TRANSCENDENTAL RUBAN *p*-ADIC CONTINUED FRACTION[S](#page-0-0)

GÜLCAN KEKE[Ç](https://orcid.org/0000-0001-5805-7710)

(Received 20 August 2024; accepted 30 August 2024)

Abstract

We establish explicit constructions of Mahler's *p*-adic *Um*-numbers by using Ruban *p*-adic continued fraction expansions of algebraic irrational *p*-adic numbers of degree *m*.

2020 *Mathematics subject classification*: primary 11J61; secondary 11J70, 11J82.

Keywords and phrases: Mahler's and Koksma's classifications of transcendental *p*-adic numbers, *p*-adic *Um*-number, Ruban *p*-adic continued fraction, transcendence measure.

1. Mahler's and Koksma's classifications of *p*-adic numbers

Let *p* be a prime number and let $|\cdot|_p$ denote the *p*-adic absolute value on the field Q of rational numbers, normalised such that $|p|_p = p^{-1}$. The completion of ℚ with respect to $|\cdot|_p$ is the field \mathbb{Q}_p of *p*-adic numbers, and the unique extension of $|\cdot|_p$ to the field \mathbb{Q}_p is denoted by the same notation $|\cdot|_p$. Mahler [\[16\]](#page-12-0) gave a classification of *p*-adic numbers in analogy with his classification [\[15\]](#page-12-1) of real numbers, as follows. Let $P(x) = a_n x^n + \cdots + a_1 x + a_0$ be a nonzero polynomial in *x* over the ring Z of rational integers. We denote by $deg(P)$ the degree of $P(x)$ with respect to *x*. The height $H(P)$ of $P(x)$ is defined by $H(P) = \max\{|a_n|, \ldots, |a_1|, |a_0|\}$, where $|\cdot|$ denotes the usual absolute value on the field $\mathbb R$ of real numbers. Let ξ be any *p*-adic number and let *n*, *H* be any positive rational integers. Following Bugeaud [\[3\]](#page-11-0), set

$$
w_n(H,\xi) = \min\{|P(\xi)|_p : P(x) \in \mathbb{Z}[x], \deg(P) \le n, H(P) \le H \text{ and } P(\xi) \ne 0\},\
$$

$$
w_n(\xi) = \limsup_{H \to \infty} \frac{-\log(Hw_n(H, \xi))}{\log H} \quad \text{and} \quad w(\xi) = \limsup_{n \to \infty} \frac{w_n(\xi)}{n}.
$$

Then ξ is called:

- a *p*-adic *A*-number if $w(\xi) = 0$;
- a *p*-adic *S*-number if $0 < w(\xi) < \infty$;
- a *p*-adic *T*-number if $w(\xi) = \infty$ and $w_n(\xi) < \infty$ for $n = 1, 2, 3, \ldots$; and
- a *p*-adic *U*-number if $w(\xi) = \infty$ and $w_n(\xi) = \infty$ from some *n* onward.

[©] The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

2 G. Kekeç [2]

The set of *p*-adic *A*-numbers coincides with the set of algebraic *p*-adic numbers. Therefore, the transcendental *p*-adic numbers are separated into the three disjoint classes *S*, *T* and *U*. If ξ is a *p*-adic *U*-number and *m* is the minimum of the positive integers *n* satisfying $w_n(\xi) = \infty$, then ξ is called a *p*-adic U_m -number. Almaçık [\[1,](#page-11-1) Ch. III, Theorem I] gave the first explicit constructions of *p*-adic *Um*-numbers for each positive integer *m*. For further constructions of *p*-adic *S*-, *T*- and *U*-numbers, see [\[4,](#page-11-2) [5,](#page-11-3) [9,](#page-11-4) [10\]](#page-12-2).

Assume that α is an algebraic *p*-adic number. Let $P(x)$ be the minimal polynomial of α over \mathbb{Z} . Then the degree deg(α) of α and the height $H(\alpha)$ of α are defined by $deg(\alpha) = deg(P)$ and $H(\alpha) = H(P)$. Given a *p*-adic number ξ and positive rational integers *n*, *H*, in analogy with Koksma's classification [\[12\]](#page-12-3) of real numbers and as in Bugeaud [\[3\]](#page-11-0) and Schlickewei [\[21\]](#page-12-4)), set

$$
w_n^*(H,\xi) = \min\left\{ |\xi - \alpha|_p : \begin{cases} \alpha \text{ is an algebraic } p \text{-adic number,} \\ \deg(\alpha) \le n, H(\alpha) \le H \text{ and } \alpha \ne \xi \end{cases} \right\},
$$

$$
w_n^*(\xi) = \limsup_{H \to \infty} \frac{-\log(Hw_n^*(H,\xi))}{\log H} \quad \text{and} \quad w^*(\xi) = \limsup_{n \to \infty} \frac{w_n^*(\xi)}{n}.
$$

Then ξ is called:

- a *p*-adic *A*^{*}-number if $w^*(\xi) = 0$;
- a *^p*-adic *^S*[∗]-number if 0 < *^w*[∗](ξ) < [∞];
- a *p*-adic *T*^{*}-number if $w^*(\xi) = \infty$ and $w^*_{n}(\xi) < \infty$ for $n = 1, 2, 3, ...$; and
• a *n*-adic *U*^{*}-number if $w^*(\xi) = \infty$ and $w^*(\xi) = \infty$ from some *n* onward
- a *p*-adic *U*^{*}-number if $w^*(\xi) = \infty$ and $w^*_n(\xi) = \infty$ from some *n* onward.

The set of *p*-adic *A*[∗]-numbers is equal to the set of algebraic *p*-adic numbers. Therefore, the transcendental *p*-adic numbers are separated into the three disjoint classes *S*[∗], *^T*[∗] and *^U*[∗]. Let ξ be a *^p*-adic *^U*[∗]-number and let *^m* be the minimum of the positive integers *n* satisfying $w_n^*(\xi) = \infty$. Then ξ is called a *p*-adic U_m^* -number. Mahler's classification of *n*-adic numbers is equivalent to Koksma's classification of *n*-adic classification of *p*-adic numbers is equivalent to Koksma's classification of *p*-adic numbers, that is, the classes A, S, T and U are the same as the classes A^* , S^* , T^* and U^* , respectively. Furthermore, a *p*-adic *U*[∗] *^m*-number is a *p*-adic *Um*-number and *vice versa*. (See Bugeaud [\[3\]](#page-11-0) for further information on Mahler's and Koksma's classifications of *p*-adic numbers.)

