). From (3.4), the shed vorticity
is

ωi
z = −

N∑
j=1

[
δ(x − xj−) δ( y) H(z) − δ(x − xj+)δ( y)H(z)

]
Γj, (3.13)

ωz = −
N∑

j=1

[
η(x − xj−) η( y) Hε(z) − η(x − xj+) η( y) Hε(z)

]
Γj. (3.14)

The first two terms of (3.13) are the singular semi-infinite vortices generated by the
discontinuities in the circulation at the boundary of the segment, in positions xj− and xj+ .
These terms in (3.14) become semi-infinite Lamb–Oseen vortices centred in xj− and xj+ .
This case regresses to a discretized Prandtl lifting line in the case of (3.13), and to a lifting
line with vortices with Gaussian core in the case of (3.14)

The vorticity of (3.11) and (3.13) is identical to the vorticity considered in the lifting line
method, under the assumption that the velocity Uz is approximately constant inside each
segment. For rotating blades, this assumption is an approximation, since the local velocity
changes along the blades. Nevertheless, this assumption is consistent with the linear theory
and is a good approximation if the length of the segment is small compared to the radius.

The missing velocity is defined as the velocity needed to recover the velocity induced
by singular vortices, as explained in § 2.2. If the implementation of the ALM considers
constant circulation inside each segment, then the correction proposed by Dağ & Sørensen
(2020) is equivalent to a lifting line method, according to the linear approximation,
as proposed by Dağ & Sørensen (2020) and Meyer Forsting et al. (2019a) (putting
aside other simplifications, as discussed in §§ 3.3 and 3.4). If the implementation of the
ALM considers a non-constant distribution of circulation inside each segment, then the
correction by Dağ & Sørensen (2020) is not identical to the discrete lifting line method,
because (3.13) and (3.14) would have extra terms. This case is not treated here, but
could be a topic for further research. Interestingly, also the discretized implementation
of Martínez-Tossas & Meneveau (2019) is not exactly identical (although very similar)
to the classical lifting line method, because it considers implicitly the vortices located at
the control points (equation (5.7) of that reference), not at the boundaries of segments, as
would be usual in a classical discretized lifting line.

The bound vortex is also affected by the convolution with the Gaussian kernel, as seen
in (3.12). However, it does not affect the forces in most cases, since most geometries
have straight wings or blades, and a straight bound vortex does not induce velocity on
itself. For multi-blade configurations, the blades are usually too distant for the correction
to make any difference (distance is several times ε). A possible exception may be the
hub; however, the circulation at the hub is low, and the forces are not as relevant for
performance. As a consequence, the effect of the convolution on the vorticity generated
and the implementation of corrections for bound vorticity have been, justifiably, neglected.

3.3. Velocity induced by a smeared vortex segment
In the method of Meyer Forsting et al. (2019a) and Dağ & Sørensen (2020), the
vortex wake is discretized by segments, and the missing velocity is calculated for each
finite-length segment of vortex with a Gaussian distribution of vorticity. Hence it is
relevant to study the velocity induced by a finite-length segment with a cross-section of
Gaussian vorticity distribution.

961 A29-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

23
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.237


Non-iterative vortex-based smearing correction for the ALM

2

2

1

0

0

–1

–2

–2
0

2
4

6
8

10

12

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

–2

y
ε

z – zj–
ε

x
ε

Figure 2. Smeared vortex segment of length zj+ − zj− = 10ε. Isocontours and volume rendering indicate
normalized vorticity ωzπε2/Γj, given by (3.16). The black line indicates the segment of vortex filament with
concentrated vorticity.

Without loss of generality, we consider a straight segment of vortex filament with
constant circulation Γj, located at (x, y) = (0, 0) and aligned with the z-direction, from
zj− to zj+ , given by

ωi
z = δ(x) δ( y)(H(z − zj−) − H(z − zj+))Γj. (3.15)

A ‘smeared vortex segment’ is defined as the smeared equivalent of the straight segment
of vortex filament formed by the convolution of (3.15) with a Gaussian function in three
dimensions. In order to compute the velocity induced by a smeared vortex segment, the
approach of Leonard (1980) is taken (see also Leonard 1985; Winckelmans 1989). The
vorticity of a segment of vortex filament convoluted with a three-dimensional Gaussian
function is given by

ωz = Γj

∫ zj+

zj−
η3(x, y, z − z′) dz′ = η(x) η( y)(Hε(z − zj−) − Hε(z − zj+))Γj. (3.16)

Figure 2 shows a vortex filament of length 10ε with concentrated (infinite) vorticity in
black and the vorticity distribution of the corresponding smeared vortex segment.

The velocity induced by a smeared vortex segment is given by Leonard (1980) as

uv(x) = Γj

4π

∫ zj+

zj−

êx × (x − x′)
|x − x′|3 g(|x − x′|)dz′, (3.17)

where function g(s) is defined as

g(s) = 4π

∫ s

0
η3(s′) s′2 ds′ = erf

( s
ε

)
− 2s η(s), (3.18)

in which the three-dimensional Gaussian kernel η3(s′) (see (2.5)) is rewritten in terms of
the spherical coordinate s′ =

√
x2 + y2 + z2. Hence the induced velocity, in the azimuthal
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direction, is

uv
θ (r, z) = Γj

4π
r
∫ zj+

zj−

erf

(√
r2 + (z − z′)2

ε

)
− 2

√
r2 + (z − z′)2 η

(√
r2 + (z − z′)2

)
(r2 + (z − z′)2)3/2 dz′

= Γj

4π

(
Φ(r, z − zj+) − Φ(r, z − zj−)

)
, (3.19)

where

Φ(r, Z) = 1
r

(
− Z√

r2 + Z2
erf
(√

r2 + Z2

ε

)
+ exp

(
− r2

ε2

)
erf
(

Z
ε

))
. (3.20)

Analogously, Φ i(r, Z) can be defined as

Φ i(r, Z) := lim
ε→0

Φ(r, Z) = 1
r

(
− Z√

r2 + Z2

)
, (3.21)

and the velocity induced by a singular vortex segment can be calculated as

uvi
θ (r, z) = Γj

4π
(Φ i(r, z − zj+) − Φ i(r, z − zj−)), (3.22)

which agrees with the classical results for a vortex segment (see e.g. Katz & Plotkin 1991).
Therefore, in the present work, for each vortex segment, the missing velocity is then

calculated as

um
θ (r, z) = uvi

θ (r, z) − uv
θ (r, z)

= Γj

4π
((Φ i(r, z − zj+) − Φ i(r, z − zj−)) − (Φ(r, z − zj+) − Φ(r, z − zj−))).

