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Connected components of affine Deligne—Lusztig
varieties for unramified groups

Sian Nie

ABSTRACT

For an unramified reductive group, we determine the connected components of affine
Deligne—Lusztig varieties in the affine flag variety. Based on work of Hamacher, Kim,
and Zhou, this result allows us to verify, in the unramified group case, the He-Rapoport
axioms, the almost product structure of Newton strata, and the precise description of
isogeny classes predicted by the Langlands—Rapoport conjecture, for the Kisin—Pappas
integral models of Shimura varieties of Hodge type with parahoric level structure.

Introduction

0.1 Background
Let F' be a non-Archimedean local field with valuation ring O and residue field F,, where ¢ is
a power of some prime p. Let F be the completion of a maximal unramified extension of F', and
denote by o the Frobenius automorphism of F JF.

Let G be a connected reductive group defined over F. Fix an element b € G(Z:" ), a geo-
metric cocharacter A of G, and a o-stable parahoric subgroup K C G(F ). The attached affine
Deligne-Lusztig variety is defined by

X\ b)g =X\ bk ={geGEF)/K;g  bo(g) € KAdm(\) K},

where Adm(\) is the admissible set associated to the geometric conjugacy class of A. If F' is of
equal characteristic, X (A, )k is a locally closed and locally finite-type subvariety of the partial
affine flag variety G(F)/K. If F is of mixed characteristic, X (A, b)x is a perfect subscheme of the
Witt vector partial affine flag variety, in the sense of Bhatt and Scholze [BS17] and Zhu [Zhul7].

The variety X (\,b)x, first introduced by Rapoport [Rap05], encodes important arithmetic
information of Shimura varieties. Let (G, X) be a Shimura datum with G = Gg, and A the
inverse of the Hodge cocharacter. Suppose there is a suitable integral model for the correspond-
ing Shimura variety with parahoric level structure. Langlands [Lan76], and latter refined by
Langlands and Rapoport [LR87] and Rapoport [Rap05], conjectured a precise description of
F,-points of the integral model in terms of the varieties X (X, ). In the case of PEL Shimura
varieties, X (A, b)f is also the set of F)-points of a moduli space of p-divisible groups defined by
Rapoport and Zink [RZ96].
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0.2 Main result
The main purpose of this paper is to study the set mo(X (A, b)) of connected components of
X (A, b)k. Note that X (A, b)x only depends on A and the o-conjugacy class [b] of b. Thanks
to He [Hel6], X (\,b)x is non-empty if and only if [b] belongs to the set B(G,\) of ‘neutral
acceptable’ o-conjugacy classes of G(F‘ ) with respect to A.

Let 71 (G)r, be the set of coinvariants of the fundamental group m1(G) under the Galois

group Ty = Gal(F/F). Denote by ng : G(F) — m1(G)r, the natural group homomorphism. It

v

factors through a map G(F')/K — 71(G)r, which we still denote by ng. Let G,q denote the
adjoint group of G. Then we have the following Cartesian diagram (see [HZ20, Corollary 4.4]):

To(XF(\, b)) — (X (Nads bad) Koy)

nGe \L \L NG aq

m1(G)r, T1(Gad)ry

v

where b,q and K,q are the natural images of b and K in G.q(F’), respectively.

Therefore, to compute 7(X (A, b)) we may and do assume that G is adjoint and, hence,
simple. Note that the map ng gives a natural obstruction to the connectedness of X (\,b)g.
Another more technical obstruction is given by the following Hodge-Newton decomposition
theorem.

THEOREM 0.1 [GHN19, Theorem 4.17]. Suppose G is adjoint and simple. If the pair (\,b) is
Hodge—Newton decomposable (with respect to some proper Levi subgroup M) in the sense
of [GHN19, §2.5.5], then X(\,b)k is a disjoint union of open and closed subsets, which are
isomorphic to certain affine Deligne—Lusztig varieties attached to M.

