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Abstract

We establish explicit constructions of Mahler’s p-adic Um-numbers by using Ruban p-adic continued
fraction expansions of algebraic irrational p-adic numbers of degree m.
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1. Mahler’s and Koksma’s classifications of p-adic numbers

Let p be a prime number and let | · |p denote the p-adic absolute value on the field
Q of rational numbers, normalised such that |p|p = p−1. The completion of Q with
respect to | · |p is the field Qp of p-adic numbers, and the unique extension of | · |p to
the field Qp is denoted by the same notation | · |p. Mahler [16] gave a classification of
p-adic numbers in analogy with his classification [15] of real numbers, as follows. Let
P(x) = anxn + · · · + a1x + a0 be a nonzero polynomial in x over the ring Z of rational
integers. We denote by deg(P) the degree of P(x) with respect to x. The height H(P) of
P(x) is defined by H(P) = max{|an|, . . . , |a1|, |a0|}, where | · | denotes the usual absolute
value on the field R of real numbers. Let ξ be any p-adic number and let n, H be any
positive rational integers. Following Bugeaud [3], set

wn(H, ξ) = min{|P(ξ)|p : P(x) ∈ Z[x], deg(P) ≤ n, H(P) ≤ H and P(ξ) � 0},

wn(ξ) = lim sup
H→∞

− log(Hwn(H, ξ))
log H

and w(ξ) = lim sup
n→∞

wn(ξ)
n

.

Then ξ is called:

• a p-adic A-number if w(ξ) = 0;
• a p-adic S-number if 0 < w(ξ) < ∞;
• a p-adic T-number if w(ξ) = ∞ and wn(ξ) < ∞ for n = 1, 2, 3, . . .; and
• a p-adic U-number if w(ξ) = ∞ and wn(ξ) = ∞ from some n onward.
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2 G. Kekeç [2]

The set of p-adic A-numbers coincides with the set of algebraic p-adic numbers.
Therefore, the transcendental p-adic numbers are separated into the three disjoint
classes S, T and U. If ξ is a p-adic U-number and m is the minimum of the positive
integers n satisfying wn(ξ) = ∞, then ξ is called a p-adic Um-number. Alnıaçık [1,
Ch. III, Theorem I] gave the first explicit constructions of p-adic Um-numbers for
each positive integer m. For further constructions of p-adic S-, T- and U-numbers, see
[4, 5, 9, 10].

Assume that α is an algebraic p-adic number. Let P(x) be the minimal polynomial
of α over Z. Then the degree deg(α) of α and the height H(α) of α are defined by
deg(α) = deg(P) and H(α) = H(P). Given a p-adic number ξ and positive rational
integers n, H, in analogy with Koksma’s classification [12] of real numbers and as
in Bugeaud [3] and Schlickewei [21]), set

w∗n(H, ξ) = min
{
|ξ − α|p :

α is an algebraic p-adic number,
deg(α) ≤ n, H(α) ≤ H and α � ξ

}
,

w∗n(ξ) = lim sup
H→∞

− log(Hw∗n(H, ξ))
log H

and w∗(ξ) = lim sup
n→∞

w∗n(ξ)
n

.

Then ξ is called:

• a p-adic A∗-number if w∗(ξ) = 0;
• a p-adic S∗-number if 0 < w∗(ξ) < ∞;
• a p-adic T∗-number if w∗(ξ) = ∞ and w∗n(ξ) < ∞ for n = 1, 2, 3, . . .; and
• a p-adic U∗-number if w∗(ξ) = ∞ and w∗n(ξ) = ∞ from some n onward.

The set of p-adic A∗-numbers is equal to the set of algebraic p-adic numbers. Therefore,
the transcendental p-adic numbers are separated into the three disjoint classes S∗,
T∗ and U∗. Let ξ be a p-adic U∗-number and let m be the minimum of the positive
integers n satisfying w∗n(ξ) = ∞. Then ξ is called a p-adic U∗m-number. Mahler’s
classification of p-adic numbers is equivalent to Koksma’s classification of p-adic
numbers, that is, the classes A, S, T and U are the same as the classes A∗, S∗, T∗ and U∗,
respectively. Furthermore, a p-adic U∗m-number is a p-adic Um-number and vice versa.
(See Bugeaud [3] for further information on Mahler’s and Koksma’s classifications of
p-adic numbers.)