2. Ruban *p*-adic continued fractions

Ruban [\[20\]](#page-12-5) introduced a continued fraction algorithm in \mathbb{Q}_p . In this section, we recall the Ruban *p*-adic continued fraction algorithm and its basic properties following the approach of Perron [\[19,](#page-12-6) Sections 29 and 30, pages 101–108] (see also [\[14,](#page-12-7) [17,](#page-12-8) [22,](#page-12-9) [23\]](#page-12-10)). Let ξ be a nonzero *p*-adic number with the canonical expansion

$$
\xi = \sum_{j=k}^{\infty} a_j p^j,
$$

where $a_j \in \{0, 1, ..., p-1\}$ for $j = k, k + 1, ..., a_k \neq 0$ and *k* is the rational integer such that $|k| = p^{-k}$ If $k < 0$ then we write $\ell = \{\ell\} + |\ell|$ where that $|\xi|_p = p^{-k}$. If $k \le 0$, then we write $\xi = {\xi} + {\xi}$, where

$$
\{\xi\} = \sum_{j=k}^{0} a_j p^j \quad \text{and} \quad \lfloor \xi \rfloor = \sum_{j=1}^{\infty} a_j p^j.
$$

If $k > 0$, then we write $\xi = {\xi} + {\xi}$, where

$$
\{\xi\} = 0 \quad \text{and} \quad \lfloor \xi \rfloor = \sum_{j=k}^{\infty} a_j p^j.
$$

Further, we write $0 = \{0\} + \{0\}$, where $\{0\} = \{0\} = 0$. Then, for each *p*-adic number ξ , $\{\xi\}$ and $\lfloor \xi \rfloor$ are uniquely determined. Let b_0, b_1, b_2, \ldots be nonnegative rational numbers with

 $b_0 \in \{\{\xi\} : \xi \in \mathbb{Q}_p\}$ and $b_v \in \{\{\xi\} : \xi \in \mathbb{Q}_p, |\xi|_p \ge p\}$ ($v = 1, 2, 3, ...$).

A finite Ruban *p*-adic continued fraction $[b_0, b_1, \ldots, b_n]_p$ is defined by

$$
[b_0, b_1, \ldots, b_n]_p = b_0 + \cfrac{1}{b_1 + \cfrac{1}{\ddots + \cfrac{1}{b_n}}}.
$$

Then we have the following properties.

$$
[b_0]_p = b_0, \quad [b_0, b_1]_p = b_0 + \frac{1}{b_1},
$$

$$
[b_0, b_1, \ldots, b_n]_p = \left[b_0, b_1, \ldots, b_{n-2}, b_{n-1} + \frac{1}{b_n}\right]_p = [b_0, b_1, \ldots, b_{m-1}, [b_m, \ldots, b_n]_p]_p,
$$

$$
[b_0, b_1, \ldots, b_n]_p = b_0 + \frac{1}{[b_1, \ldots, b_n]_p}.
$$

Hence, $[b_0, b_1, \ldots, b_n]_p$ is a nonnegative rational number, and the numbers b_v ($v = 0, 1, \ldots, n$) are called the partial quotients of the Ruban *p*-adic continued fraction $[b_0, b_1, \ldots, b_n]_p$. Define the nonnegative rational numbers p_ν and q_ν by

$$
\begin{cases} p_{-2} = 0, & p_{-1} = 1, p_{\nu} = b_{\nu} p_{\nu - 1} + p_{\nu - 2} & (\nu = 0, 1, 2, \ldots), \\ q_{-2} = 1, q_{-1} = 0, q_{\nu} = b_{\nu} q_{\nu - 1} + q_{\nu - 2} & (\nu = 0, 1, 2, \ldots). \end{cases}
$$
(2.1)

By induction,

$$
[b_0, b_1, \ldots, b_n]_p = \frac{p_n}{q_n} \quad (n = 0, 1, 2, \ldots).
$$

4 G. Kekeç [4]

The nonnegative rational numbers p_0/q_0 , p_1/q_1 , ..., p_n/q_n are called the convergents of the Ruban *p*-adic continued fraction $[b_0, b_1, \ldots, b_n]_p$; p_v/q_v ($v = 0, 1, \ldots, n$) is called the *v*th convergent of $[b_0, b_1, \ldots, b_n]_p$. By induction,

$$
p_{\nu}q_{\nu-1}-p_{\nu-1}q_{\nu}=(-1)^{\nu-1} \quad (\nu=-1,0,1,\ldots). \tag{2.2}
$$

From [\(2.1\)](#page-2-0),

 $|q_n|_p = |b_1|_p \cdot |b_2|_p \cdots |b_n|_p$ and $|p_n|_p = |b_0|_p \cdot |b_1|_p \cdots |b_n|_p = |b_0|_p \cdot |q_n|_p$ (if $b_0 \neq 0$) for $n = 1, 2, 3, \ldots$ As $|b_v|_p \ge p$ ($v = 1, 2, 3, \ldots$), we have $|q_{n+1}|_p > |q_n|_p$ and $|p_{n+1}|_p > |p_n|_p$ for $n = 1, 2, 3, \ldots$. Therefore,

$$
\lim_{n\to\infty}|q_n|_p=\infty \text{ and } \lim_{n\to\infty}|p_n|_p=\infty.
$$

By [\(2.2\)](#page-3-0),

$$
\left|\frac{p_n}{q_n}-\frac{p_{n-1}}{q_{n-1}}\right|_p=\frac{1}{|q_n|_p\cdot|q_{n-1}|_p} \quad (n=1,2,3,\ldots).
$$