By Theorem 0.1 and induction on the dimension of G, it suffices to consider the
Hodge-Newton indecomposable case. This means that either A is a central cocharacter or the
pair (A, b) Hodge-Newton irreducible, see [Zho20, Lemma 5.3|. In the former case,

X\ b))k = Ip/ (KN )

is a discrete set, where J, denotes the o-centralizer of b. In the latter case, we have the following
conjecture.

CONJECTURE 0.1 (See [Zho20, Conjecture 5.4]). Assume G is adjoint and simple. If (A, b) is
Hodge—Newton irreducible, then there exists a natural bijection

To(X (A b)) = T (G)P,
where 71 (G)7, is the set of o-fixed points of m(G)r,.

If G is unramified and K is hyperspecial, Conjecture 0.1 is established by Viehmann [Vie0§],
Chen, Kisin, and Viehmann [CKV15], and the present author [Niel5]. If b is basic, it is proved
by He and Zhou [HZ20]. If G is split or G = Resg/pGL,, with E/F a finite unramified field
extension, it was proved by Chen and the present author in [CN19] and [CN20].

The main result of this paper is the following.

THEOREM 0.2. Conjecture 0.1 is true if G is unramified.

In particular, Theorem 0.2 completes the computation of connected components of affine
Deligne—Lusztig varieties for unramified groups.
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0.3 Applications

We discuss some applications. Assume p # 2. Let (G, X) be a Shimura datum of Hodge type with
parahoric level structure such that p { [71(Gger)|, Gg, is tamely ramified, and the corresponding
parahoric subgroup K at p is a connected parahoric. Let Sk = .7k (G, X) be the Kisin—Pappas
integral model constructed in [KP18]. Let F' = Q,, G = Ggq,, and X be the inverse of the Hodge
cocharacter.

Remark 0.3. In [PR21], Pappas and Rapoport obtained a new construction of integral models for
Hodge-type Shimura varieties with parahoric level structure, without the tameness assumption
on G. It would be desirable to extend the applications discussed below to their integral models
in the unramified group case.

0.3.1 The Langlands—Rapoport conjecture. A major motivation to study mo(X (A, b)) comes
from the Langlands—Rapoport conjecture mentioned in §0.1. In the hyperspecial level structure
case, the conjecture is proved by Kottwitz [Kot92] for PEL Shimura varieties of types A and
C, and by Kisin [Kis17] for his integral models [Kis10] of Shimura varieties of abelian type. For
the Kisin—Pappas integral models of Hodge type, Zhou [Zho20] proved that each mod p isogeny
class has the predicted form when G is residually split. Recently, van Hoften [vH20] proved the
Langlands—Rapoport conjecture for a large family of Shimura varieties of abelian type (including
the Hodge type) when G is unramified (as well as some other cases), by reducing the problem
to the hyperspecial case.

One of the key ingredients in the proofs of Kisin and Zhou is to construct certain lifting maps
from the varieties X (A, b)k to the corresponding isogeny classes of Zk(F,) (see also [HK19,
Axiom A]), which uses in a crucial way the descriptions of 7y(X (A, b)) in [CKV15] and [HZ20],
respectively. Combining [Zho20, Proposition 6.5] with Theorem 0.2, we deduce that such lifting
maps always exist if G is unramified.

ProprosITION 0.4. If G is unramified, then the Rapoport—Zink uniformization map admits a
unique lift on Fy-points

X\ b) g — Ik (Fp),

which respects canonical crystalline Tate tensors on both sides.

If G is unramified and K is hyperspecial, Proposition 0.4 is proved by Kisin [Kis17]. If b is
basic or G is residually split, it is proved by Zhou [Zho20]. If G is quasi-split and K is absolutely
special, it is proved by Zhou in [vH20, Theorem A.4.3].

Combining the methods in [Zho20] and Proposition 0.4, one can extend [Zho20, Theorem 1.1]
to the unramified group case. This was pointed out to us by Zhou.