(3.23)

The same correction is applicable to the bound vortices and wake vortices, taking into
account the different orientations of the vortices.

For z = 0, zj− = 0 and zj+ → +∞, the induced velocity is given by

uv
θ (r, 0) = Γj

4πr

(
1 − exp

(
− r2

ε2

))
, (3.24)

which is the formula for a semi-infinite vortex used by Martínez-Tossas & Meneveau
(2019) (and consistent with the relationship mentioned by Meyer Forsting et al. 2019a;
Dağ & Sørensen 2020).

However, (3.23) is clearly different from the approximations employed in Meyer
Forsting et al. (2019a) and Dağ & Sørensen (2020). The approximation for Φ used in
these works for a vortex segment introduces errors. For the formula of Meyer Forsting et al.
(2019a), negative and positive errors compensate each other for a semi-infinite vortex, but
the same cannot be concluded for other vortex geometries. Such errors are not expected to
be present in the application of the correction of Martínez-Tossas & Meneveau (2019) to
straight wings in uniform flow. However, the application of the formula of Martínez-Tossas
& Meneveau (2019) to the case of rotating blades without adaptations, such as performed
in Stanly et al. (2022), may incur other errors, since the helical vortex structure formed by
the blades is being modelled by a vortex sheet formed by straight horseshoe vortices.
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Nevertheless, the good results of Dağ & Sørensen (2020) and Meyer Forsting et al.
(2019a) show that their corrections improve the results when compared to ALM without
correction or with other heuristic tip corrections, even using the approximate value of Φ.
A possible explanation for that is based on the observation that the missing velocity is
related directly to the difference Φ i − Φ. For the vortices near the blades that tend to
dominate the correction, the value of Φ i is much larger than Φ, so the exact value of Φ

is not as relevant, as long as the order of magnitude is the same. The dominance of the
vortices near the blades is also a possible explanation for the improved results observed
by Stanly et al. (2022), even considering straight horseshoe vortices instead of helical
vortices. The estimate of the order of magnitude of the errors caused by these different
approximations is left for further studies. In the present work, the analytical integration,
represented by (3.20), is used to avoid the approximation errors.

3.4. Forming the vortex sheet
Forming the vortex sheet is an intrinsic part of both the ALM with smearing correction
and the lifting line method. It should be noted, however, that the methods are not going to
be mathematically identical even if the vortex sheet is formed with the same procedure in
both methods. In the actuator line, the induced velocity is formed partly by the smeared
vortices created in the CFD simulation and partly by the vortex sheet of the smearing
correction, which is formed by one of the strategies detailed below (that may be more or
less dependent on the results from the simulation). Hence even if the vortex sheet from the
smearing correction is identical to the vortex sheet of the lifting line method, the induced
velocities can differ slightly, because the vortex sheet created in the CFD simulation may
be different from the vortex sheet of the lifting line method. This phenomenon can be
observed in the results of § 7.1, where its effect is noticeable but negligible.

The formation of the vortex sheet for the smearing correction varies in past works. The
method of Martínez-Tossas & Meneveau (2019) does not require an explicit vortex sheet,
since the correction is based on analytical semi-infinite vortices for a straight wing under
uniform flow. However, the same correction was applied by Stanly et al. (2022), which
would mean that the helical vortex structure is modelled implicitly by horseshoe vortices.
As discussed in § 3.3, errors are expected to be introduced by this approximation.

In Dağ & Sørensen (2020), the helical vortices were imposed considering the pitch of
each of the helical vortices based on the local relative flow angle at the position where
the vortex is released. In Meyer Forsting et al. (2019a), a fixed helical wake was assumed,
based on the near-wake model of Pirrung et al. (2016) and Pirrung, Madsen & Schreck
(2017), and the bookkeeping of the position of released vortices is necessary for only one
of the factors involved in the smearing correction. The need for bookkeeping was later
removed by Meyer Forsting et al. (2020), reducing computational cost with negligible
effect on the forces.

In the present work, we implement a free-vortex wake method within our simulation,
a strategy already suggested by Dağ & Sørensen (2020), assuming that the vortices are
advected by the flow velocity. Tracing particles are used to follow the positions of the
boundaries of the vortex segments. Also, the past values of circulation, which are present
in the wake, are used directly, which is a more realistic situation than considering the
whole wake as having the value of circulation that the wing currently assumes. This
method has the drawback of requiring bookkeeping of the circulation and position of the
vortices emitted in previous time steps. Nevertheless, it has the advantage of requiring no
ad hoc assumption and therefore the method maintains its generality.
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There is an ambiguity regarding using the corrected velocity, or the uncorrected velocity
sampled directly from the numerical simulation, to estimate the position of vortices.
However, this difference is of second order for the velocities along the actuator line.
Using the corrected velocity might even introduce errors or numerical instability if used
throughout the vortex sheet, because of the singularity of ideal vortices: vortices released
recently might suffer the effect of the singularity of the bound vortex, and curved vortices
might induce numerical instabilities.

Hence, in the current implementation, the tracing particles that define the boundaries of
the vortex filaments are advected by the velocities sampled from the simulation, without
correction. This reduces the number of operations needed so that the correction velocity
is calculated on only the control points of the actuator line, not on other points of the
vortex sheet. More relevant for our non-iterative method, the vortex sheet can be advected
before the computation of the correction velocity at a certain time step. For its lower
computational cost, a first-order Euler time integration method is used to advect the tracing
particles. The information related to time steps older than n − nw is not stored, where n is
the current time step, and nw is the number of tracing particles.