Then

$$
\lim_{n\to\infty}\left|\frac{p_n}{q_n}-\frac{p_{n-1}}{q_{n-1}}\right|_p=0.
$$

Thus, $\{p_n/q_n\}_{n=0}^{\infty}$ is a Cauchy sequence in \mathbb{Q}_p and has a limit in \mathbb{Q}_p . An infinite
Ruban *n*-adic continued fraction b_0, b_1, b_2, \ldots less defined as the limit of the sequence Ruban *p*-adic continued fraction $[b_0, b_1, b_2, \ldots]_p$ is defined as the limit of the sequence ${p_n/q_n}_{n=0}^{\infty}$, that is,

$$
[b_0, b_1, b_2,...]_p := \lim_{n \to \infty} \frac{p_n}{q_n} = \lim_{n \to \infty} [b_0, b_1,...,b_n]_p.
$$

Further, for $\xi \in \mathbb{Q}_p \setminus \{0\}$,

$$
[b_0, \dots, b_n, \xi]_p = \frac{p_n \cdot \xi + p_{n-1}}{q_n \cdot \xi + q_{n-1}} \quad (n = 0, 1, 2, \dots).
$$
 (2.3)

Let ξ_0 be a *p*-adic number. If $\xi_0 \neq {\xi_0}$, then we write

$$
\xi_0 = b_0 + \frac{1}{\xi_1},
$$

where $b_0 = \{\xi_0\}, \xi_1 = 1/\lfloor \xi_0 \rfloor, |\xi_1|_p \ge p$ and $\{\xi_1\} \ne 0$. If $\xi_1 \ne \{\xi_1\}$, then we write

$$
\xi_1 = b_1 + \frac{1}{\xi_2},
$$

where $b_1 = \{\xi_1\}, \xi_2 = 1/\lfloor \xi_1 \rfloor, |\xi_2|_p \ge p$ and $\{\xi_2\} \ne 0$. If the process continues, then

$$
\xi_{\nu} = b_{\nu} + \frac{1}{\xi_{\nu+1}} \quad (\nu \ge 0), \tag{2.4}
$$

where $b_{\nu} = {\xi_{\nu}} (v \ge 0)$ and ${\xi_{\nu+1}} = 1/{\xi_{\nu}} (v \ge 0)$, and

$$
|\xi_v|_p = |b_v|_p \ge p \quad (\nu \ge 1).
$$

[5] *p*-adic continued fractions 5

The *p*-adic numbers ξ_1, ξ_2, \ldots are called complete quotients, and the nonnegative rational numbers b_0, b_1, b_2, \ldots are called partial quotients. It follows from [\(2.4\)](#page-3-1) that

$$
\xi_0 = [b_0, \xi_1]_p = [b_0, b_1, \xi_2]_p = [b_0, b_1, \dots, b_n, \xi_{n+1}]_p \tag{2.5}
$$

and

$$
\xi_{\nu} = [b_{\nu}, b_{\nu+1}, \dots, b_n, \xi_{n+1}]_p \quad (\nu = 0, 1, \dots, n).
$$

By [\(2.5\)](#page-4-0), [\(2.3\)](#page-3-2) and [\(2.2\)](#page-3-0),

$$
\xi_0 - \frac{p_n}{q_n} = \frac{p_n \xi_{n+1} + p_{n-1}}{q_n \xi_{n+1} + q_{n-1}} - \frac{p_n}{q_n} = \frac{(-1)^n}{q_n (q_n \xi_{n+1} + q_{n-1})}.
$$

Then

$$
\left|\xi_0 - \frac{p_n}{q_n}\right|_p = \frac{1}{|\xi_{n+1}|_p \cdot |q_n|^2_p} = \frac{1}{|b_{n+1}|_p \cdot |q_n|^2_p} = \frac{1}{|q_{n+1}|_p \cdot |q_n|_p} < \frac{1}{|q_n|^2_p}.\tag{2.6}
$$

We now have two cases to consider.

Case (i). Some ξ_{n+1} appears with $\xi_{n+1} = {\xi_{n+1}} = b_{n+1}$ and the process stops with $\xi_{n+1} = b_{n+1}$. Then it follows from [\(2.5\)](#page-4-0) that

$$
\xi_0=[b_0,b_1,\ldots,b_n,b_{n+1}]_p.
$$

Case (ii). $\xi_{n+1} \neq {\xi_{n+1}}$ for every $n \geq -1$ and the process never stops. Then it follows from (2.6) that from (2.6) that

$$
\xi_0 = \lim_{n \to \infty} \frac{p_n}{q_n} = \lim_{n \to \infty} [b_0, b_1, \dots, b_n]_p = [b_0, b_1, b_2, \dots]_p.
$$

The Ruban continued fraction expansion of a *p*-adic number is unique because the canonical expansion of a *p*-adic number is unique. Laohakosol [\[14\]](#page-12-7) and Wang [\[22\]](#page-12-9) proved that a *p*-adic number is rational if and only if its Ruban continued fraction expansion is finite or ultimately periodic with the period $p - p^{-1}$. Ooto [\[17\]](#page-12-8) recently proved that an analogue of Lagrange's theorem does not hold for the Ruban *p*-adic continued fraction: that is, there are quadratic irrational *p*-adic numbers whose Ruban continued fraction expansions are not ultimately periodic.

3. Our main results

Alnıaçık [\[2,](#page-11-5) Theorem] gave a construction of real *Um*-numbers by using continued fraction expansions of algebraic irrational real numbers of degree *m*. In the present paper, we establish the following *p*-adic analogue.

