TRANSCENDENTAL RUBAN p-ADIC CONTINUED FRACTIONS

GÜLCAN KEKEÇ

(Received 20 August 2024; accepted 30 August 2024)

Abstract

We establish explicit constructions of Mahler's *p*-adic U_m -numbers by using Ruban *p*-adic continued fraction expansions of algebraic irrational *p*-adic numbers of degree *m*.

2020 Mathematics subject classification: primary 11J61; secondary 11J70, 11J82.

Keywords and phrases: Mahler's and Koksma's classifications of transcendental p-adic numbers, p-adic U_m -number, Ruban p-adic continued fraction, transcendence measure.

1. Mahler's and Koksma's classifications of *p*-adic numbers

Let *p* be a prime number and let $|\cdot|_p$ denote the *p*-adic absolute value on the field \mathbb{Q} of rational numbers, normalised such that $|p|_p = p^{-1}$. The completion of \mathbb{Q} with respect to $|\cdot|_p$ is the field \mathbb{Q}_p of *p*-adic numbers, and the unique extension of $|\cdot|_p$ to the field \mathbb{Q}_p is denoted by the same notation $|\cdot|_p$. Mahler [16] gave a classification of *p*-adic numbers in analogy with his classification [15] of real numbers, as follows. Let $P(x) = a_n x^n + \cdots + a_1 x + a_0$ be a nonzero polynomial in *x* over the ring \mathbb{Z} of rational integers. We denote by deg(*P*) the degree of P(x) with respect to *x*. The height H(P) of P(x) is defined by $H(P) = \max\{|a_n|, \ldots, |a_1|, |a_0|\}$, where $|\cdot|$ denotes the usual absolute value on the field \mathbb{R} of real numbers. Let ξ be any *p*-adic number and let *n*, *H* be any positive rational integers. Following Bugeaud [3], set

$$w_n(H,\xi) = \min\{|P(\xi)|_p : P(x) \in \mathbb{Z}[x], \deg(P) \le n, H(P) \le H \text{ and } P(\xi) \ne 0\},\$$

$$w_n(\xi) = \limsup_{H \to \infty} \frac{-\log(Hw_n(H,\xi))}{\log H}$$
 and $w(\xi) = \limsup_{n \to \infty} \frac{w_n(\xi)}{n}$.

Then ξ is called:

- a *p*-adic *A*-number if $w(\xi) = 0$;
- a *p*-adic *S*-number if $0 < w(\xi) < \infty$;
- a *p*-adic *T*-number if $w(\xi) = \infty$ and $w_n(\xi) < \infty$ for n = 1, 2, 3, ...; and
- a *p*-adic *U*-number if $w(\xi) = \infty$ and $w_n(\xi) = \infty$ from some *n* onward.

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

The set of *p*-adic *A*-numbers coincides with the set of algebraic *p*-adic numbers. Therefore, the transcendental *p*-adic numbers are separated into the three disjoint classes *S*, *T* and *U*. If ξ is a *p*-adic *U*-number and *m* is the minimum of the positive integers *n* satisfying $w_n(\xi) = \infty$, then ξ is called a *p*-adic U_m -number. Almaçık [1, Ch. III, Theorem I] gave the first explicit constructions of *p*-adic U_m -numbers, see [4, 5, 9, 10].

Assume that α is an algebraic *p*-adic number. Let P(x) be the minimal polynomial of α over \mathbb{Z} . Then the degree deg (α) of α and the height $H(\alpha)$ of α are defined by deg $(\alpha) = \text{deg}(P)$ and $H(\alpha) = H(P)$. Given a *p*-adic number ξ and positive rational integers *n*, *H*, in analogy with Koksma's classification [12] of real numbers and as in Bugeaud [3] and Schlickewei [21]), set

$$w_n^*(H,\xi) = \min\left\{ |\xi - \alpha|_p : \begin{array}{l} \alpha \text{ is an algebraic } p \text{-adic number,} \\ \deg(\alpha) \le n, H(\alpha) \le H \text{ and } \alpha \ne \xi \end{array} \right\},$$
$$w_n^*(\xi) = \limsup_{H \to \infty} \frac{-\log(Hw_n^*(H,\xi))}{\log H} \quad \text{and} \quad w^*(\xi) = \limsup_{n \to \infty} \frac{w_n^*(\xi)}{n}.$$

Then ξ is called:

- a *p*-adic A^* -number if $w^*(\xi) = 0$;
- a *p*-adic S^{*}-number if 0 < w^{*}(ξ) < ∞;
- a *p*-adic *T*^{*}-number if $w^*(\xi) = \infty$ and $w_n^*(\xi) < \infty$ for n = 1, 2, 3, ...; and
- a *p*-adic U^{*}-number if $w^*(\xi) = \infty$ and $w_n^*(\xi) = \infty$ from some *n* onward.

The set of *p*-adic *A*^{*}-numbers is equal to the set of algebraic *p*-adic numbers. Therefore, the transcendental *p*-adic numbers are separated into the three disjoint classes S^* , T^* and U^* . Let ξ be a *p*-adic U^* -number and let *m* be the minimum of the positive integers *n* satisfying $w_n^*(\xi) = \infty$. Then ξ is called a *p*-adic U_m^* -number. Mahler's classification of *p*-adic numbers is equivalent to Koksma's classification of *p*-adic numbers, that is, the classes *A*, *S*, *T* and *U* are the same as the classes *A**, *S**, *T** and *U**, respectively. Furthermore, a *p*-adic U_m^* -number is a *p*-adic U_m -number and *vice versa*. (See Bugeaud [3] for further information on Mahler's and Koksma's classifications of *p*-adic numbers.)