2. Ruban p-adic continued fractions

Ruban [20] introduced a continued fraction algorithm in Qp. In this section, we
recall the Ruban p-adic continued fraction algorithm and its basic properties following
the approach of Perron [19, Sections 29 and 30, pages 101–108] (see also [14, 17,
22, 23]). Let ξ be a nonzero p-adic number with the canonical expansion

ξ =

∞∑
j=k

aj p
j,
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[3] p-adic continued fractions 3

where aj ∈ {0, 1, . . . , p − 1} for j = k, k + 1, . . . , ak � 0 and k is the rational integer such
that |ξ|p = p−k. If k ≤ 0, then we write ξ = {ξ} + �ξ�, where

{ξ} =
0∑

j=k

aj p
j and �ξ� =

∞∑
j=1

aj p
j.

If k > 0, then we write ξ = {ξ} + �ξ�, where

{ξ} = 0 and �ξ� =
∞∑

j=k

aj p
j.

Further, we write 0 = {0} + �0�, where {0} = �0� = 0. Then, for each p-adic number ξ,
{ξ} and �ξ� are uniquely determined. Let b0, b1, b2, . . . be nonnegative rational numbers
with

b0 ∈ {{ξ} : ξ ∈ Qp} and bν ∈ {{ξ} : ξ ∈ Qp, |ξ|p ≥ p} (ν = 1, 2, 3, . . .).

A finite Ruban p-adic continued fraction [b0, b1, . . . , bn]p is defined by

[b0, b1, . . . , bn]p = b0 +
1

b1 +
1

. . .

+
1
bn

.

Then we have the following properties.

[b0]p = b0, [b0, b1]p = b0 +
1
b1

,

[b0, b1, . . . , bn]p =

[
b0, b1, . . . , bn−2, bn−1 +

1
bn

]
p
= [b0, b1, . . . , bm−1, [bm, . . . , bn]p]p,

[b0, b1, . . . , bn]p = b0 +
1

[b1, . . . , bn]p
.

Hence, [b0, b1, . . . , bn]p is a nonnegative rational number, and the numbers
bν (ν = 0, 1, . . . , n) are called the partial quotients of the Ruban p-adic continued
fraction [b0, b1, . . . , bn]p. Define the nonnegative rational numbers pν and qν by⎧⎪⎪⎨⎪⎪⎩

p−2 = 0, p−1 = 1, pν = bνpν−1 + pν−2 (ν = 0, 1, 2, . . .),
q−2 = 1, q−1 = 0, qν = bνqν−1 + qν−2 (ν = 0, 1, 2, . . .).

(2.1)

By induction,

[b0, b1, . . . , bn]p =
pn

qn
(n = 0, 1, 2, . . .).
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The nonnegative rational numbers p0/q0, p1/q1, . . . , pn/qn are called the convergents
of the Ruban p-adic continued fraction [b0, b1, . . . , bn]p; pν/qν (ν = 0, 1, . . . , n) is
called the νth convergent of [b0, b1, . . . , bn]p. By induction,

pνqν−1 − pν−1qν = (−1)ν−1 (ν = −1, 0, 1, . . .). (2.2)

From (2.1),

|qn|p = |b1|p · |b2|p · · · |bn|p and |pn|p = |b0|p · |b1|p · · · |bn|p = |b0|p · |qn|p (if b0 � 0)

for n=1, 2, 3, . . . . As |bν|p≥ p (ν = 1, 2, 3, . . .), we have |qn+1|p> |qn|p and |pn+1|p> |pn|p
for n = 1, 2, 3, . . . . Therefore,

lim
n→∞
|qn|p = ∞ and lim

n→∞
|pn|p = ∞.

By (2.2), ∣∣∣∣∣ pn

qn
− pn−1

qn−1

∣∣∣∣∣
p
=

1
|qn|p · |qn−1|p

(n = 1, 2, 3, . . .).