THEOREM 3.1. Let α be an algebraic irrational p-adic number with $|\alpha|_p \geq 1$ and the *Ruban p-adic continued fraction expansion*

$$
\alpha = [a_0, a_1, a_2, \ldots]_p. \tag{3.1}
$$

6 G. Kekeç (6)

Let $(r_n)_{n=0}^{\infty}$ and $(s_n)_{n=0}^{\infty}$ be two infinite sequences of nonnegative rational integers such *that*

$$
0 = r_0 < s_0 < r_1 < s_1 < r_2 < s_2 < r_3 < s_3 < \cdots \quad \text{and} \quad r_{n+1} - s_n \geq 2.
$$

Denote by p_n/q_n $(n = 0, 1, 2, ...)$ *the nth convergent of the Ruban p-adic continued fraction [\(3.1\)](#page-4-2). Assume that*

$$
\lim_{n \to \infty} \frac{\log |q_{s_n}|_p}{\log |q_{r_n}|_p} = \infty \tag{3.2}
$$

and

$$
\limsup_{n \to \infty} \frac{\log |q_{r_{n+1}}|_p}{\log |q_{s_n}|_p} < \infty. \tag{3.3}
$$

Define the rational numbers b_i ($j = 0, 1, 2, \ldots$) *by*

$$
b_j = \begin{cases} a_j & \text{if } r_n \le j \le s_n \\ v_j & \text{if } s_n < j < r_{n+1} \\ n = 0, 1, 2, \ldots), \end{cases} \tag{3.4}
$$

where ^υ*^j is a rational number of the form*

$$
v_j = c_{-d}p^{-d} + c_{-d+1}p^{-d+1} + \cdots + c_{-1}p^{-1} + c_0.
$$

Here, $d \in \mathbb{Z}$, $d > 0$, $c_{-d} \neq 0$ and $c_i \in \{0, 1, \ldots, p-1\}$ *for* $i = -d, -d + 1, \ldots, -1, 0$ *.*
Note that $|v_i| \geq p$, *Suppose that* $|v_i| \leq \kappa_i |a_i|^{k_2}$ and $\sum_{i=1}^{r_{n+1}-1} |a_i - v_i| \neq 0$, where *Note that* $|v_j|_p \geq p$. Suppose that $|v_j|_p \leq \kappa_1 |a_j|_p^{k_2}$ and $\sum_{j=s_n+1}^{r_{n+1}-1} |a_j - v_j|_p \neq 0$, where κ_1 and κ_2 are fixed positive rational integers. Then the irrational p-adic number ^κ¹ *and* ^κ² *are fixed positive rational integers. Then the irrational p-adic number* $\xi = [b_0, b_1, b_2, \ldots]_p$ *is a p-adic U_m-number, where m denotes the degree of the algebraic irrational p-adic number* α*.*

REMARK 3.2. Let \mathbb{F}_q be the finite field with *q* elements and let $\mathbb{F}_q((x^{-1}))$ be the field of formal power series over \mathbb{F}_q . In $\mathbb{F}_q((x^{-1}))$, Can and Kekeç [\[6,](#page-11-6) Theorem 1.1] recently established the formal power series analogue of Alnıaçık [\[2,](#page-11-5) Theorem].

Recently, Kekeç [\[11,](#page-12-11) Theorem 1.5] modified the hypotheses in Alnıaçık [\[2,](#page-11-5) Theorem] and gave a construction of transcendental real numbers that are not *U*-numbers by using continued fraction expansions of irrational algebraic real numbers. Our second main result in the present paper is the following partial *p*-adic analogue of Kekeç [\[11,](#page-12-11) Theorem 1.5].

THEOREM 3.3. Let α *be an algebraic p-adic number of degree m* ≥ 2 *with* $|\alpha|_p \geq 1$ *and the Ruban p-adic continued fraction expansion*

$$
\alpha=[a_0,a_1,a_2,\ldots]_p.
$$

Let $(r_n)_{n=0}^{\infty}$ and $(s_n)_{n=0}^{\infty}$ be two infinite sequences of nonnegative rational integers such *that*

$$
0 = r_0 < s_0 < r_1 < s_1 < r_2 < s_2 < r_3 < s_3 < \cdots \quad \text{and} \quad r_{n+1} - s_n \geq 2.
$$

Denote by p_n/q_n $(n = 0, 1, 2, ...)$ *the nth convergent of the Ruban p-adic continued fraction* α *. Define the rational numbers* b_j ($j = 0, 1, 2, ...$) *by*

$$
b_j = \begin{cases} a_j & \text{if } r_n \le j \le s_n \\ v_j & \text{if } s_n < j < r_{n+1} \\ \end{cases} \quad (n = 0, 1, 2, \ldots), \tag{3.5}
$$

where ^υ*^j is a rational number of the form*

$$
v_j = c_{-d}p^{-d} + c_{-d+1}p^{-d+1} + \cdots + c_{-1}p^{-1} + c_0.
$$

Here d ∈ \mathbb{Z} , *d* > 0, $c_{-d} \neq 0$ *and* $c_i \in \{0, 1, ..., p-1\}$ *for* $i = -d, -d + 1, ..., -1, 0$ *. Note*
that $|v_i|_a > p$. *Suppose that* $|v_i|_a \le \kappa_1 |a_i|^{k_2}$ *and* $\sum_{i=1}^{r_{n+1}-1} |a_i - v_i|_a \neq 0$, where κ_1 and that $|v_j|_p \ge p$. Suppose that $|v_j|_p \le \kappa_1 |a_j|_p^{\kappa_2}$ and $\sum_{j=s_n+1}^{r_{n+1}-1} |a_j - v_j|_p \ne 0$, where κ_1 and κ_2 are fixed positive rational integers. Assume that

$$
\liminf_{n \to \infty} \frac{\log |q_{s_n}|_p}{\log |q_{r_n}|_p} > 2 + 4m \Big(m + \kappa_2 + \frac{\log \kappa_1}{\log 2} \Big). \tag{3.6}
$$

Then the irrational p-adic number $\xi = [b_0, b_1, b_2, \ldots]_p$ *is transcendental.*

In the next section, we cite some auxiliary results that we need to prove our results. In Section [5,](#page-7-0) we prove Theorems [3.1](#page-4-3) and [3.3.](#page-5-0)

4. Auxiliary results

The following lemma is a *p*-adic analogue of Alnıaçık [\[2,](#page-11-5) Lemma IV].