2. Ruban *p*-adic continued fractions

Ruban [20] introduced a continued fraction algorithm in \mathbb{Q}_p . In this section, we recall the Ruban *p*-adic continued fraction algorithm and its basic properties following the approach of Perron [19, Sections 29 and 30, pages 101–108] (see also [14, 17, 22, 23]). Let ξ be a nonzero *p*-adic number with the canonical expansion

$$\xi = \sum_{j=k}^{\infty} a_j p^j,$$

where $a_j \in \{0, 1, \dots, p-1\}$ for $j = k, k+1, \dots, a_k \neq 0$ and k is the rational integer such that $|\xi|_p = p^{-k}$. If $k \le 0$, then we write $\xi = \{\xi\} + \lfloor \xi \rfloor$, where

$$\{\xi\} = \sum_{j=k}^{0} a_j p^j$$
 and $\lfloor \xi \rfloor = \sum_{j=1}^{\infty} a_j p^j$.

If k > 0, then we write $\xi = \{\xi\} + \lfloor \xi \rfloor$, where

$$\{\xi\} = 0$$
 and $\lfloor \xi \rfloor = \sum_{j=k}^{\infty} a_j p^j$.

Further, we write $0 = \{0\} + \lfloor 0 \rfloor$, where $\{0\} = \lfloor 0 \rfloor = 0$. Then, for each *p*-adic number ξ , $\{\xi\}$ and $\lfloor \xi \rfloor$ are uniquely determined. Let b_0, b_1, b_2, \ldots be nonnegative rational numbers with

 $b_0 \in \{\{\xi\} : \xi \in \mathbb{Q}_p\}$ and $b_v \in \{\{\xi\} : \xi \in \mathbb{Q}_p, |\xi|_p \ge p\}$ (v = 1, 2, 3, ...).

A finite Ruban *p*-adic continued fraction $[b_0, b_1, \ldots, b_n]_p$ is defined by

$$[b_0, b_1, \dots, b_n]_p = b_0 + \frac{1}{b_1 + \frac{1}{\ddots}} + \frac{1}{b_n}$$

Then we have the following properties.

$$[b_0]_p = b_0, \quad [b_0, b_1]_p = b_0 + \frac{1}{b_1},$$

$$[b_0, b_1, \dots, b_n]_p = \left[b_0, b_1, \dots, b_{n-2}, b_{n-1} + \frac{1}{b_n}\right]_p = [b_0, b_1, \dots, b_{m-1}, [b_m, \dots, b_n]_p]_p,$$

$$[b_0, b_1, \dots, b_n]_p = b_0 + \frac{1}{[b_1, \dots, b_n]_p}$$

Hence, $[b_0, b_1, \ldots, b_n]_p$ is a nonnegative rational number, and the numbers b_v ($v = 0, 1, \ldots, n$) are called the partial quotients of the Ruban *p*-adic continued fraction $[b_0, b_1, \ldots, b_n]_p$. Define the nonnegative rational numbers p_v and q_v by

$$\begin{cases} p_{-2} = 0, \quad p_{-1} = 1, \quad p_{\nu} = b_{\nu} p_{\nu-1} + p_{\nu-2} \quad (\nu = 0, 1, 2, ...), \\ q_{-2} = 1, \quad q_{-1} = 0, \quad q_{\nu} = b_{\nu} q_{\nu-1} + q_{\nu-2} \quad (\nu = 0, 1, 2, ...). \end{cases}$$
(2.1)

By induction,

$$[b_0, b_1, \dots, b_n]_p = \frac{p_n}{q_n}$$
 $(n = 0, 1, 2, \dots).$

The nonnegative rational numbers p_0/q_0 , p_1/q_1 , ..., p_n/q_n are called the convergents of the Ruban *p*-adic continued fraction $[b_0, b_1, ..., b_n]_p$; p_ν/q_ν ($\nu = 0, 1, ..., n$) is called the ν th convergent of $[b_0, b_1, ..., b_n]_p$. By induction,

$$p_{\nu}q_{\nu-1} - p_{\nu-1}q_{\nu} = (-1)^{\nu-1} \quad (\nu = -1, 0, 1, \ldots).$$
(2.2)

From (2.1),

 $|q_n|_p = |b_1|_p \cdot |b_2|_p \cdots |b_n|_p$ and $|p_n|_p = |b_0|_p \cdot |b_1|_p \cdots |b_n|_p = |b_0|_p \cdot |q_n|_p$ (if $b_0 \neq 0$) for n = 1, 2, 3, ... As $|b_v|_p \ge p$ (v = 1, 2, 3, ...), we have $|q_{n+1}|_p > |q_n|_p$ and $|p_{n+1}|_p > |p_n|_p$ for n = 1, 2, 3, ... Therefore,

$$\lim_{n\to\infty}|q_n|_p=\infty \quad \text{and} \quad \lim_{n\to\infty}|p_n|_p=\infty.$$

By (2.2),

$$\left|\frac{p_n}{q_n} - \frac{p_{n-1}}{q_{n-1}}\right|_p = \frac{1}{|q_n|_p \cdot |q_{n-1}|_p} \quad (n = 1, 2, 3, \ldots)$$