Then

lim
n→∞

∣∣∣∣∣ pn

qn
− pn−1

qn−1

∣∣∣∣∣
p
= 0.

Thus, {pn/qn}∞n=0 is a Cauchy sequence in Qp and has a limit in Qp. An infinite
Ruban p-adic continued fraction [b0, b1, b2, . . .]p is defined as the limit of the sequence
{pn/qn}∞n=0, that is,

[b0, b1, b2, . . .]p := lim
n→∞

pn

qn
= lim

n→∞
[b0, b1, . . . , bn]p.

Further, for ξ ∈ Qp \ {0},

[b0, . . . , bn, ξ]p =
pn · ξ + pn−1

qn · ξ + qn−1
(n = 0, 1, 2, . . .). (2.3)

Let ξ0 be a p-adic number. If ξ0 � {ξ0}, then we write

ξ0 = b0 +
1
ξ1

,

where b0 = {ξ0}, ξ1 = 1/�ξ0�, |ξ1|p ≥ p and {ξ1} � 0. If ξ1 � {ξ1}, then we write

ξ1 = b1 +
1
ξ2

,

where b1 = {ξ1}, ξ2 = 1/�ξ1�, |ξ2|p ≥ p and {ξ2} � 0. If the process continues, then

ξν = bν +
1
ξν+1

(ν ≥ 0), (2.4)

where bν = {ξν} (ν ≥ 0) and ξν+1 = 1/�ξν� (ν ≥ 0), and

|ξν|p = |bν|p ≥ p (ν ≥ 1).
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[5] p-adic continued fractions 5

The p-adic numbers ξ1, ξ2, . . . are called complete quotients, and the nonnegative
rational numbers b0, b1, b2, . . . are called partial quotients. It follows from (2.4) that

ξ0 = [b0, ξ1]p = [b0, b1, ξ2]p = [b0, b1, . . . , bn, ξn+1]p (2.5)

and

ξν = [bν, bν+1, . . . , bn, ξn+1]p (ν = 0, 1, . . . , n).

By (2.5), (2.3) and (2.2),

ξ0 −
pn

qn
=

pnξn+1 + pn−1

qnξn+1 + qn−1
− pn

qn
=

(−1)n

qn(qnξn+1 + qn−1)
.

Then ∣∣∣∣∣ξ0 − pn

qn

∣∣∣∣∣
p
=

1
|ξn+1|p · |qn|2p

=
1

|bn+1|p · |qn|2p
=

1
|qn+1|p · |qn|p

<
1
|qn|2p

. (2.6)

We now have two cases to consider.

Case (i). Some ξn+1 appears with ξn+1 = {ξn+1} = bn+1 and the process stops with
ξn+1 = bn+1. Then it follows from (2.5) that

ξ0 = [b0, b1, . . . , bn, bn+1]p.

Case (ii). ξn+1 � {ξn+1} for every n ≥ −1 and the process never stops. Then it follows
from (2.6) that

ξ0 = lim
n→∞

pn

qn
= lim

n→∞
[b0, b1, . . . , bn]p = [b0, b1, b2, . . .]p.

The Ruban continued fraction expansion of a p-adic number is unique because the
canonical expansion of a p-adic number is unique. Laohakosol [14] and Wang [22]
proved that a p-adic number is rational if and only if its Ruban continued fraction
expansion is finite or ultimately periodic with the period p − p−1. Ooto [17] recently
proved that an analogue of Lagrange’s theorem does not hold for the Ruban p-adic
continued fraction: that is, there are quadratic irrational p-adic numbers whose Ruban
continued fraction expansions are not ultimately periodic.

3. Our main results

Alnıaçık [2, Theorem] gave a construction of real Um-numbers by using continued
fraction expansions of algebraic irrational real numbers of degree m. In the present
paper, we establish the following p-adic analogue.

THEOREM 3.1. Let α be an algebraic irrational p-adic number with |α|p ≥ 1 and the
Ruban p-adic continued fraction expansion

α = [a0, a1, a2, . . .]p. (3.1)
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Let (rn)∞n=0 and (sn)∞n=0 be two infinite sequences of nonnegative rational integers such
that

0 = r0 < s0 < r1 < s1 < r2 < s2 < r3 < s3 < · · · and rn+1 − sn ≥ 2.