LEMMA 4.1. *Let ^p*/*q and u*/*v be two rational numbers with Ruban p-adic continued fraction expansions*

$$
\frac{p}{q} = [a_0, a_1, \dots, a_n]_p \quad and \quad \frac{u}{v} = [b_0, b_1, \dots, b_n]_p \quad (|a_0|_p \ge 1, |b_0|_p \ge 1).
$$

Assume that

$$
|b_j|_p \le \kappa_1 |a_j|_p^{\kappa_2} \quad (j = 0, 1, \dots, n), \tag{4.1}
$$

where $κ_1$ *and* $κ_2$ *are fixed positive rational integers. Then*

$$
|u|_p \le |a_0|_p^{\kappa_2} \kappa_1 |q|_p^{\kappa_2 + \log \kappa_1 / \log 2}.
$$

PROOF. It follows from [\(4.1\)](#page-6-0) that

$$
|u|_p = |b_0|_p \cdot |b_1|_p \cdots |b_n|_p \le \kappa_1^{n+1} \cdot (|a_0|_p \cdot |a_1|_p \cdots |a_n|_p)^{\kappa_2}.
$$

As $|q|_p = |a_1|_p \cdots |a_n|_p \geq p^n \geq 2^n$,

$$
|u|_p \leq (2^{n+1})^{\log \kappa_1 / \log 2} |a_0|_p^{\kappa_2} |q|_p^{\kappa_2} \leq |a_0|_p^{\kappa_2} \kappa_1 |q|_p^{\kappa_2 + \log \kappa_1 / \log 2}.
$$

THEOREM 4.2 (Içen [\[8,](#page-11-7) page 25] and [\[7,](#page-11-8) Lemma 1, page 71]). *Let L be a p-adic algebraic number field of degree m and let* $\alpha_1, \ldots, \alpha_k$ *be algebraic p-adic numbers in L. Let* η *be any algebraic p-adic number. Suppose that* $F(\eta, \alpha_1, \dots, \alpha_k) = 0$ *, where* 8 **G. Kekeç** [8]

 $F(x, x_1, \ldots, x_k)$ *is a polynomial in* x, x_1, \ldots, x_k *over* $\mathbb Z$ *with degree at least one in* x. *Then*

$$
H(\eta) \leq 3^{2dm + (l_1 + \dots + l_k)m} H^m H(\alpha_1)^{l_1 m} \cdots H(\alpha_k)^{l_k m},
$$

where d is the degree of $F(x, x_1, \ldots, x_k)$ *in x, l_i is the degree of* $F(x, x_1, \ldots, x_k)$ *in* x_i ($i = 1, \ldots, k$) *and H is the maximum of the usual absolute values of the coefficients* $of F(x, x_1, \ldots, x_k)$.

LEMMA 4.3 (Pejkovic [\[18,](#page-12-12) Lemma 2.5]). *Let* α_1 *and* α_2 *be two distinct algebraic p-adic numbers. Then*

$$
|\alpha_1 - \alpha_2|_p \geq (\deg(\alpha_1) + 1)^{-\deg(\alpha_2)} (\deg(\alpha_2) + 1)^{-\deg(\alpha_1)} H(\alpha_1)^{-\deg(\alpha_2)} H(\alpha_2)^{-\deg(\alpha_1)}.
$$

LEMMA 4.4 (Ooto [\[17,](#page-12-8) Lemma 7 and page 1058]). *Let* α *be a p-adic number with* $|\alpha|_p \geq 1$ *and let* p_n/q_n *be the nth convergent of its Ruban p-adic continued fraction expansion. Then* $p_n \leq |p_n|_p$, $q_n \leq |q_n|_p$ *and*

$$
p_n \cdot |p_n|_p \in \mathbb{Z} \quad q_n \cdot |q_n|_p \in \mathbb{Z}.
$$

THEOREM 4.5 (Lang [\[13,](#page-12-13) page 32]). *Let K be a p-adic algebraic number field and let* α *be any algebraic p-adic number. Then, for each* ε > ⁰*, the inequality*

$$
|\alpha - \beta|_p < \frac{1}{H(\beta)^{2+\varepsilon}}
$$

has only finitely many solutions β *in K.*

5. Proofs of Theorems [3.1](#page-4-3) and [3.3](#page-5-0)

PROOF OF THEOREM [3.1.](#page-4-3) We prove Theorem [3.1](#page-4-3) by adapting the method of the proof of Alnıaçık [\[2,](#page-11-5) Theorem] to the non-Archimedean *p*-adic case. Define the algebraic *p*-adic numbers

$$
\alpha_{r_n} := [b_0, b_1, \ldots, b_{r_n}, a_{r_n+1}, a_{r_n+2}, \ldots]_p \in \mathbb{Q}(\alpha) \quad (n = 0, 1, 2, \ldots)
$$

and

$$
\beta_{r_n} := [a_{r_n+1}, a_{r_n+2}, \ldots]_p \in \mathbb{Q}(\alpha) \quad (n = 0, 1, 2, \ldots).
$$

Then deg(α_{r_n}) = deg(β_{r_n}) = *m* (*n* = 0, 1, 2, ...). By [\(2.3\)](#page-3-2),

$$
\alpha = [a_0, a_1, \dots, a_{r_n}, \beta_{r_n}]_p = \frac{p_{r_n} \beta_{r_n} + p_{r_n-1}}{q_{r_n} \beta_{r_n} + q_{r_n-1}} \quad (n = 0, 1, 2, \dots)
$$

and thus

$$
\alpha q_{r_n} \beta_{r_n} + \alpha q_{r_n-1} - p_{r_n} \beta_{r_n} - p_{r_n-1} = 0 \quad (n = 0, 1, 2, ...).
$$