In order to save computational resources, not all tracing particles are kept. The vortices
released in the last nnw time steps are always maintained in the memory. However, a
group of vortices is fused if the distance between the tracing particles is below dw, with
the circulation taken as the average of the circulation of the vortices fused together. The
strategy of fusing vortices guarantees a minimum wake length of (nw − nnw − 1)dw near
the tip of the blades, the region of interest and where the advection velocity is larger.
For the current simulations, the choice of parameters is nw = 50, nnw = 10 and dw = ε/2,
guaranteeing a wake length of approximately 20ε near the tip. Analysis of the correction
of (3.23) indicates that errors involved in discarding vortices farther than this length are
negligible. The wake length is lower near the hub, but this region is less relevant for the
performance of the turbine. A parameter study for the simulation of the NREL 5-MW
turbine of § 7.2 showed that doubling nw and nnw had negligible effects on the circulation.

For unsteady simulations, a vorticity wake in the spanwise direction would be shed when
the circulation changes, similar to the starting vortex of Kelvin’s circulation theorem.
Following a quasi-steady approach, the correction for this spanwise shed vorticity is
neglected, hence it is not modelled in our method. For further discussion about this shed
vorticity and unsteady effects, the reader is referred to Kleine (2022). The effect of the
Gaussian smearing on unsteady effects is left for future studies.

4. Iterative lifting line consistent with the actuator line method

The formulation of the actuator line presented in §§ 2.1 and 2.3 is very similar to a
nonlinear lifting line method (Anderson 1991; see also Phillips & Snyder 2000). Hence
we can develop a numerical nonlinear lifting line method consistent with the actuator
line method with vortex-based smearing correction. While Anderson (1991) uses the
undisturbed uniform inflow velocity (U∞) to calculate the circulation, we use the local
velocity, basing our method on (2.10), in an approach similar to that of Phillips & Snyder
(2000). Also, in this formulation, the undisturbed velocity U = (Ux, Uy, Uz) (velocity as
if the wing were not present in the flow) can change along the span, a feature paramount
for the application of the actuator line to rotating blades. The local velocity u, which is
previously unknown, can be calculated from the local undisturbed velocity U and the
velocity induced by the vortex system, uvi, at control point xj, given by

u(xj) = U(xj) + uvi(xj), (4.1)
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The steps of the nonlinear lifting line are as follows.

(i) Start from a guess of the circulation distribution, for example, applying (2.10) with
u = U .

(ii) Form the vortex sheet by:
(a) prescribing the vortex sheet, for example, by assuming helical or horseshoe

vortices; or
(b) employing a free-vortex wake method.

(iii) Calculate the velocity induced by the bound vortex and the vortex sheet at every
control point, uvi(xj). Find the local velocity according to (4.1).

(iv) Calculate the effective angle of attack using (2.9).
(v) Find the local lift coefficient Cl, interpolating from the aerofoil data table.

(vi) Calculate the new value of circulation Γ new
j using (2.10).

(vii) Update the current value of circulation using a relaxation factor r:

Γj = rΓ new
j + (1 − r)Γ old

j . (4.2)

(viii) Restart from step (ii) if the local velocity affects the formation of the vortex sheet or
from step (iii) if a prescribed vortex sheet is considered, using the value of circulation
calculated in the previous step. Iterate until a chosen convergence criterion is
reached.

This iterative lifting line method was used as the reference to compare the results of
the ALM in § 7.1, with the parameters detailed in § 6.2. This formulation is able to deal
with configurations in which the induced velocity can no longer be considered small
compared to the undisturbed velocity, as observed in Kleine et al. (2023). Based on the
same equations, a linearized lifting line method is developed in Appendix A, which is
used to derive the non-iterative smearing correction.

5. Non-iterative smearing correction based on the linearized lifting line method

The steps to apply the smearing correction (§ 2.3) are basically equal to the steps of the
nonlinear lifting line described in § 4, except for step (iii), which becomes the calculation
of the missing velocities, and step (ii), which allows the formation of the vortex sheet using
data from the CFD simulation. Therefore, a non-iterative smearing correction based on the
formulas of the linearized lifting line described in Appendix A can be devised.

A minor difference in the process of the iterative lifting line and the smearing correction
is the possibility to start from a previous time step, which provides a better guess for the
circulation. This minor difference, however, is what allows the linearized, non-iterative
formulation of the smearing correction to have good results even if the aerofoil lift
coefficient is not linear with respect to the angle of attack.

The first phase of the method is to find an approximate solution to linearize around.
This is achieved by applying the first three iterative steps of § 2.3 only once. The corrected
velocity calculated from the circulation distribution Γ n−1 from the previous time step
n − 1 is

uc(xj, Γ
n−1) = us(xj) + um(xj, Γ

n−1). (5.1)
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Representing the variables around which the functions are linearized by superscript †, we
have

u†
y := uc

y(xj, Γ
n−1) = us

y(xj) + um
y (xj, Γ

n−1), (5.2)

u†
z := uc

z(xj, Γ
n−1) = us

z(xj) + um
z (xj, Γ

n−1). (5.3)

Analogously to Appendix A,

u†
r :=

√
(u†2

z + u†2
y ), α

†
j := αgj + arctan

(
u†

y

u†
z

)
and Γ

†
j := 1

2
u†

r cj Cl(α
†
j ).

(5.4a–c)
Phase two of the linearization process involves finding another linear relation between

the corrected velocity and the circulation. It is assumed that the missing velocity is not
relevant for the formation of the vortex sheet, as discussed in § 3.4, and the CFD velocity
is used directly to advect the vortices. This implies that the current value of circulation does
not affect the geometry of the vortex sheet, which simplifies the method and is consistent
with a first-order approximation.