Denote by pn/qn (n = 0, 1, 2, . . .) the nth convergent of the Ruban p-adic continued
fraction (3.1). Assume that

lim
n→∞

log |qsn |p
log |qrn |p

= ∞ (3.2)

and

lim sup
n→∞

log |qrn+1 |p
log |qsn |p

< ∞. (3.3)

Define the rational numbers bj (j = 0, 1, 2, . . .) by

bj =

⎧⎪⎪⎨⎪⎪⎩
aj if rn ≤ j ≤ sn (n = 0, 1, 2, . . .),
υj if sn < j < rn+1 (n = 0, 1, 2, . . .),

(3.4)

where υj is a rational number of the form

υj = c−d p−d + c−d+1 p−d+1 + · · · + c−1 p−1 + c0.

Here, d ∈ Z, d > 0, c−d � 0 and ci ∈ {0, 1, . . . , p − 1} for i = −d,−d + 1, . . . ,−1, 0.
Note that |υj|p ≥ p. Suppose that |υj|p ≤ κ1|aj|κ2p and

∑rn+1−1
j=sn+1 |aj − υj|p � 0, where

κ1 and κ2 are fixed positive rational integers. Then the irrational p-adic number
ξ = [b0, b1, b2, . . .]p is a p-adic Um-number, where m denotes the degree of the
algebraic irrational p-adic number α.

REMARK 3.2. Let Fq be the finite field with q elements and let Fq((x−1)) be the field
of formal power series over Fq. In Fq((x−1)), Can and Kekeç [6, Theorem 1.1] recently
established the formal power series analogue of Alnıaçık [2, Theorem].

Recently, Kekeç [11, Theorem 1.5] modified the hypotheses in Alnıaçık
[2, Theorem] and gave a construction of transcendental real numbers that are
not U-numbers by using continued fraction expansions of irrational algebraic real
numbers. Our second main result in the present paper is the following partial p-adic
analogue of Kekeç [11, Theorem 1.5].

THEOREM 3.3. Let α be an algebraic p-adic number of degree m ≥ 2 with |α|p ≥ 1
and the Ruban p-adic continued fraction expansion

α = [a0, a1, a2, . . .]p.

Let (rn)∞n=0 and (sn)∞n=0 be two infinite sequences of nonnegative rational integers such
that

0 = r0 < s0 < r1 < s1 < r2 < s2 < r3 < s3 < · · · and rn+1 − sn ≥ 2.
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Denote by pn/qn (n = 0, 1, 2, . . .) the nth convergent of the Ruban p-adic continued
fraction α. Define the rational numbers b j (j = 0, 1, 2, . . .) by

bj =

⎧⎪⎪⎨⎪⎪⎩
aj if rn ≤ j ≤ sn (n = 0, 1, 2, . . .),
υj if sn < j < rn+1 (n = 0, 1, 2, . . .),

(3.5)

where υj is a rational number of the form

υj = c−d p−d + c−d+1 p−d+1 + · · · + c−1 p−1 + c0.

Here d ∈ Z, d > 0, c−d � 0 and ci ∈ {0, 1, . . . , p − 1} for i = −d,−d + 1, . . . ,−1, 0. Note
that |υj|p ≥ p. Suppose that |υj|p ≤ κ1|aj|κ2p and

∑rn+1−1
j=sn+1 |aj − υj|p � 0, where κ1 and κ2

are fixed positive rational integers. Assume that

lim inf
n→∞

log |qsn |p
log |qrn |p

> 2 + 4m
(
m + κ2 +

log κ1
log 2

)
. (3.6)

Then the irrational p-adic number ξ = [b0, b1, b2, . . .]p is transcendental.

In the next section, we cite some auxiliary results that we need to prove our results.
In Section 5, we prove Theorems 3.1 and 3.3.

4. Auxiliary results

The following lemma is a p-adic analogue of Alnıaçık [2, Lemma IV].