Therefore, $F(\beta_{r_n}, \alpha) = 0$, where, by Lemma [4.4,](#page-7-1)

$$
F(x, x_1) = |p_{r_n}|_p q_{r_n} x_1 x + |p_{r_n}|_p q_{r_n-1} x_1 - |p_{r_n}|_p p_{r_n} x - |p_{r_n}|_p p_{r_n-1}
$$

is a polynomial in x, x_1 over \mathbb{Z} . It follows from Theorem [4.2](#page-6-1) and Lemma [4.4](#page-7-1) that

$$
H(\beta_{r_n}) \le c_1 |q_{r_n}|_p^{2m},\tag{5.1}
$$

where $c_1 = 3^{3m} |a_0|_p^{2m} H(\alpha)^m$. Set

$$
\frac{p'_n}{q'_n} := [b_0, b_1, \dots, b_n]_p \quad (n = 0, 1, 2, \dots).
$$

Then

$$
\alpha_{r_n} = [b_0, b_1, \dots, b_{r_n}, \beta_{r_n}]_p = \frac{p'_{r_n} \beta_{r_n} + p'_{r_n-1}}{q'_{r_n} \beta_{r_n} + q'_{r_n-1}} \quad (n = 0, 1, 2, \dots)
$$

and

$$
\alpha_{r_n}q'_{r_n}\beta_{r_n} + \alpha_{r_n}q'_{r_n-1} - p'_{r_n}\beta_{r_n} - p'_{r_n-1} = 0 \quad (n = 0, 1, 2, ...).
$$

Thus, $F(\alpha_{r_n}, \beta_{r_n}) = 0$, where, by Lemma [4.4,](#page-7-1)

$$
F(x, x_1) = |p'_{r_n}|_p q'_{r_n} x_1 x + |p'_{r_n}|_p q'_{r_n-1} x - |p'_{r_n}|_p p'_{r_n} x_1 - |p'_{r_n}|_p p'_{r_n-1}
$$

is a polynomial in x, x_1 over $\mathbb Z$. It follows from Theorem [4.2,](#page-6-1) Lemma [4.4](#page-7-1) and [\(5.1\)](#page-8-0) that

$$
H(\alpha_{r_n}) \le 3^{3m} |p'_{r_n}|_p^{2m} c_1^m |q_{r_n}|_p^{2m^2}.
$$
\n(5.2)

From [\(3.4\)](#page-5-1),

$$
|b_j|_p \le \kappa_1 |a_j|_p^{\kappa_2} \quad (j = 0, 1, 2, \ldots).
$$

By Lemma [4.1,](#page-6-2)

$$
|p'_{r_n}|_p \le |a_0|_p^{\kappa_2} \kappa_1 |q_{r_n}|_p^{\kappa_2 + \log \kappa_1 / \log 2} \quad (n = 0, 1, 2, \ldots).
$$
 (5.3)

Using [\(5.2\)](#page-8-1), [\(5.3\)](#page-8-2) and $\lim_{n\to\infty} |q_{r_n}|_p = \infty$, we obtain, for sufficiently large *n*,

$$
H(\alpha_{r_n}) \le |q_{r_n}|_p^{c_2},\tag{5.4}
$$

where $c_2 = 1 + (m + \kappa_2 + \log \kappa_1 / \log 2)2m$.

We approximate ξ by the algebraic *p*-adic numbers α_{r_n} . We infer from [\(2.6\)](#page-4-1) and [\(3.4\)](#page-5-1) that

$$
|\xi - \alpha_{r_n}|_p \le \max \left\{ \left| \xi - \frac{p'_{s_n}}{q'_{s_n}} \right|_p, \left| \alpha_{r_n} - \frac{p'_{s_n}}{q'_{s_n}} \right|_p \right\} < \frac{1}{|q'_{s_n}|_p^2} \quad (n = 0, 1, 2, \ldots). \tag{5.5}
$$

Put

$$
\frac{d_{r_n}}{e_{r_n}} := [a_{r_n+1}, a_{r_n+2}, \ldots, a_{s_n}]_p = [b_{r_n+1}, b_{r_n+2}, \ldots, b_{s_n}]_p.
$$

We have

$$
\frac{p_{s_n}}{q_{s_n}} = [a_0, a_1, \ldots, a_{r_n}, a_{r_n+1}, a_{r_n+2}, \ldots, a_{s_n}]_p
$$

10 G. Kekeç [10]

and

$$
\frac{p'_{s_n}}{q'_{s_n}}=[b_0,b_1,\ldots,b_{r_n},b_{r_n+1},b_{r_n+2},\ldots,b_{s_n}]_p.
$$

Then

$$
|q_{s_n}|_p = |a_1 \cdots a_{r_n}|_p |a_{r_n+1} \cdots a_{s_n}|_p = |q_{r_n}|_p |a_{r_n+1}|_p |e_{r_n}|_p
$$

and

$$
|q'_{s_n}|_p = |b_1 \cdots b_{r_n+1}|_p |b_{r_n+2} \cdots b_{s_n}|_p > |e_{r_n}|_p.
$$

Therefore,

$$
|q_{s_n}|_p < |a_{r_n+1}|_p |q_{r_n}|_p |q'_{s_n}|_p \quad (n = 0, 1, 2, ...).
$$
 (5.6)

It follows from Lemmas [4.3](#page-7-2) and [4.4](#page-7-1) that

$$
\left|\alpha - \frac{p_{r_n}}{q_{r_n}}\right|_p \ge \frac{1}{c_3 |q_{r_n}|_p^{2m}},\tag{5.7}
$$

where $c_3 = (m+1)2^m H(\alpha)|a_0|_p^{2m}$. On the other hand, by [\(2.6\)](#page-4-1),

$$
\left|\alpha - \frac{p_{r_n}}{q_{r_n}}\right|_p = \frac{1}{|a_{r_n+1}|_p |q_{r_n}|_p^2} \quad (n = 0, 1, 2, \ldots).
$$
 (5.8)

Combining (5.6) , (5.7) and (5.8) , we get

$$
|q_{s_n}|_p < c_3 |q_{r_n}|_p^{2m-1} |q'_{s_n}|_p.
$$
\n(5.9)

By [\(3.2\)](#page-5-2) and [\(5.9\)](#page-9-3),

$$
c_3|q_{r_n}|_p^{2m-1} \le |q'_{s_n}|_p
$$

for sufficiently large *n*. So, for sufficiently large *n*,

$$
|q_{s_n}|_p < |q'_{s_n}|_p^2. \tag{5.10}
$$

We see from [\(3.2\)](#page-5-2), [\(5.4\)](#page-8-3), [\(5.5\)](#page-8-4) and [\(5.10\)](#page-9-4) that

$$
0<|\xi-\alpha_{r_n}|_p<\frac{1}{|q_{s_n}|_p}\leq \frac{1}{H(\alpha_{r_n})^{\phi_n}}
$$

for sufficiently large *n*, where

$$
\phi_n = \frac{\log |q_{s_n}|_p}{c_2 \log |q_{r_n}|_p} \quad \text{and} \quad \lim_{n \to \infty} \phi_n = \infty.
$$