The unknown missing velocity for the value of circulation at the current time step, Γ n,
can be divided into two components:

um(xj, Γ
n) = ump(xj, Γ

n) + umc(xj, Γ
n), (5.5)

where ump is the velocity induced by the vortex sheet emitted in the previous time steps,
and umc is the velocity induced by the vortex sheet emitted in the current time step and
by the bound vortices. The value of circulation at the current time step does not affect the
vortex wake emitted in the previous time steps, hence the velocity induced by its vortices,
ump , is already computed. Considering the linearity of the relationship between velocity
and circulation, (5.5) can be rewritten as

um(xj,Γ
n) = ump(xj) + umc(xj,Γ

n−1) + �umc(xj,�Γ ) = um(xj,Γ
n−1) + �umc(xj,�Γ ),

(5.6)
where �umc = umc(xj, Γ

n) − umc(xj, Γ
n−1) and �Γ = Γ n − Γ n−1. A schematic

representation is shown in figure 3.
We write the velocities induced at control point j by the vortex system k, which includes

the bound vortex and the vortex sheet created by the segment k at the current time step, as

umck
y (xj, Γ

n
k ) = amc

y,jkΓ
n

k , (5.7)

umck
z (xj, Γ

n
k ) = amc

z,jkΓ
n

k , (5.8)

where amc
y,jk and amc

y,jk are the influence coefficients obtained considering only the bound
vortex and the vortex sheet emitted at the current time step (see figure 3). It should be
noted that the coefficients amc

y,jk and amc
y,jk should already be known to perform step (iii)

of the usual iterative version of the smearing correction (§ 2.3). Equations (5.7) and (5.8)
written in matrix form are

umc
y (Γ n) = Amc

y Γ n, (5.9)

umc
z (Γ n) = Amc

z Γ n. (5.10)

The missing velocity um
y (Γ n) is then written as

um
y (Γ n) = um

y (Γ n−1) + Amc
y �Γ . (5.11)
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umc (xj, Γ
n–1)

=

Γ n

Γ n–1

Γ n–2

Γ n–3

Γ n–1

Γ n–2

Γ n–3

ump (xj)

+

Γ n–1

umc (xj, Γ
n–1)

+
�Γ

�umc (xj, �Γ )

um (xj, Γ
n–1)

um (xj, Γ
n)

Figure 3. Schematic representation of (5.6). The missing velocity is the sum of the missing velocity due to the
vortex sheet emitted in the previous time steps (leftmost figure of the second row) and the missing velocity due
to the bound vortex and the vortex sheet emitted in the current time step, which can also be split into two terms
(central and rightmost figures of the second row).

Combining (5.2) and (5.11), the corrected velocity uc
y can be written as

uc
y(Γ n) = u†

y + Amc
y �Γ . (5.12)

Analogously for uc
z :

uc
z(Γ

n) = u†
z + Amc

z �Γ . (5.13)

Finally, the linear equation can be found following the steps of Appendix A. Similar to
(A1), the linearization of (2.10) becomes

Γ n
j = Γ

†
j + 1

2
cj

[(
Cl(α

†
j )

u†
y

u†
r

+ ∂Cl

∂α
(α

†
j )

u†
z

u†
r

)
�umc

y

+
(

Cl(α
†
j )

u†
z

u†
r

− ∂Cl

∂α
(α

†
j )

u†
y

u†
r

)
�umc

z

]
, (5.14)

which can be written in matrix form as

(I − (diag(b†
y) Amc

y ) − (diag(b†
z) Amc

z ))�Γ = Γ † − Γ n−1, (5.15)

where b†
y and b†

z can be found using the corresponding versions of (A5) and (A6). Here,
�Γ is found by solving the linear system, and the corrected velocities are calculated using
(5.12) and (5.13).

If the lift coefficient has a linear relation with the angle of attack, then this method is
expected to give good results, even if the differences in the circulation are high, just like a
conventional lifting line method has good results despite starting from a completely wrong
circulation distribution. However, the strength of the method is in the fact that the functions
are linearized around the velocities calculated at the first iteration of a conventional
smearing correction. The differences in the velocities and circulation are expected to
be small in most simulations, justifying this linearization, even if the lift coefficient is
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not linear. The method is expected to perform poorly only if the lift coefficient slope
changes with the angle of attack and the flow conditions vary greatly between time steps.
For these extreme cases, the linear method presented here can be used to accelerate
the convergence of an iterative method. The linear system is relatively small, of size N,
usually several orders of magnitude smaller than the CFD solver, which makes its solution
computationally inexpensive.

For multiple turbines, each turbine can be solved in isolation, since the distance between
turbines is much greater than ε. In fact, if the distance between the blades is much larger
than ε or if forces at the hub are not relevant, then the system of equations can be divided
and each blade solved independently. This last simplification was not implemented for the
results of § 7.

All the aspects regarding the formation of the vortex sheet and calculation of the induced
velocity are accounted for in matrices Amc

y and Amc
z . This means that the method of previous

works (Martínez-Tossas & Meneveau 2019; Meyer Forsting et al. 2019a, 2020; Dağ &
Sørensen 2020; Stanly et al. 2022) could benefit from the procedure outlined in this
section, just by forming matrices Amc

y and Amc
z compatible with their respective methods. In

particular, if desirable, all of the methods for increasing the speed of calculations detailed
in Meyer Forsting et al. (2020) could be implemented easily and would affect only the
coefficients of these matrices.

For the methods that prescribe the shape of the vortex sheet, the separation of the
missing velocity in the components of (5.5) could be skipped; however, it would reduce
errors relative to the linearization if implemented. This means that the non-iterative
strategy should also work even without bookkeeping of previous values of circulation.
A mixed strategy that could be used to reduce the cost is to use a prescribed wake
to calculate um

y (Γ n−1), considering the circulation along the whole wake as Γ n−1

(substituting older values of Γ in figure 3 by Γ n−1) and another prescribed near wake
to define �umc

y , reducing the magnitude of the influence coefficients (compared to the
case without any bookkeeping).

6. Numerical method

6.1. Numerical solver of Navier–Stokes equations with the actuator line
The incompressible three-dimensional Navier–Stokes equations are solved in the
spectral-element code Nek5000 (Fischer, Lottes & Kerkemeier 2008). The system of
equations is expressed in weak form, and the solution is expanded in terms of basis
and test functions on each of these elements (Offermans et al. 2020). In this work, the
basis for the velocity space consists of seventh-order Lagrange polynomial interpolants on
Gauss–Lobatto–Legendre quadrature points in each element. The PN − PN−2 formulation
is used (Maday & Patera 1989). For temporal discretization, a third-order implicit/explicit
scheme (BDF3/EXT3) (Fischer 2003) is employed. Filtering of the higher modes is applied
to stabilize the simulation (Fischer & Mullen 2001).

In the current simulations, an adaptive mesh refinement strategy with a spectral error
indicator (Offermans 2019; Offermans et al. 2020; Tanarro et al. 2020) is used to reduce
the computational cost. We choose to force maximum discretization of the grid around the
actuator lines, independently of the error indicator, to guarantee adequate discretization
for the chosen value of the smearing parameter.