LEMMA 4.1. Let p/q and u/v be two rational numbers with Ruban p-adic continued
fraction expansions

p
q
= [a0, a1, . . . , an]p and

u
v
= [b0, b1, . . . , bn]p (|a0|p ≥ 1, |b0|p ≥ 1).

Assume that

|bj|p ≤ κ1|aj|κ2p (j = 0, 1, . . . , n), (4.1)

where κ1 and κ2 are fixed positive rational integers. Then

|u|p ≤ |a0|κ2p κ1|q|
κ2+log κ1/log 2
p .

PROOF. It follows from (4.1) that

|u|p = |b0|p · |b1|p · · · |bn|p ≤ κn+1
1 · (|a0|p · |a1|p · · · |an|p)κ2 .

As |q|p = |a1|p · · · |an|p ≥ pn ≥ 2n,

|u|p ≤ (2n+1)log κ1/log 2|a0|κ2p |q|κ2p ≤ |a0|κ2p κ1|q|
κ2+log κ1/log 2
p . �

THEOREM 4.2 (Içen [8, page 25] and [7, Lemma 1, page 71]). Let L be a p-adic
algebraic number field of degree m and let α1, . . . ,αk be algebraic p-adic numbers
in L. Let η be any algebraic p-adic number. Suppose that F(η,α1, . . . ,αk) = 0, where
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F(x, x1, . . . , xk) is a polynomial in x, x1, . . . , xk over Z with degree at least one in x.
Then

H(η) ≤ 32dm+(l1+···+lk)mHmH(α1)l1m · · ·H(αk)lkm,

where d is the degree of F(x, x1, . . . , xk) in x, li is the degree of F(x, x1, . . . , xk) in
xi (i = 1, . . . , k) and H is the maximum of the usual absolute values of the coefficients
of F(x, x1, . . . , xk).

LEMMA 4.3 (Pejkovic [18, Lemma 2.5]). Let α1 and α2 be two distinct algebraic
p-adic numbers. Then

|α1 − α2|p ≥ (deg(α1) + 1)− deg(α2)(deg(α2) + 1)− deg(α1)H(α1)− deg(α2)H(α2)− deg(α1).

LEMMA 4.4 (Ooto [17, Lemma 7 and page 1058]). Let α be a p-adic number with
|α|p ≥ 1 and let pn/qn be the nth convergent of its Ruban p-adic continued fraction
expansion. Then pn ≤ |pn|p, qn ≤ |qn|p and

pn · |pn|p ∈ Z qn · |qn|p ∈ Z.

THEOREM 4.5 (Lang [13, page 32]). Let K be a p-adic algebraic number field and let
α be any algebraic p-adic number. Then, for each ε > 0, the inequality

|α − β|p <
1

H(β)2+ε

has only finitely many solutions β in K.

5. Proofs of Theorems 3.1 and 3.3

PROOF OF THEOREM 3.1. We prove Theorem 3.1 by adapting the method of the proof
of Alnıaçık [2, Theorem] to the non-Archimedean p-adic case. Define the algebraic
p-adic numbers

αrn := [b0, b1, . . . , brn , arn+1, arn+2, . . .]p ∈ Q(α) (n = 0, 1, 2, . . .)

and

βrn := [arn+1, arn+2, . . .]p ∈ Q(α) (n = 0, 1, 2, . . .).

Then deg(αrn ) = deg(βrn ) = m (n = 0, 1, 2, . . .). By (2.3),

α = [a0, a1, . . . , arn , βrn ]p =
prnβrn + prn−1

qrnβrn + qrn−1
(n = 0, 1, 2, . . .)

and thus

αqrnβrn + αqrn−1 − prnβrn − prn−1 = 0 (n = 0, 1, 2, . . .).

Therefore, F(βrn ,α) = 0, where, by Lemma 4.4,

F(x, x1) = |prn |pqrn x1x + |prn |pqrn−1x1 − |prn |p prn x − |prn |p prn−1
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is a polynomial in x, x1 over Z. It follows from Theorem 4.2 and Lemma 4.4 that

H(βrn ) ≤ c1|qrn |2m
p , (5.1)

where c1 = 33m|a0|2m
p H(α)m. Set

p′n
q′n

:= [b0, b1, . . . , bn]p (n = 0, 1, 2, . . .).