Then

$$\lim_{n\to\infty}\left|\frac{p_n}{q_n}-\frac{p_{n-1}}{q_{n-1}}\right|_p=0.$$

Thus, $\{p_n/q_n\}_{n=0}^{\infty}$ is a Cauchy sequence in \mathbb{Q}_p and has a limit in \mathbb{Q}_p . An infinite Ruban *p*-adic continued fraction $[b_0, b_1, b_2, \ldots]_p$ is defined as the limit of the sequence $\{p_n/q_n\}_{n=0}^{\infty}$, that is,

$$[b_0, b_1, b_2, \ldots]_p := \lim_{n \to \infty} \frac{p_n}{q_n} = \lim_{n \to \infty} [b_0, b_1, \ldots, b_n]_p.$$

Further, for $\xi \in \mathbb{Q}_p \setminus \{0\}$,

$$[b_0, \dots, b_n, \xi]_p = \frac{p_n \cdot \xi + p_{n-1}}{q_n \cdot \xi + q_{n-1}} \quad (n = 0, 1, 2, \dots).$$
(2.3)

Let ξ_0 be a *p*-adic number. If $\xi_0 \neq {\xi_0}$, then we write

$$\xi_0 = b_0 + \frac{1}{\xi_1},$$

where $b_0 = \{\xi_0\}, \xi_1 = 1/\lfloor \xi_0 \rfloor, |\xi_1|_p \ge p$ and $\{\xi_1\} \ne 0$. If $\xi_1 \ne \{\xi_1\}$, then we write

$$\xi_1 = b_1 + \frac{1}{\xi_2},$$

where $b_1 = \{\xi_1\}, \xi_2 = 1/\lfloor \xi_1 \rfloor, |\xi_2|_p \ge p$ and $\{\xi_2\} \ne 0$. If the process continues, then

$$\xi_{\nu} = b_{\nu} + \frac{1}{\xi_{\nu+1}} \quad (\nu \ge 0), \tag{2.4}$$

where $b_{\nu} = \{\xi_{\nu}\} \ (\nu \ge 0)$ and $\xi_{\nu+1} = 1/\lfloor \xi_{\nu} \rfloor \ (\nu \ge 0)$, and

$$|\xi_{\nu}|_{p} = |b_{\nu}|_{p} \ge p \quad (\nu \ge 1).$$

p-adic continued fractions

The *p*-adic numbers ξ_1, ξ_2, \ldots are called complete quotients, and the nonnegative rational numbers b_0, b_1, b_2, \ldots are called partial quotients. It follows from (2.4) that

$$\xi_0 = [b_0, \xi_1]_p = [b_0, b_1, \xi_2]_p = [b_0, b_1, \dots, b_n, \xi_{n+1}]_p$$
(2.5)

and

$$\xi_{\nu} = [b_{\nu}, b_{\nu+1}, \dots, b_n, \xi_{n+1}]_p \quad (\nu = 0, 1, \dots, n).$$

By (2.5), (2.3) and (2.2),

$$\xi_0 - \frac{p_n}{q_n} = \frac{p_n \xi_{n+1} + p_{n-1}}{q_n \xi_{n+1} + q_{n-1}} - \frac{p_n}{q_n} = \frac{(-1)^n}{q_n (q_n \xi_{n+1} + q_{n-1})}.$$

Then

$$\left|\xi_{0} - \frac{p_{n}}{q_{n}}\right|_{p} = \frac{1}{|\xi_{n+1}|_{p} \cdot |q_{n}|_{p}^{2}} = \frac{1}{|b_{n+1}|_{p} \cdot |q_{n}|_{p}^{2}} = \frac{1}{|q_{n+1}|_{p} \cdot |q_{n}|_{p}} < \frac{1}{|q_{n}|_{p}^{2}}.$$
 (2.6)

We now have two cases to consider.

Case (i). Some ξ_{n+1} appears with $\xi_{n+1} = \{\xi_{n+1}\} = b_{n+1}$ and the process stops with $\xi_{n+1} = b_{n+1}$. Then it follows from (2.5) that

$$\xi_0 = [b_0, b_1, \dots, b_n, b_{n+1}]_p.$$

Case (ii). $\xi_{n+1} \neq {\xi_{n+1}}$ for every $n \ge -1$ and the process never stops. Then it follows from (2.6) that

$$\xi_0 = \lim_{n \to \infty} \frac{p_n}{q_n} = \lim_{n \to \infty} [b_0, b_1, \dots, b_n]_p = [b_0, b_1, b_2, \dots]_p.$$

The Ruban continued fraction expansion of a *p*-adic number is unique because the canonical expansion of a *p*-adic number is unique. Laohakosol [14] and Wang [22] proved that a *p*-adic number is rational if and only if its Ruban continued fraction expansion is finite or ultimately periodic with the period $p - p^{-1}$. Ooto [17] recently proved that an analogue of Lagrange's theorem does not hold for the Ruban *p*-adic continued fraction: that is, there are quadratic irrational *p*-adic numbers whose Ruban continued fraction expansions are not ultimately periodic.

3. Our main results

Almaçık [2, Theorem] gave a construction of real U_m -numbers by using continued fraction expansions of algebraic irrational real numbers of degree m. In the present paper, we establish the following p-adic analogue.