The actuator line was implemented previously in Nek5000 (Kleusberg et al. 2016,
2017; Kleusberg 2019) with Prandtl’s tip correction. The code was validated extensively,
showing good agreement between numerical and experimental results (Kleusberg et al.
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Ly

Lx

Lz

Lzout

Lzin

U∞ y

x
z

Figure 4. Reference system and schematic view of the computational domain. The centre of the turbine/wing is
equidistant to the upper, lower and lateral boundary conditions. Distances to the inflow (Lzin) and to the outflow
(Lzout) may be different. The centre of the turbine/wing is located at the origin of the coordinate system.

2017; Mühle et al. 2018; Kleusberg 2019; Kleusberg, Schlatter & Henningson 2020).
Since the focus of those studies was on the wake and on total forces, the errors caused
by the approximation of the tip correction were not considered to greatly affect the results.
The low dissipation and dispersion of the spectral-element method make it well-suited for
stability analysis, hence this code was used previously in several vortex stability studies
(Kleusberg 2019; Kleusberg, Benard & Henningson 2019a; Kleine et al. 2019, 2022).

The iterative and direct smearing corrections of §§ 2 and 5, with the correction velocity
detailed in § 3.3, were implemented in the code. For the iterative smearing correction,
the circulation is considered converged when ‖Γ new − Γ old‖/‖Γ new‖ < 10−5 (where
‖Γ ‖ represents the Euclidean norm of the circulation vector). Also implemented is the
analytical form of the convolution of the Gaussian function with a force distribution
formed by segments of constant force presented in § 3.2.

For the NREL 5-MW reference turbine (Jonkman et al. 2009), the aerofoil is defined
only for a few spanwise positions in the original reference. In Martinez-Tossas et al.
(2018), two different approaches have been employed by different codes, one considering
abrupt changes in the aerofoil, and the other considering interpolation of coefficients
between sections. In the present implementation, the aerofoil data from Jonkman et al.
(2009) are interpolated between sections, as performed by the DTU code EllipSys3D in
Martinez-Tossas et al. (2018), making the force curves smoother and avoiding problems
with the discontinuities.

The non-iterative method requires the value of the lift coefficient slope. A third-order
polynomial interpolation of Cl is used to avoid discontinuities in the lift coefficient slope.
The tabulated aerofoil lift coefficient is modelled using a shape-preserving piecewise cubic
polynomial (The MathWorks, Inc. 2022).

A schematic representation of the computational domain can be seen in figure 4.
Dirichlet boundary conditions are used for the inflow, upper, lower and lateral boundary
conditions. The natural outflow boundary condition is imposed at the outlet.

6.2. Lifting line method
The nonlinear iterative lifting line method of § 4 was implemented, considering horseshoe
vortices aligned with the z-direction. The same discretization of the actuator line method
is used. Since the lifting line method is much faster to run, a stricter convergence criterion
is used. The iteration is considered converged when the difference of circulation at every
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Aspect ratio, R/c αg (rad) αg (deg.) (Lx/R, Ly/R, Lz/R) Lzin/R

10 1/(2π) 9.189 (12, 12, 12) 6

Table 1. Parameters of the simulation of the wing with constant chord in uniform flow.

control point is lower than 10−8 of the mean absolute value of circulation:

max1≤j≤N

(
|Γ new

j − Γ old
j |

)
1
N
∑N

j=1 |Γ new
j |

< 10−8. (6.1)

7. Results

7.1. Comparison with the lifting line method
The results of the simulation of the ALM with smearing correction were compared with
the results of a nonlinear iterative lifting line for a planar straight wing with constant chord
in uniform flow. Because the flow has reached the steady state, no difference was expected
between the iterative and direct methods for this case, which is confirmed by the results.
Nevertheless, we present the results for both strategies for completeness.

The parameters of the geometry and simulation are presented in table 1. Except where
explicitly stated, all values are non-dimensionalized by the span (R), the velocity at infinity
(Uref = Uz) and the density (ρ). An ideal aerofoil without drag and with lift coefficient
Cl = 2πα is chosen (considering the standard non-dimensionalization of Cl using the
chord). The angle of attack αg = 1/(2π) is such that a lift coefficient Cl(αg) = 1 and
circulation Γ0/(RUz) = 0.05 would be expected for a two-dimensional simulation (case
with zero induced velocity).

For the ALM simulations, the Reynolds number based on the chord is Rec = cUz/ν =
104 (where ν is the kinematic viscosity). The Reynolds number is not applicable to the
lifting line method.

The average grid spacing in the region of the actuator line is �x = R/56. The results for
two values of smearing parameter are compared: ε = 3.5�x = R/16 and ε = 7�x = R/8.
The lower chosen value is higher than the usual minimum (2�x ≤ ε ≤ 3�x), but it
provides a better reference for validation because it allows better resolution of the vortex
core, a choice also adopted by Meyer Forsting et al. (2019a). It is also of practical
interest: ε = 3.5�x has been used in vortex stability studies (Kleine et al. 2022), based on
parametric studies that showed that a larger smearing parameter creates lower numerical
oscillations (Kleusberg et al. 2019b). The last value, ε = 7�x, is included only as a
reference, in order to evaluate the correction for a very large kernel, but large kernels
are not usually employed in practice (as far as we are aware). The case ε = 2�x = R/28
is discussed in Appendix B, where the effect of grid resolution is analysed.

Because of symmetry, just the results for half of the wing are shown. As can be seen
in figure 5, the agreement is excellent for all cases. The difference in the induced velocity
uy is of the order of 10−4 (0.01 % of the undisturbed velocity), an agreement much better
than those reported by Dağ & Sørensen (2020) and Meyer Forsting et al. (2019a). The
difference is of the order of the square of uy, which is consistent with a first-order method,
and therefore a better agreement was not expected. The other works are mentioned not as
a criticism, but to bring context to the current values, showing the strength of the method.
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Figure 5. Comparison of the results for the straight wing in uniform flow: LL indicates nonlinear iterative
lifting line method of § 4; ALMd indicates ALM with non-iterative correction of § 5; ALMi indicates ALM
with iterative correction of § 2.3. (a) Corrected velocity in the y-direction. (b) Difference between y-velocities
obtained by the ALM and LL. (c) Corrected velocity in the z-direction. (d) Difference between z-velocities
obtained by the ALM and LL. (e) Circulation. ( f ) Relative difference between circulation obtained by the
ALM and LL.