Then

αrn = [b0, b1, . . . , brn , βrn ]p =
p′rn
βrn + p′rn−1

q′rn
βrn + q′rn−1

(n = 0, 1, 2, . . .)

and

αrn q′rn
βrn + αrn q′rn−1 − p′rn

βrn − p′rn−1 = 0 (n = 0, 1, 2, . . .).

Thus, F(αrn , βrn ) = 0, where, by Lemma 4.4,

F(x, x1) = |p′rn
|pq′rn

x1x + |p′rn
|pq′rn−1x − |p′rn

|p p′rn
x1 − |p′rn

|p p′rn−1

is a polynomial in x, x1 over Z. It follows from Theorem 4.2, Lemma 4.4 and (5.1) that

H(αrn ) ≤ 33m|p′rn
|2m
p cm

1 |qrn |2m2

p . (5.2)

From (3.4),

|bj|p ≤ κ1|aj|κ2p (j = 0, 1, 2, . . .).

By Lemma 4.1,

|p′rn
|p ≤ |a0|κ2p κ1|qrn |

κ2+log κ1/log 2
p (n = 0, 1, 2, . . .). (5.3)

Using (5.2), (5.3) and limn→∞ |qrn |p = ∞, we obtain, for sufficiently large n,

H(αrn ) ≤ |qrn |c2
p , (5.4)

where c2 = 1 + (m + κ2 + log κ1/log 2)2m.
We approximate ξ by the algebraic p-adic numbers αrn . We infer from (2.6) and

(3.4) that

|ξ − αrn |p ≤ max
{∣∣∣∣∣ξ − p′sn

q′sn

∣∣∣∣∣
p
,
∣∣∣∣∣αrn −

p′sn

q′sn

∣∣∣∣∣
p

}
<

1
|q′sn
|2p

(n = 0, 1, 2, . . .). (5.5)

Put
drn

ern

:= [arn+1, arn+2, . . . , asn ]p = [brn+1, brn+2, . . . , bsn ]p.

We have
psn

qsn

= [a0, a1, . . . , arn , arn+1, arn+2, . . . , asn ]p
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and
p′sn

q′sn

= [b0, b1, . . . , brn , brn+1, brn+2, . . . , bsn ]p.

Then

|qsn |p = |a1 · · · arn |p|arn+1 · · · asn |p = |qrn |p|arn+1|p|ern |p
and

|q′sn
|p = |b1 · · · brn+1|p|brn+2 · · · bsn |p > |ern |p.

Therefore,

|qsn |p < |arn+1|p|qrn |p|q′sn
|p (n = 0, 1, 2, . . .). (5.6)

It follows from Lemmas 4.3 and 4.4 that∣∣∣∣∣α − prn

qrn

∣∣∣∣∣
p
≥ 1

c3|qrn |2m
p

, (5.7)

where c3 = (m + 1)2mH(α)|a0|2m
p . On the other hand, by (2.6),∣∣∣∣∣α − prn

qrn

∣∣∣∣∣
p
=

1
|arn+1|p|qrn |2p

(n = 0, 1, 2, . . .). (5.8)

Combining (5.6), (5.7) and (5.8), we get

|qsn |p < c3|qrn |2m−1
p |q′sn

|p. (5.9)

By (3.2) and (5.9),

c3|qrn |2m−1
p ≤ |q′sn

|p
for sufficiently large n. So, for sufficiently large n,

|qsn |p < |q′sn
|2p. (5.10)

We see from (3.2), (5.4), (5.5) and (5.10) that

0 < |ξ − αrn |p <
1
|qsn |p

≤ 1
H(αrn )φn

for sufficiently large n, where

φn =
log |qsn |p

c2 log |qrn |p
and lim

n→∞
φn = ∞.