THEOREM 3.1. Let α be an algebraic irrational *p*-adic number with $|\alpha|_p \ge 1$ and the *Ruban p*-adic continued fraction expansion

$$\alpha = [a_0, a_1, a_2, \ldots]_p. \tag{3.1}$$

Let $(r_n)_{n=0}^{\infty}$ and $(s_n)_{n=0}^{\infty}$ be two infinite sequences of nonnegative rational integers such that

$$0 = r_0 < s_0 < r_1 < s_1 < r_2 < s_2 < r_3 < s_3 < \cdots \quad and \quad r_{n+1} - s_n \ge 2$$

Denote by p_n/q_n (n = 0, 1, 2, ...) the nth convergent of the Ruban p-adic continued fraction (3.1). Assume that

$$\lim_{n \to \infty} \frac{\log |q_{s_n}|_p}{\log |q_{r_n}|_p} = \infty$$
(3.2)

and

$$\limsup_{n \to \infty} \frac{\log |q_{r_{n+1}}|_p}{\log |q_{s_n}|_p} < \infty.$$
(3.3)

Define the rational numbers b_i (j = 0, 1, 2, ...) by

$$b_j = \begin{cases} a_j & \text{if } r_n \le j \le s_n \\ \upsilon_j & \text{if } s_n < j < r_{n+1} \end{cases} (n = 0, 1, 2, \ldots),$$
(3.4)

where v_i is a rational number of the form

$$v_j = c_{-d}p^{-d} + c_{-d+1}p^{-d+1} + \dots + c_{-1}p^{-1} + c_0.$$

Here, $d \in \mathbb{Z}$, d > 0, $c_{-d} \neq 0$ and $c_i \in \{0, 1, ..., p-1\}$ for i = -d, -d + 1, ..., -1, 0. Note that $|\upsilon_j|_p \ge p$. Suppose that $|\upsilon_j|_p \le \kappa_1 |a_j|_p^{\kappa_2}$ and $\sum_{j=s_n+1}^{r_{n+1}-1} |a_j - \upsilon_j|_p \ne 0$, where κ_1 and κ_2 are fixed positive rational integers. Then the irrational p-adic number $\xi = [b_0, b_1, b_2, ...]_p$ is a p-adic U_m -number, where m denotes the degree of the algebraic irrational p-adic number α .

REMARK 3.2. Let \mathbb{F}_q be the finite field with q elements and let $\mathbb{F}_q((x^{-1}))$ be the field of formal power series over \mathbb{F}_q . In $\mathbb{F}_q((x^{-1}))$, Can and Kekeç [6, Theorem 1.1] recently established the formal power series analogue of Alnıaçık [2, Theorem].

Recently, Kekeç [11, Theorem 1.5] modified the hypotheses in Almaçık [2, Theorem] and gave a construction of transcendental real numbers that are not U-numbers by using continued fraction expansions of irrational algebraic real numbers. Our second main result in the present paper is the following partial *p*-adic analogue of Kekeç [11, Theorem 1.5].

THEOREM 3.3. Let α be an algebraic p-adic number of degree $m \ge 2$ with $|\alpha|_p \ge 1$ and the Ruban p-adic continued fraction expansion

$$\alpha = [a_0, a_1, a_2, \ldots]_p.$$

Let $(r_n)_{n=0}^{\infty}$ and $(s_n)_{n=0}^{\infty}$ be two infinite sequences of nonnegative rational integers such that

$$0 = r_0 < s_0 < r_1 < s_1 < r_2 < s_2 < r_3 < s_3 < \cdots \quad and \quad r_{n+1} - s_n \ge 2.$$

Denote by p_n/q_n (n = 0, 1, 2, ...) the nth convergent of the Ruban p-adic continued fraction α . Define the rational numbers b_j (j = 0, 1, 2, ...) by

$$b_j = \begin{cases} a_j & \text{if } r_n \le j \le s_n \\ v_j & \text{if } s_n < j < r_{n+1} \end{cases} (n = 0, 1, 2, \ldots),$$
(3.5)

where v_i is a rational number of the form

$$v_j = c_{-d}p^{-d} + c_{-d+1}p^{-d+1} + \dots + c_{-1}p^{-1} + c_0.$$

Here $d \in \mathbb{Z}$, d > 0, $c_{-d} \neq 0$ and $c_i \in \{0, 1, \dots, p-1\}$ for $i = -d, -d + 1, \dots, -1, 0$. Note that $|v_j|_p \geq p$. Suppose that $|v_j|_p \leq \kappa_1 |a_j|_p^{\kappa_2}$ and $\sum_{j=s_n+1}^{r_{n+1}-1} |a_j - v_j|_p \neq 0$, where κ_1 and κ_2 are fixed positive rational integers. Assume that

$$\liminf_{n \to \infty} \frac{\log |q_{s_n}|_p}{\log |q_{r_n}|_p} > 2 + 4m \left(m + \kappa_2 + \frac{\log \kappa_1}{\log 2}\right). \tag{3.6}$$

Then the irrational p-adic number $\xi = [b_0, b_1, b_2, ...]_p$ is transcendental.

In the next section, we cite some auxiliary results that we need to prove our results. In Section 5, we prove Theorems 3.1 and 3.3.

4. Auxiliary results

The following lemma is a *p*-adic analogue of Alnıaçık [2, Lemma IV].