For most practical applications of the actuator line, the errors of the other methods can
also be considered negligible.

We believe that the remarkable agreement can be explained mainly by three factors.
First, the convolution of the force with the Gaussian kernel was performed analytically
using (3.9), considering constant force in a segment, which is the case that is
mathematically equivalent to the lifting line method. Second, the lifting line method was
carefully constructed to be consistent with the actuator line method. Third, the use of the
velocity induced by a smeared vortex segment of § 3.3 has lower associated errors when
compared to other strategies where the vortices are also discretized.

The difference between the results for the two values of the smearing parameter is
negligible. This is exactly the aim of the smearing correction: to make the forces on the
blades insensitive to variations of the smearing correction and approach the lifting line
method, which is the limit ε → 0.
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The velocity in the z-direction is also shown in figure 5, because it influences the
circulation. The effect of the smearing correction on uc

z is minimal. For most points, the
missing velocity um

z is at least one order of magnitude lower than the difference observed
in figure 5(d). Hence the differences observed are due mainly to the velocity sampled from
the numerical simulation. The reason for the differences is probably the discrepancies in
the vortex sheet created in the CFD domain and the vortex sheet of the lifting line method,
as mentioned in the first paragraph of § 3.4. The prescribed horseshoe vortices of the lifting
line method do not induce velocity in the z-direction. In the CFD simulation, the vortices
are free. As a consequence, the downwash from the wing inclines the vortex sheet, which
induces velocity in the negative z-direction. A more advanced lifting line method might be
able to capture those effects. Hence the differences in uz (and its consequence in Γ ) can
be, at least partially, attributed to a limitation of the current implementation of the lifting
line method.

The relative differences in the values of circulation are of the order of 10−3 (differences
of the order of 0.1 % of Γ0), which is a consequence of the errors in uy and uz. This
difference is negligible for practical purposes. The circulation for the higher value of the
smearing parameter agrees better with the lifting line. This apparently contradictory result
has two simple explanations. First, the vortex core is larger, so the representation of the
vorticity is better, reducing numerical errors (see Appendix B). Second, for higher values
of ε, the results depend less on the data from the simulation and more on the smearing
correction. In the limit ε → ∞, no information from the numerical simulation is used, and
the force is determined only by the correction, which regresses identically to the lifting
line method. Nevertheless, increasing the smearing parameter is not usually beneficial,
because the value of ε has other effects on the simulation beyond its influence on the
forces, as discussed in § 7.2. It should be noted, however, that the lifting line method has
its own limitations on reproducing the results of wings and blades. Notwithstanding, it is
a relevant tool for middle- or low-fidelity aerodynamic calculations.

Before the development of the smearing correction, the use of the ALM was restricted
almost exclusively to simulations of rotating blades, probably due to its inability to
reproduce accurately the induced velocities, which affected the lift of translating wings.
The remarkable agreement achieved here, which further confirms the good agreement of
previous works (Martínez-Tossas & Meneveau 2019; Meyer Forsting et al. 2019a; Dağ &
Sørensen 2020), might encourage the adoption of the ALM for other applications beyond
rotating blades. For example, the aeronautics community could use it to simulate wings
or the lifting surfaces of aircrafts. The ALM enables the integration of lifting lines with
a CFD solver, allowing more complex configurations and flow conditions than a classical
lifting line method. The low grid requirement is a clear advantage over traditional CFD
methods that employ wall boundary conditions for the wing. Also, the free-vortex method
described here maintains the generality of the method, so diverse configurations are
allowed, and it does not suffer from the instability problems of traditional vortex filament
methods (Leishman 2000).

7.2. Unsteady rotor simulations
The NREL 5-MW wind turbine subjected to a sheared inflow was simulated using the
iterative and direct smearing corrections. The undisturbed wind speed varies in the vertical
direction (y), in order to simulate a condition in which the circulation of the blade changes
every time step. Hence for every time step of this simulation, the initial guess of circulation
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U(x, y, z)/Uref ΩR/Uref (Lx/R, Ly/R, Lz/R) Lzin/R

(0, 0, y/(5R) + 1) 7.55 (8, 8, 10) 4

Table 2. Parameters of the simulation of the NREL 5-MW wind turbine in sheared flow.

is different from the final value of circulation, for both the iterative and non-iterative
corrections.

The domain was reduced to Lx/R = Ly/R = 8 to make the inflow velocity Uz = y/5 + 1
always positive and avoid problems with the outflow boundary condition, which is not
stable if the velocity is negative. The distance from the inflow to the blades, Lzin/R = 4,
was also reduced, maintaining the distance from the blades to the outflow, Lzout/R = 6.
Since this is a comparative study, the reduction of the domain does not affect any analysis.

The parameters of the simulation are presented in table 2. Except where stated explicitly,
all values are non-dimensionalized by the radius (R), the velocity at the centre of the
turbine (Uref = U(0, 0, 0)) and the density (ρ). Hence the geometry, detailed in Jonkman
et al. (2009), was non-dimensionalized by the radius. For this choice of reference values,
the tip speed ratio (which is the ratio of ΩR and the velocity at the centre of the turbine) is
ΩR/Uref = 7.55. The average grid spacing in the region of the actuator line is the same as
the simulation of the straight wing, �x = R/56. The Reynolds number based on the radius
is ReR = RUref /ν = 5 × 104. A time step �t = T/400 was used, where T is the period of
rotation.

In figure 6, the circulation and forces at time t = 12T are compared for the blade that
has null azimuthal angle at this time (blade aligned with the x-axis). The evolution in time
of the circulation of the control point closest to the tip of this blade is shown in figure 7.

As can be seen in figures 6 and 7, the agreement is very good for all cases. The iterative
and direct methods have results that are practically identical. The differences in the value
of circulation are lower than 10−5 if the same smearing parameter ε is used. This confirms
that the non-iterative procedure does not introduce errors for this unsteady flow.