As deg(αrn ) = m (n = 0, 1, 2, . . .), this shows that ξ is a p-adic U∗-number with

w∗m(ξ) = ∞. (5.11)

We wish to show that ξ is a p-adic U∗m-number. We must prove that w∗t (ξ) < ∞ for
t = 1, . . . , m − 1. Let β be any algebraic p-adic number with 1 ≤ deg(β) ≤ m − 1 and
with sufficiently large height H(β). We deduce from Lemma 4.3 and (5.4) that
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|αrn − β|p ≥
1

c4|qrn |
c5
p H(β)m (5.12)

for sufficiently large n, where c4 = (m + 1)m−1mm and c5 = c2(m − 1). By (3.3), there
exists a real number T > 1 such that

|qsn |Tp ≥ |qrn+1 |p (5.13)

for sufficiently large n. We have

|ξ − β|p = |(ξ − αrn ) + (αrn − β)|p. (5.14)

From (5.5), (5.10) and (5.13), for sufficiently large n,

|ξ − αrn |p <
1
|q′sn
|2p
<

1
|qsn |p

≤ 1

|qrn+1 |
1/T
p

. (5.15)

Let i be the unique positive rational integer satisfying |qri |p ≤ H(β) < |qri+1 |p. Put
T1 := T(m + c5 + 1). If |qri |p ≤ H(β) < |qri+1 |

1/T1
p , then it follows from (5.12), (5.14) and

(5.15) with n = i that

|ξ − β|p ≥
1

c4H(β)m+c5
. (5.16)

If |qri+1 |
1/T1
p ≤ H(β) < |qri+1 |p, then it follows from (3.2), (5.12), (5.14) and (5.15) with

n = i + 1 that

|ξ − β|p ≥
1

c4H(β)m+c5T1
. (5.17)

We deduce from (5.16) and (5.17) that

|ξ − β|p ≥
1

c4H(β)m+c5T1

for all algebraic p-adic numbers β with deg(β) ≤ m − 1 and with sufficiently large
height H(β). This gives

w∗t (ξ) < ∞ (t = 1, . . . , m − 1). (5.18)

We infer from (5.11) and (5.18) that ξ is a p-adic U∗m-number. As the set of p-adic
Um-numbers is equal to the set of p-adic U∗m-numbers, ξ is a p-adic Um-number. �

EXAMPLE 5.1. This example illustrates Theorem 3.1. In Theorem 3.1, take the
algebraic p-adic number α as the quadratic irrational

α = [a0, a1, a2, . . .]p = [p−2, p−2, p−2, . . .]p

and the sequences (rn)∞n=0 and (sn)∞n=0 as

r0 = 0, rn = 2(n + 1)! (n = 1, 2, 3, . . .) and sn = (n + 2)! (n = 0, 1, 2, . . .).
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Define the rational numbers bj (j = 0, 1, 2, . . .) by

bj =

⎧⎪⎪⎨⎪⎪⎩
p−2 if rn ≤ j ≤ sn (n = 0, 1, 2, . . .),
p−4 if sn < j < rn+1 (n = 0, 1, 2, . . .).

Take κ1 = 1 and κ2 = 2. Then all the conditions of Theorem 3.1 are satisfied and
therefore the irrational p-adic number ξ = [b0, b1, b2, . . .]p is a p-adic U2-number.

REMARK 5.2. In Theorem 3.1, if we replace limn→∞(log |qsn |p/log |qrn |p) = ∞ by

lim inf
n→∞

log |qsn |p
log |qrn |p

> T(1 + m + c5T1) and lim sup
n→∞

log |qsn |p
log |qrn |p

= ∞,

then we see from the proof that Theorem 3.1 still holds true.

PROOF OF THEOREM 3.3. We replace (3.2) by (3.6) and keep all the lines of the proof
of Theorem 3.1 up to (5.10). By (3.6), there exists a positive real number ε such that

log |qsn |p
log |qrn |p

> (2 + ε)c2 (5.19)

for sufficiently large n. We deduce from (5.4), (5.5), (5.10) and (5.19) that

0 < |ξ − αrn |p <
1

H(αrn )2+ε

for sufficiently large n. It follows from the definition of αrn and (3.5) that the algebraic
p-adic numbers αrn in Q(α) are all distinct. Then, by Theorem 4.5, the irrational p-adic
number ξ is transcendental. �

Finally, we pose the following question.

PROBLEM 5.3. Does an exact analogue of Kekeç [11, Theorem 1.5] hold in Qp?
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