LEMMA 4.1. Let p/q and u/v be two rational numbers with Ruban p-adic continued fraction expansions

$$\frac{p}{q} = [a_0, a_1, \dots, a_n]_p \quad and \quad \frac{u}{v} = [b_0, b_1, \dots, b_n]_p \quad (|a_0|_p \ge 1, |b_0|_p \ge 1).$$

Assume that

$$|b_j|_p \le \kappa_1 |a_j|_p^{\kappa_2} \quad (j = 0, 1, \dots, n), \tag{4.1}$$

where κ_1 and κ_2 are fixed positive rational integers. Then

$$|u|_p \leq |a_0|_p^{\kappa_2} \kappa_1 |q|_p^{\kappa_2 + \log \kappa_1 / \log 2}$$

PROOF. It follows from (4.1) that

$$|u|_p = |b_0|_p \cdot |b_1|_p \cdots |b_n|_p \le \kappa_1^{n+1} \cdot (|a_0|_p \cdot |a_1|_p \cdots |a_n|_p)^{\kappa_2}.$$

As $|q|_p = |a_1|_p \cdots |a_n|_p \ge p^n \ge 2^n$,

$$|u|_{p} \leq (2^{n+1})^{\log \kappa_{1}/\log 2} |a_{0}|_{p}^{\kappa_{2}} |q|_{p}^{\kappa_{2}} \leq |a_{0}|_{p}^{\kappa_{2}} \kappa_{1} |q|_{p}^{\kappa_{2}+\log \kappa_{1}/\log 2}.$$

THEOREM 4.2 (Içen [8, page 25] and [7, Lemma 1, page 71]). Let *L* be a *p*-adic algebraic number field of degree *m* and let $\alpha_1, \ldots, \alpha_k$ be algebraic *p*-adic numbers in *L*. Let η be any algebraic *p*-adic number. Suppose that $F(\eta, \alpha_1, \ldots, \alpha_k) = 0$, where

 $F(x, x_1, ..., x_k)$ is a polynomial in $x, x_1, ..., x_k$ over \mathbb{Z} with degree at least one in x. Then

$$H(\eta) \le 3^{2dm + (l_1 + \dots + l_k)m} H^m H(\alpha_1)^{l_1 m} \cdots H(\alpha_k)^{l_k m}$$

where d is the degree of $F(x, x_1, ..., x_k)$ in x, l_i is the degree of $F(x, x_1, ..., x_k)$ in x_i (i = 1, ..., k) and H is the maximum of the usual absolute values of the coefficients of $F(x, x_1, ..., x_k)$.

LEMMA 4.3 (Pejkovic [18, Lemma 2.5]). Let α_1 and α_2 be two distinct algebraic *p*-adic numbers. Then

$$|\alpha_1 - \alpha_2|_p \ge (\deg(\alpha_1) + 1)^{-\deg(\alpha_2)} (\deg(\alpha_2) + 1)^{-\deg(\alpha_1)} H(\alpha_1)^{-\deg(\alpha_2)} H(\alpha_2)^{-\deg(\alpha_1)}.$$

LEMMA 4.4 (Ooto [17, Lemma 7 and page 1058]). Let α be a p-adic number with $|\alpha|_p \ge 1$ and let p_n/q_n be the nth convergent of its Ruban p-adic continued fraction expansion. Then $p_n \le |p_n|_p$, $q_n \le |q_n|_p$ and

$$p_n \cdot |p_n|_p \in \mathbb{Z} \quad q_n \cdot |q_n|_p \in \mathbb{Z}.$$

THEOREM 4.5 (Lang [13, page 32]). Let *K* be a *p*-adic algebraic number field and let α be any algebraic *p*-adic number. Then, for each $\varepsilon > 0$, the inequality

$$|\alpha - \beta|_p < \frac{1}{H(\beta)^{2+\varepsilon}}$$

has only finitely many solutions β in K.

5. Proofs of Theorems 3.1 and 3.3

PROOF OF THEOREM 3.1. We prove Theorem 3.1 by adapting the method of the proof of Almaçık [2, Theorem] to the non-Archimedean *p*-adic case. Define the algebraic *p*-adic numbers

$$\alpha_{r_n} := [b_0, b_1, \dots, b_{r_n}, a_{r_n+1}, a_{r_n+2}, \dots]_p \in \mathbb{Q}(\alpha) \quad (n = 0, 1, 2, \dots)$$

and

$$\beta_{r_n} := [a_{r_n+1}, a_{r_n+2}, \ldots]_p \in \mathbb{Q}(\alpha) \quad (n = 0, 1, 2, \ldots).$$

Then $\deg(\alpha_{r_n}) = \deg(\beta_{r_n}) = m \ (n = 0, 1, 2, ...)$. By (2.3),

$$\alpha = [a_0, a_1, \dots, a_{r_n}, \beta_{r_n}]_p = \frac{p_{r_n}\beta_{r_n} + p_{r_n-1}}{q_{r_n}\beta_{r_n} + q_{r_n-1}} \quad (n = 0, 1, 2, \dots)$$

and thus

$$\alpha q_{r_n} \beta_{r_n} + \alpha q_{r_n-1} - p_{r_n} \beta_{r_n} - p_{r_n-1} = 0 \quad (n = 0, 1, 2, \ldots).$$

Therefore, $F(\beta_{r_n}, \alpha) = 0$, where, by Lemma 4.4,

$$F(x, x_1) = |p_{r_n}|_p q_{r_n} x_1 x + |p_{r_n}|_p q_{r_n-1} x_1 - |p_{r_n}|_p p_{r_n} x - |p_{r_n}|_p p_{r_n-1}$$