The differences between the circulation for the two values of ε are of the order of 1 %
of the value of the circulation. The differences in the forces are of the same order of
magnitude. Similar differences have already been observed in previous studies (Meyer
Forsting et al. 2019b). These differences are believed to be of the order of magnitude
of errors due to the actuator line approximation. For example, in the code comparison
of Martinez-Tossas et al. (2018), larger differences were observed between different
implementations of the actuator line. Hence, for practical purposes, such differences can
be considered negligible.

The bookkeeping of position and circulation of the free wake (see § 3.4) begins at the
first time step. But the application of the correction is turned on after t = T/20. The same
orders of magnitude of differences were observed in figure 7, even for the points right after
the correction is turned on (after the first two points).

It should be noted that the effects of the smearing parameter can never be eliminated
completely. The smearing correction has the objective of correcting the forces at the
blades. Possibly, a better understanding of the role of drag, viscous effects, unsteadiness or
other phenomena might reduce even further the errors caused by the Gaussian smearing.
However, some errors cannot be eliminated, because the discretization used in actuator line
simulations does not usually support vortices with very low vortex core size. Hence the
vorticity that is shed is still smeared. The smeared vortices create a wake that is different
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Figure 6. Circulation and forces along the radial direction (r) at time t/T = 12, for the blade positioned at null
azimuthal angle (blade aligned with the x-axis). (a) Lift force. (b) Drag force. (c) Circulation. (d) Difference of
circulation, taking as reference the circulation of ALMd with ε = 3.5�x, normalized by the maximum of the
circulation.
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Figure 7. Evolution in time of the circulation at the point closest to the tip. The data are saved with a period
of T/20, which is higher than the actual time step in the simulation. The correction was turned off for the first
two points.

depending on the choice of ε, as can be seen in Meyer Forsting et al. (2019b), especially
in the near wake. As a consequence, differences in the wake can have an effect on the
forces. Errors in the velocity have a first-order effect in the circulation and forces, hence if
the modified near wake has a slightly different blockage profile, then the velocities at the
turbine, and consequently the forces, would be affected.

8. Conclusions

The conception of the smearing correction by Dağ & Sørensen (2020) (originally in
Dağ 2017) and by Martínez-Tossas & Meneveau (2019) (originally in Martínez Tossas
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2017), and the formal analysis provided by Martínez-Tossas & Meneveau (2019) and its
improvement and analogy to a viscous lifting line by Meyer Forsting et al. (2019a, 2020),
were great advancements to the ALM. These steps provided not only a more accurate,
general and reliable method but also an understanding of the mathematical and physical
reasons for the errors of the uncorrected actuator line. However, these methods resort
to iterative procedures with a relaxation factor, which are generally slower, less stable
and less deterministic than direct methods. The previous method that did not employ
an iterative method (Martínez-Tossas & Meneveau 2019) had to waive the compatibility
between circulation and induced velocity at each time step, which may cause errors in
unsteady simulations.

In the present work, a non-iterative vortex-based smearing correction for the actuator
line method is proposed and validated. Based on the linearization of a lifting line method,
the iterative procedures of previous works have been substituted by the direct solution of a
small linear system. For the cases tested, no significant difference is observed in the results
of the iterative method and the non-iterative method. All differences are presumed to be
orders of magnitude lower than the accuracy of the actuator line method.

The smearing correction reduces the effect of the smearing parameter ε on the
forces. However, differences, which are of the order of the errors of the actuator
line approximation, were observed in the forces and circulation for different smearing
parameters. This indicates that the smearing parameter still affects the simulation, which
agrees with the observation that smearing has an effect on the near wake (Meyer Forsting
et al. 2019b). Nevertheless, for practical applications, the differences observed in the forces
can be considered negligible.

Another contribution of the present work includes the use of a correction function
based on the velocity induced by a smeared vortex segment, which eliminates the need
for approximations of the correction function. Also, we implement a free-vortex wake
model to define the vortex sheet based on the CFD velocities. This keeps the generality
of the method and makes it applicable to several configurations without the need for ad
hoc assumptions. If computational cost is prioritized, then one could use approximate
functions, prescribe the wakes, or apply one of the methods for increasing the speed from
Meyer Forsting et al. (2020). The focus of this study is on presenting and validating
the technique. Many options to reduce the computational cost even further could be
implemented. Additionally, the optimal choice of parameters for a desired accuracy is
a matter of investigation. For these reasons, the analysis of the computational cost of
different choices of options and parameters of the correction is left for future studies.

In order to further understand the limitations of the smearing correction, the comparison
to blade-resolved simulations is suggested for future studies. Also, the implementation
of three-dimensional corrections for drag and the understanding of unsteady effects are
current areas of active research (see Kleine 2022).

Additionally, by carefully constructing a nonlinear lifting line method and an actuator
line method that are consistent with each other, we arrive at differences in the induced
velocity that are considerably better than differences reported in the literature. The good
agreement serves as an a posteriori justification for the linearization of the smearing
correction, in addition to the proof that the iterative lifting line method and the ALM
with vortex-based smearing correction are mathematically identical if the circulation in
each segment of the actuator line is assumed constant.

So far, the actuator line method has been used primarily by the rotor aerodynamics
community, possibly because of its known limitations to replicate the forces on
non-rotating wings. The use of the smearing correction with a general formulation removes
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this limitation and reproduces the results of a lifting line method, as shown here and
in previous works. This could motivate other communities, such as the aeronautical
community, to also adopt this technique to simulate wings, taking advantage of the lower
grid requirements allowed by the ALM, in flow conditions more complex than those
allowed by the lifting line method.
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Appendix A. Linearized lifting line

Equation (2.10) can be linearized around the undisturbed velocities using the Taylor series
expansion

Γj = Γ0j+ 1
2

cj

[(
Cl(α0j)

Uy

U0
+ ∂Cl

∂α
(α0j)

Uz

U0

)
uvi

y +
(

Cl(α0j)
Uz

U0
− ∂Cl

∂α
(α0j)

Uy

U0

)
uvi

z

]
,

(A1)
where

U0 :=
√

(U2
z + U2

y ), (A2)

α0j := αgj + arctan
(

Uy

Uz

)
, (A3)

Γ0j := 1
2 U0cj Cl(α0j), (A4)

and (∂Cl/∂α)(α0j) is the slope of the lift coefficient evaluated at angle α0j.
Defining

byj := 1
2

cj

(
Cl(α0j)

Uy

U0
+ ∂Cl

∂α
(α0j)

Uz

U0

)
, (A5)

bzj := 1
2

cj

(
Cl(α0j)

Uz

U0
− ∂Cl

∂α
(α0j)

Uy

U0

)
, (A6)

we arrive at
Γj = Γ0j + byjuvi

y + bzjuvi
z , (A7)

where we see that coefficients byj and bzj are a measure of the sensitivity of the circulation
to a change in the velocities in the y- and z-directions.