As deg(α_{r_n}) = *m* (*n* = 0, 1, 2, ...), this shows that ξ is a *p*-adic *U*^{*}-number with

$$
w_m^*(\xi) = \infty. \tag{5.11}
$$

We wish to show that ξ is a *p*-adic *U*^{*}_n-number. We must prove that $w_t^*(\xi) < \infty$ for $n-1$ and $m-1$. Let β be any algebraic *n*-adic number with $1 < \deg(\beta) < m-1$ and $t = 1, \ldots, m - 1$. Let β be any algebraic *p*-adic number with $1 \le \deg(\beta) \le m - 1$ and with sufficiently large height $H(\beta)$. We deduce from Lemma [4.3](#page-7-2) and [\(5.4\)](#page-8-3) that

[11] *p*-adic continued fractions 11

$$
|\alpha_{r_n} - \beta|_p \ge \frac{1}{c_4 |q_{r_n}|_p^{c_5} H(\beta)^m}
$$
 (5.12)

for sufficiently large *n*, where $c_4 = (m + 1)^{m-1} m^m$ and $c_5 = c_2(m - 1)$. By [\(3.3\)](#page-5-3), there exists a real number $T > 1$ such that

$$
|q_{s_n}|_p^T \ge |q_{r_{n+1}}|_p \tag{5.13}
$$

for sufficiently large *n*. We have

$$
|\xi - \beta|_p = |(\xi - \alpha_{r_n}) + (\alpha_{r_n} - \beta)|_p. \tag{5.14}
$$

From [\(5.5\)](#page-8-4), [\(5.10\)](#page-9-4) and [\(5.13\)](#page-10-0), for sufficiently large *n*,

$$
|\xi - \alpha_{r_n}|_p < \frac{1}{|q'_{s_n}|_p^2} < \frac{1}{|q_{s_n}|_p} \le \frac{1}{|q_{r_{n+1}}|_p^{1/T}}.\tag{5.15}
$$

Let *i* be the unique positive rational integer satisfying $|q_{r_i}|_p \leq H(\beta) < |q_{r_{i+1}}|_p$. Put $T := T(m + q_{i+1})$ If $|q_{i+1}| \leq H(\beta) < |q_{i+1}|^{\frac{1}{T_1}}$ then it follows from (5.12) (5.14) and *T*₁ := *T*(*m* + *c*₅ + 1). If $|q_{r_i}|_p \leq H(\beta) < |q_{r_{i+1}}|_p^{1/T_1}$, then it follows from [\(5.12\)](#page-9-5), [\(5.14\)](#page-10-1) and (5.15) with $n = i$ that (5.15) with $n = i$ that

$$
|\xi - \beta|_p \ge \frac{1}{c_4 H(\beta)^{m+c_5}}.\tag{5.16}
$$

If $|q_{r_{i+1}}|_p^{1/T_1} \leq H(\beta) < |q_{r_{i+1}}|_p$, then it follows from [\(3.2\)](#page-5-2), [\(5.12\)](#page-9-5), [\(5.14\)](#page-10-1) and [\(5.15\)](#page-10-2) with $n = i + 1$ that $n = i + 1$ that

$$
|\xi - \beta|_p \ge \frac{1}{c_4 H(\beta)^{m + c_5 T_1}}.\tag{5.17}
$$

We deduce from (5.16) and (5.17) that

$$
|\xi - \beta|_p \ge \frac{1}{c_4 H(\beta)^{m + c_5 T_1}}
$$

for all algebraic *p*-adic numbers β with deg(β) $\leq m - 1$ and with sufficiently large height $H(\beta)$. This gives height $H(\beta)$. This gives

$$
w_t^*(\xi) < \infty \quad (t = 1, \dots, m - 1). \tag{5.18}
$$

We infer from [\(5.11\)](#page-9-6) and [\(5.18\)](#page-10-5) that ξ is a *p*-adic U_m^* -number. As the set of *p*-adic *U* ι -numbers is equal to the set of *p*-adic *U*^{*}-numbers ξ is a *p*-adic *U* -number *U_m*-numbers is equal to the set of *p*-adic *U*^{*}_{*m*}-numbers, ξ is a *p*-adic *U*_{*m*}-number. \Box \Box

EXAMPLE 5.1. This example illustrates Theorem [3.1.](#page-4-3) In Theorem [3.1,](#page-4-3) take the algebraic p -adic number α as the quadratic irrational

$$
\alpha = [a_0, a_1, a_2, \ldots]_p = [p^{-2}, p^{-2}, p^{-2}, \ldots]_p
$$

and the sequences $(r_n)_{n=0}^{\infty}$ and $(s_n)_{n=0}^{\infty}$ as

$$
r_0 = 0, r_n = 2(n + 1)!
$$
 $(n = 1, 2, 3, ...)$ and $s_n = (n + 2)!$ $(n = 0, 1, 2, ...).$

12 **G.** Kekeç [12]

Define the rational numbers b_i ($j = 0, 1, 2, \ldots$) by

$$
b_j = \begin{cases} p^{-2} & \text{if } r_n \leq j \leq s_n & (n = 0, 1, 2, \ldots), \\ p^{-4} & \text{if } s_n < j < r_{n+1} & (n = 0, 1, 2, \ldots). \end{cases}
$$

Take $\kappa_1 = 1$ and $\kappa_2 = 2$. Then all the conditions of Theorem [3.1](#page-4-3) are satisfied and therefore the irrational *p*-adic number $\xi = [b_0, b_1, b_2, \ldots]_p$ is a *p*-adic U_2 -number.