[8]

is a polynomial in x, x_1 over \mathbb{Z} . It follows from Theorem 4.2 and Lemma 4.4 that

$$H(\beta_{r_n}) \le c_1 |q_{r_n}|_p^{2m},$$
 (5.1)

where $c_1 = 3^{3m} |a_0|_p^{2m} H(\alpha)^m$. Set

$$\frac{p'_n}{q'_n} := [b_0, b_1, \dots, b_n]_p \quad (n = 0, 1, 2, \dots).$$

Then

$$\alpha_{r_n} = [b_0, b_1, \dots, b_{r_n}, \beta_{r_n}]_p = \frac{p'_{r_n}\beta_{r_n} + p'_{r_n-1}}{q'_{r_n}\beta_{r_n} + q'_{r_n-1}} \quad (n = 0, 1, 2, \dots)$$

and

$$\alpha_{r_n}q'_{r_n}\beta_{r_n} + \alpha_{r_n}q'_{r_n-1} - p'_{r_n}\beta_{r_n} - p'_{r_n-1} = 0 \quad (n = 0, 1, 2, \ldots)$$

Thus, $F(\alpha_{r_n}, \beta_{r_n}) = 0$, where, by Lemma 4.4,

$$F(x, x_1) = |p'_{r_n}|_p q'_{r_n} x_1 x + |p'_{r_n}|_p q'_{r_n-1} x - |p'_{r_n}|_p p'_{r_n} x_1 - |p'_{r_n}|_p p'_{r_n-1} x_1 + |p'_{r_n-1}|_p p$$

is a polynomial in x, x_1 over \mathbb{Z} . It follows from Theorem 4.2, Lemma 4.4 and (5.1) that

$$H(\alpha_{r_n}) \le 3^{3m} |p'_{r_n}|_p^{2m} c_1^m |q_{r_n}|_p^{2m^2}.$$
(5.2)

From (3.4),

$$|b_j|_p \le \kappa_1 |a_j|_p^{\kappa_2}$$
 $(j = 0, 1, 2, ...)$

By Lemma 4.1,

$$|p'_{r_n}|_p \le |a_0|_p^{\kappa_2} \kappa_1 |q_{r_n}|_p^{\kappa_2 + \log \kappa_1 / \log 2} \quad (n = 0, 1, 2, \ldots).$$
(5.3)

Using (5.2), (5.3) and $\lim_{n\to\infty} |q_{r_n}|_p = \infty$, we obtain, for sufficiently large *n*,

$$H(\alpha_{r_n}) \le |q_{r_n}|_p^{c_2},$$
 (5.4)

where $c_2 = 1 + (m + \kappa_2 + \log \kappa_1 / \log 2) 2m$.

We approximate ξ by the algebraic *p*-adic numbers α_{r_n} . We infer from (2.6) and (3.4) that

$$|\xi - \alpha_{r_n}|_p \le \max\left\{ \left| \xi - \frac{p'_{s_n}}{q'_{s_n}} \right|_p, \left| \alpha_{r_n} - \frac{p'_{s_n}}{q'_{s_n}} \right|_p \right\} < \frac{1}{|q'_{s_n}|_p^2} \quad (n = 0, 1, 2, \ldots).$$
(5.5)

Put

$$\frac{d_{r_n}}{e_{r_n}} := [a_{r_n+1}, a_{r_n+2}, \dots, a_{s_n}]_p = [b_{r_n+1}, b_{r_n+2}, \dots, b_{s_n}]_p.$$

We have

$$\frac{p_{s_n}}{q_{s_n}} = [a_0, a_1, \dots, a_{r_n}, a_{r_n+1}, a_{r_n+2}, \dots, a_{s_n}]_p$$

10

G. Kekeç

and

$$\frac{p'_{s_n}}{q'_{s_n}} = [b_0, b_1, \dots, b_{r_n}, b_{r_n+1}, b_{r_n+2}, \dots, b_{s_n}]_p$$

Then

$$|q_{s_n}|_p = |a_1 \cdots a_{r_n}|_p |a_{r_n+1} \cdots a_{s_n}|_p = |q_{r_n}|_p |a_{r_n+1}|_p |e_{r_n}|_p$$

and

$$|q'_{s_n}|_p = |b_1 \cdots b_{r_n+1}|_p |b_{r_n+2} \cdots b_{s_n}|_p > |e_{r_n}|_p$$

Therefore,

$$|q_{s_n}|_p < |a_{r_n+1}|_p |q_{r_n}|_p |q'_{s_n}|_p \quad (n = 0, 1, 2, \ldots).$$
(5.6)

It follows from Lemmas 4.3 and 4.4 that

$$\left|\alpha - \frac{p_{r_n}}{q_{r_n}}\right|_p \ge \frac{1}{c_3 |q_{r_n}|_p^{2m}},\tag{5.7}$$

where $c_3 = (m + 1)2^m H(\alpha) |a_0|_p^{2m}$. On the other hand, by (2.6),

$$\left|\alpha - \frac{p_{r_n}}{q_{r_n}}\right|_p = \frac{1}{|a_{r_n+1}|_p |q_{r_n}|_p^2} \quad (n = 0, 1, 2, \ldots).$$
(5.8)