To avoid an iterative process, another relationship between the induced velocities and
circulation must be used. This relationship is the one described in step (iii) of the iterative
process of § 4. The velocities induced at control point j by the vortex system k (which
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includes the bound vortex and the vortex sheet created by the segment k) can be written as

uvik
y (xj) = ay,jkΓk, (A8)

uvik
z (xj) = az,jkΓk, (A9)

where ay,jk and ay,jk are called the influence coefficients. The values of the influence
coefficients are obtained from the Biot–Savart law and depend only on the shape of the
vortex filament and its relative position to the control point. The formula for the influence
coefficient for some common vortex filament shapes can be found in Katz & Plotkin
(1991). Then the total induced velocities are found by considering all N vortex systems
created by the N segments:⎡

⎢⎢⎢⎣
uvi

y (x1)

uvi
y (x2)

...

uvi
y (xN)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

ay,11 ay,12 · · · ay,1N
ay,21 ay,22 · · · ay,2N

...
. . .

...

ay,N1 ay,N2 · · · ay,NN

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Γ1
Γ2
...

ΓN

⎤
⎥⎥⎦ , (A10)

which can be written in matrix form as

uvi
y = AyΓ . (A11)

Analogously for uv
z :

uvi
z = AzΓ . (A12)

Equation (A7) can also be written in matrix form:

Γ = Γ 0 + by ◦ uvi
y + bz ◦ uvi

z = Γ 0 + (diag(by) Ay)Γ + (diag(bz) Az)Γ , (A13)

where ◦ denotes the elementwise product, and diag(b) is the square diagonal matrix
formed by the elements of column vector b. The circulation is finally found by solving
the linear system

(I − diag(by) Ay − diag(bz) Az)Γ = Γ 0, (A14)

where I is the identity matrix. Therefore, (A14) provides a direct way to calculate the
circulation along the wing, instead of the iteration of § 4. If needed, the induced velocities
can be found using relations (A11) and (A12).

It is worth remembering that the current reference system is related to the local reference
system of figure 1. Equation (A1), for example, depends on only the local variables. The
only terms that take into account the contributions of other sections of the blades are the
influence coefficients, hence these are defined first in an absolute system of reference and
then transformed into the local system of reference. Also, there is no constraint regarding
the values or direction of the velocity (as opposed to the classical linearization of the
lifting line method, which requires constant Uz and Uz 	 Uy). Therefore, this method is
applicable directly to any system of reference, including the case of rotating blades, in both
a fixed frame of reference and a rotating frame of reference.

This formulation is reduced to one of the classical implementations of the numerical
lifting line for Uy = 0 and constant Uz = U∞, when an ideal aerofoil and horseshoe
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Figure 8. Influence of grid resolution for the same value of the smearing parameter. (a) Difference between
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(c) Relative difference between circulation obtained by the ALM and LL.
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vortices are employed. In this case, (A14) becomes

− 1
2π

(diag(c/2))−1 Γ + AyΓ = −U∞αg, (A15)
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in which each term of (A15) can be compared directly to a term in (8.11) of Katz & Plotkin
(1991):

− Γ (x)
2π (c(x)/2)

− 1
4π

∫ xmax

xmin

−∂Γ (x′)/dx
x − x′ dx′ = −U∞αg, (A16)

where the notation of Katz & Plotkin (1991) was modified to be consistent with our
notation.

Appendix B. Resolution of the Gaussian vortex core

Usually, it is desirable to employ a low smearing parameter. The minimum smearing
parameter is commonly taken as ε ≈ 2�x (Troldborg 2009; Martínez-Tossas, Churchfield
& Leonardi 2015). However, for ε = 2�x, the Gaussian vortex core may not be well
represented in the numerical grid. As mentioned in § 7.1, the low resolution of the vortex
core may introduce errors, because the theory of § 3 is based on a perfect representation
of the Gaussian distribution of vorticity in the vortex core.

In order to exemplify this error, the case of § 7.1 was simulated with the standard grid
(�x = R/56 in the region of the actuator line) for a low smearing parameter ε = 2�x =
R/28. This case is compared to a simulation with the same smearing parameter, but a
higher grid resolution, in figure 8.

For ε = 2�x, the difference in the induced velocity uy is of the order of 10−3 (0.1 %
of the undisturbed velocity). It is still considerably better than the results found in
the literature, and a generally acceptable error for an ALM method. However, it is a
clear deterioration from the agreement found for larger smearing parameters in § 7.1. By
increasing the grid resolution to �x = R/112, so that ε = R/28 = 4�x, the differences
are back to the order of magnitude discussed in § 7.1.

Observing the velocity uy and the vorticity in the region of the bound vortex in the
plane of symmetry (x = 0), in figure 9, it is possible to note that the poorer grid does
not have adequate resolution to represent the Gaussian vortex core. We conclude that this
is the main cause of the high values of error in uy for the coarser grid. This error has
already been identified by Shives & Crawford (2013), where a smearing parameter ε =
4�x was recommended to reduce errors in the angle of attack, which are discussed further
by Meyer Forsting & Troldborg (2020). Meyer Forsting et al. (2019a) also employed a
larger smearing parameter than the recommended minimum in order to avoid this error.

Hence for ε = 2�x, it can be concluded that the error in uy is dependent mostly on
the grid resolution, not the smearing parameter. The differences in uz, however, have
a component related to the discretization error, but also a relevant component related
to the smearing parameter, especially near the tip. This is due to the differences in the
formulation of the ALM and LL, as discussed in § 7.1.
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