REMARK 5.2. In Theorem [3.1,](#page-4-3) if we replace $\lim_{n\to\infty} (\log |q_{s_n}|_p / \log |q_{r_n}|_p) = \infty$ by

$$
\liminf_{n\to\infty}\frac{\log|q_{s_n}|_p}{\log|q_{r_n}|_p}>T(1+m+c_5T_1)\quad\text{and}\quad\limsup_{n\to\infty}\frac{\log|q_{s_n}|_p}{\log|q_{r_n}|_p}=\infty,
$$

then we see from the proof that Theorem [3.1](#page-4-3) still holds true.

PROOF OF THEOREM [3.3.](#page-5-0) We replace [\(3.2\)](#page-5-2) by [\(3.6\)](#page-6-3) and keep all the lines of the proof of Theorem [3.1](#page-4-3) up to [\(5.10\)](#page-9-4). By [\(3.6\)](#page-6-3), there exists a positive real number ε such that

$$
\frac{\log |q_{s_n}|_p}{\log |q_{r_n}|_p} > (2 + \varepsilon)c_2 \tag{5.19}
$$

for sufficiently large *n*. We deduce from [\(5.4\)](#page-8-3), [\(5.5\)](#page-8-4), [\(5.10\)](#page-9-4) and [\(5.19\)](#page-11-9) that

$$
0<|\xi-\alpha_{r_n}|_p<\frac{1}{H(\alpha_{r_n})^{2+\varepsilon}}
$$

for sufficiently large *n*. It follows from the definition of α_{r_n} and [\(3.5\)](#page-6-4) that the algebraic *p*-adic numbers α_{r_n} in $\mathbb{Q}(\alpha)$ are all distinct. Then, by Theorem [4.5,](#page-7-3) the irrational *p*-adic number ϵ is transcendental. number ξ is transcendental.

Finally, we pose the following question.

PROBLEM 5.3. Does an exact analogue of Kekeç [\[11,](#page-12-11) Theorem 1.5] hold in Q*p*?

References

- [1] K. Alnıaçık, 'On the subclasses *Um* in Mahler's classification of the transcendental numbers', *˙Istanbul Üniv. Fen Fak. Mecm. Ser. A* ⁴⁴ (1979), 39–82.
- [2] K. Alnıaçık, 'On *Um*-numbers', *Proc. Amer. Math. Soc.* 85 (1982), 499–505.
- [3] Y. Bugeaud, *Approximation by Algebraic Numbers*, Cambridge Tracts in Mathematics, 160 (Cambridge University Press, Cambridge, 2004).
- [4] Y. Bugeaud and G. Kekeç, 'On Mahler's classification of *p*-adic numbers', *Bull. Aust. Math. Soc.* 98 (2018), 203–211.
- [5] Y. Bugeaud and G. Kekeç, 'On Mahler's *p*-adic *S*-, *T*-, and *U*-numbers', *An. ¸Stiin¸t. Univ. Ovidius Constan¸ta Ser. Mat.* 28 (2020), 81–94.
- [6] B. Can and G. Kekeç, 'On transcendental continued fractions in fields of formal power series over finite fields', *Bull. Aust. Math. Soc.* 105 (2022), 392–403.
- [7] O. ¸S. ˙Içen, 'Über die Funktionswerte der *p*-adisch elliptischen Funktionen I', *˙Istanbul Üniv. Fen Fak. Mecm. Ser. A* 36 (1971), 53–87.
- [8] O. ¸S. ˙Içen, 'Anhang zu den Arbeiten "Über die Funktionswerte der *p*-adisch elliptischen Funktionen I, II"', *˙Istanbul Üniv. Fen Fak. Mecm. Ser. A* 38 (1973), 25–35.
- [9] G. Kekeç, 'On Mahler's *p*-adic *Um*-numbers', *Bull. Aust. Math. Soc.* 88 (2013), 44–50.

[13] *p*-adic continued fractions 13

- [10] G. Kekeç, 'Some generalized lacunary power series with algebraic coefficients for Mahler's *U*-number arguments', *Taiwanese J. Math.* 18 (2014), 1–26.
- [11] G. Kekeç, 'On transcendental regular continued fractions', *Math. Slovaca* 73 (2023), 1399–1408.
- [12] J. F. Koksma, 'Über die Mahlersche Klasseneinteilung der transzendenten Zahlen und die Approximation komplexer Zahlen durch algebraische Zahlen', *Monatsh. Math. Phys.* 48 (1939), 176–189.
- [13] S. Lang, 'Integral points on curves', *Publ. Math. Inst. Hautes Études Sci.* 6 (1960), 27–43.
- [14] V. Laohakosol, 'A characterization of rational numbers by *p*-adic Ruban continued fractions', *J. Aust. Math. Soc. Ser. A* 39 (1985), 300–305.
- [15] K. Mahler, 'Zur Approximation der Exponentialfunktion und des Logarithmus. I, II', *J. reine angew. Math.* 166 (1932), 118–150.
- [16] K. Mahler, 'Über eine Klasseneinteilung der *p*-adischen Zahlen', *Mathematica (Leiden)* 3 (1935), 177–185.
- [17] T. Ooto, 'Transcendental *p*-adic continued fractions', *Math. Z.* 287 (2017), 1053–1064.
- [18] T. Pejkovic, *Polynomial Root Separation and Applications*, PhD Thesis (Université de Strasbourg, Strasbourg, 2012).
- [19] O. Perron, *Irrationalzahlen* (Walter de Gruyter, Berlin, 1960).
- [20] A. A. Ruban, 'Certain metric properties of the *p*-adic numbers', *Sibirsk. Mat. Ž.* 11 (1970), 222–227 (in Russian).
- [21] H. P. Schlickewei, '*p*-adic *T*-numbers do exist', *Acta Arith.* 39 (1981), 181–191.
- [22] L. X. Wang, '*p*-adic continued fractions I', *Sci. Sinica Ser. A* 28 (1985), 1009–1017.
- [23] L. X. Wang, '*p*-adic continued fractions II', *Sci. Sinica Ser. A* 28 (1985), 1018–1023.

GÜLCAN KEKEÇ, Department of Mathematics, Faculty of Science, Istanbul University, 34134 Vezneciler, Fatih, Istanbul, Turkey e-mail: gulkekec@istanbul.edu.tr