Combining (5.6), (5.7) and (5.8), we get

$$|q_{s_n}|_p < c_3 |q_{r_n}|_p^{2m-1} |q'_{s_n}|_p.$$
(5.9)

By (3.2) and (5.9),

$$c_3|q_{r_n}|_p^{2m-1} \le |q'_{s_n}|_p$$

for sufficiently large n. So, for sufficiently large n,

$$|q_{s_n}|_p < |q'_{s_n}|_p^2. agenum{5.10}{}$$

We see from (3.2), (5.4), (5.5) and (5.10) that

$$0 < |\xi - \alpha_{r_n}|_p < \frac{1}{|q_{s_n}|_p} \le \frac{1}{H(\alpha_{r_n})^{\phi_n}}$$

for sufficiently large n, where

$$\phi_n = \frac{\log |q_{s_n}|_p}{c_2 \log |q_{r_n}|_p}$$
 and $\lim_{n \to \infty} \phi_n = \infty$.

As deg $(\alpha_{r_n}) = m$ (n = 0, 1, 2, ...), this shows that ξ is a *p*-adic *U*^{*}-number with

$$w_m^*(\xi) = \infty. \tag{5.11}$$

We wish to show that ξ is a *p*-adic U_m^* -number. We must prove that $w_t^*(\xi) < \infty$ for $t = 1, \ldots, m-1$. Let β be any algebraic *p*-adic number with $1 \le \deg(\beta) \le m-1$ and with sufficiently large height $H(\beta)$. We deduce from Lemma 4.3 and (5.4) that

[10]

p-adic continued fractions

$$|\alpha_{r_n} - \beta|_p \ge \frac{1}{c_4 |q_{r_n}|_p^{c_5} H(\beta)^m}$$
(5.12)

for sufficiently large *n*, where $c_4 = (m + 1)^{m-1}m^m$ and $c_5 = c_2(m - 1)$. By (3.3), there exists a real number T > 1 such that

$$|q_{s_n}|_p^T \ge |q_{r_{n+1}}|_p \tag{5.13}$$

for sufficiently large *n*. We have

$$|\xi - \beta|_p = |(\xi - \alpha_{r_n}) + (\alpha_{r_n} - \beta)|_p.$$
(5.14)

From (5.5), (5.10) and (5.13), for sufficiently large n,

$$|\xi - \alpha_{r_n}|_p < \frac{1}{|q_{s_n}'|_p^2} < \frac{1}{|q_{s_n}|_p} \le \frac{1}{|q_{r_{n+1}}|_p^{1/T}}.$$
(5.15)

Let *i* be the unique positive rational integer satisfying $|q_{r_i}|_p \le H(\beta) < |q_{r_{i+1}}|_p$. Put $T_1 := T(m + c_5 + 1)$. If $|q_{r_i}|_p \le H(\beta) < |q_{r_{i+1}}|_p^{1/T_1}$, then it follows from (5.12), (5.14) and (5.15) with n = i that

$$|\xi - \beta|_p \ge \frac{1}{c_4 H(\beta)^{m+c_5}}.$$
 (5.16)

If $|q_{r_{i+1}}|_p^{1/T_1} \le H(\beta) < |q_{r_{i+1}}|_p$, then it follows from (3.2), (5.12), (5.14) and (5.15) with n = i + 1 that

$$|\xi - \beta|_p \ge \frac{1}{c_4 H(\beta)^{m+c_5 T_1}}.$$
(5.17)

We deduce from (5.16) and (5.17) that

$$|\xi - \beta|_p \ge \frac{1}{c_4 H(\beta)^{m+c_5 T_1}}$$

for all algebraic *p*-adic numbers β with deg(β) $\leq m - 1$ and with sufficiently large height $H(\beta)$. This gives

$$w_t^*(\xi) < \infty$$
 (t = 1,...,m-1). (5.18)

We infer from (5.11) and (5.18) that ξ is a *p*-adic U_m^* -number. As the set of *p*-adic U_m -numbers is equal to the set of *p*-adic U_m^* -numbers, ξ is a *p*-adic U_m -number. \Box

EXAMPLE 5.1. This example illustrates Theorem 3.1. In Theorem 3.1, take the algebraic *p*-adic number α as the quadratic irrational

$$\alpha = [a_0, a_1, a_2, \ldots]_p = [p^{-2}, p^{-2}, p^{-2}, \ldots]_p$$

and the sequences $(r_n)_{n=0}^{\infty}$ and $(s_n)_{n=0}^{\infty}$ as

$$r_0 = 0, r_n = 2(n+1)!$$
 $(n = 1, 2, 3, ...)$ and $s_n = (n+2)!$ $(n = 0, 1, 2, ...).$

[11]

Define the rational numbers b_i (j = 0, 1, 2, ...) by

$$b_j = \begin{cases} p^{-2} & \text{if } r_n \le j \le s_n \\ p^{-4} & \text{if } s_n < j < r_{n+1} \end{cases} (n = 0, 1, 2, \ldots),$$

Take $\kappa_1 = 1$ and $\kappa_2 = 2$. Then all the conditions of Theorem 3.1 are satisfied and therefore the irrational *p*-adic number $\xi = [b_0, b_1, b_2, ...]_p$ is a *p*-adic U_2 -number.

REMARK 5.2. In Theorem 3.1, if we replace $\lim_{n\to\infty} (\log |q_{s_n}|_p / \log |q_{r_n}|_p) = \infty$ by

$$\liminf_{n \to \infty} \frac{\log |q_{s_n}|_p}{\log |q_{r_n}|_p} > T(1 + m + c_5 T_1) \quad \text{and} \quad \limsup_{n \to \infty} \frac{\log |q_{s_n}|_p}{\log |q_{r_n}|_p} = \infty$$

then we see from the proof that Theorem 3.1 still holds true.

PROOF OF THEOREM 3.3. We replace (3.2) by (3.6) and keep all the lines of the proof of Theorem 3.1 up to (5.10). By (3.6), there exists a positive real number ε such that

$$\frac{\log |q_{s_n}|_p}{\log |q_{r_n}|_p} > (2+\varepsilon)c_2 \tag{5.19}$$

for sufficiently large n. We deduce from (5.4), (5.5), (5.10) and (5.19) that

$$0 < |\xi - \alpha_{r_n}|_p < \frac{1}{H(\alpha_{r_n})^{2+\varepsilon}}$$

for sufficiently large *n*. It follows from the definition of α_{r_n} and (3.5) that the algebraic *p*-adic numbers α_{r_n} in $\mathbb{Q}(\alpha)$ are all distinct. Then, by Theorem 4.5, the irrational *p*-adic number ξ is transcendental.

Finally, we pose the following question.

PROBLEM 5.3. Does an exact analogue of Kekeç [11, Theorem 1.5] hold in \mathbb{Q}_p ?

References

- [1] K. Alnıaçık, 'On the subclasses U_m in Mahler's classification of the transcendental numbers', *İstanbul Üniv. Fen Fak. Mecm. Ser. A* **44** (1979), 39–82.
- [2] K. Alnıaçık, 'On U_m-numbers', Proc. Amer. Math. Soc. 85 (1982), 499–505.
- [3] Y. Bugeaud, *Approximation by Algebraic Numbers*, Cambridge Tracts in Mathematics, 160 (Cambridge University Press, Cambridge, 2004).
- Y. Bugeaud and G. Kekeç, 'On Mahler's classification of *p*-adic numbers', *Bull. Aust. Math. Soc.* 98 (2018), 203–211.
- [5] Y. Bugeaud and G. Kekeç, 'On Mahler's p-adic S-, T-, and U-numbers', An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat. 28 (2020), 81–94.
- [6] B. Can and G. Kekeç, 'On transcendental continued fractions in fields of formal power series over finite fields', *Bull. Aust. Math. Soc.* 105 (2022), 392–403.
- [7] O. Ş. İçen, 'Über die Funktionswerte der *p*-adisch elliptischen Funktionen I', *İstanbul Üniv. Fen Fak. Mecm. Ser. A* **36** (1971), 53–87.
- [8] O. Ş. İçen, 'Anhang zu den Arbeiten "Über die Funktionswerte der *p*-adisch elliptischen Funktionen I, II'", *İstanbul Üniv. Fen Fak. Mecm. Ser. A* 38 (1973), 25–35.
- [9] G. Kekeç, 'On Mahler's p-adic U_m-numbers', Bull. Aust. Math. Soc. 88 (2013), 44–50.

p-adic continued fractions

- [10] G. Kekeç, 'Some generalized lacunary power series with algebraic coefficients for Mahler's U-number arguments', *Taiwanese J. Math.* 18 (2014), 1–26.
- [11] G. Kekeç, 'On transcendental regular continued fractions', Math. Slovaca 73 (2023), 1399–1408.
- [12] J. F. Koksma, 'Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen', *Monatsh. Math. Phys.* 48 (1939), 176–189.
- [13] S. Lang, 'Integral points on curves', Publ. Math. Inst. Hautes Études Sci. 6 (1960), 27-43.
- [14] V. Laohakosol, 'A characterization of rational numbers by *p*-adic Ruban continued fractions', J. Aust. Math. Soc. Ser. A 39 (1985), 300–305.
- [15] K. Mahler, 'Zur Approximation der Exponentialfunktion und des Logarithmus. I, II', J. reine angew. Math. 166 (1932), 118–150.
- [16] K. Mahler, 'Über eine Klasseneinteilung der *p*-adischen Zahlen', *Mathematica* (*Leiden*) 3 (1935), 177–185.
- [17] T. Ooto, 'Transcendental *p*-adic continued fractions', *Math. Z.* 287 (2017), 1053–1064.
- [18] T. Pejkovic, Polynomial Root Separation and Applications, PhD Thesis (Université de Strasbourg, Strasbourg, 2012).
- [19] O. Perron, Irrationalzahlen (Walter de Gruyter, Berlin, 1960).
- [20] A. A. Ruban, 'Certain metric properties of the *p*-adic numbers', *Sibirsk. Mat. Ž.* 11 (1970), 222–227 (in Russian).
- [21] H. P. Schlickewei, 'p-adic T-numbers do exist', Acta Arith. 39 (1981), 181–191.
- [22] L. X. Wang, 'p-adic continued fractions I', Sci. Sinica Ser. A 28 (1985), 1009–1017.
- [23] L. X. Wang, 'p-adic continued fractions II', Sci. Sinica Ser. A 28 (1985), 1018–1023.

GÜLCAN KEKEÇ, Department of Mathematics, Faculty of Science, Istanbul University, 34134 Vezneciler, Fatih, Istanbul, Turkey e-mail: gulkekec@istanbul.edu.tr

[13]