COROLLARY 0.5 (van Hoften). If G is unramified, then the isogeny classes in .k (F,) has the
form predicted by the Langlands—Rapoport conjecture. Moreover, each isogeny class contains a
point which lifts to a special point in the corresponding Shimura variety.

0.3.2 The He—Rapoport azioms. In [HR17], He and Rapoport formulated five axioms on
Shimura varieties with parahoric level structure, which provide a group-theoretic way to study
certain characteristic subsets (such as Newton strata, Ekedahl-Oort strata, Kottwitz—Rapoport
strata, and so on) in the mod p reductions of Shimura varieties. Based on this axiomatic approach,
Zhou [Zho20] proved that all the expected Newton strata are non-empty (see [KMS22] using a
different approach). For more applications of these axioms, we refer the reader to [HR17], [HN17],
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[GHN19], [Zho20], and [SYZ21]. Combining [Zho20, Theorem 8.1] with Proposition 0.4 we have
the following result.

COROLLARY 0.6. The He-Rapoport axioms hold if G is unramified.

These axioms are verified by He and Rapoport [HR17] in the Siegel case, and by He and
Zhou [HZ20] for certain PEL Shimura varieties (unramified of types A and C' and odd ramified
unitary groups). In [Zho20], Zhou proved that all the axioms except the surjectivity in Axiom 4(c)
of [HR17] hold in the general case, and, moreover, if G is residually split, then all of them hold.
For PEL Shimura varieties, Axiom 4(c) is verified by Shen, Yu, and Zhang [SYZ21].

0.3.3 The almost product structure. In [Man05], Mantovan established a formula expressing
the [-adic cohomology of proper PEL Shimura varieties in terms of the [-adic cohomology with
compact supports of the Igusa varieties and of the Rapoport—Zink spaces for any prime [ # p.
This formula encodes nicely the local-global compatibility of the Langlands correspondence.
A key part of its proof is to show that the products of reduced fibers of Igusa varieties and
Rapoport—Zink spaces form nice ‘pro-étale covers up to perfection’ for the Newton strata, of
PEL Shimura varieties with hyperspecial level structure. This is referred as the almost product
structure of Newton strata. In [HK19], Hamacher and Kim extended Mantovan’s results to the
Kisin—Pappas integral models under some mild assumptions. Combining [HK19, Theorem 2] with
Proposition 0.4 we have the following result.

COROLLARY 0.7. The almost product structure of Newton strata holds if G is unramified.

When K is hyperspecial, the almost product structure of Newton strata is established by
Mantovan [Man05] for PEL Shimura varieties, and by Hamacher [Ham19] for Shimura varieties of
Hodge type. The general case is proved by Hamacher—Kim provided the lifting property [HK19,
Axiom A] holds. We refer to [CS17], [Ham19], [Ham17], and [Kim19] for the Caraiani-Scholze-
type product structure of Newton strata.

0.4 Strategy
We describe the strategy of the proof. Note that the o-centralizer J, acts on X (A, b)x by left
multiplication. First we show that Jj acts transitively on mo(X (X, b)x). Then we show that the
stabilizer of each connected component is the normal subgroup J, Nker(ng) of Jp. Combining
these two results we deduce that mo(X (X, 0) k) = Jp/(Jp Nker(ng)) = m(G)? as desired.

The stabilizers can be determined by adapting the computations in [Niel8]. The crucial part
is to show the transitivity of the Jp-action. Our starting point is the following natural surjection
(see Theorem 2.2)

L] B — mo(X(A )5,

71)65)\’1,

where Sy is the set of semi-standard elements (see §1.7) contained in Adm(\) N [b], and
Jos =19 € G(F); g 'bo(g) = @} on which J, acts transitively by left multiplication. Thus, it
remains to connect all the subsets Jj 5K /K in X (\,b)k. To this end, we consider the following
decomposition

Svo= || Sabe

+
zGSA’b

where S;rb consists of standard elements in Sy, and Sy, consists of elements in Sy that are
o-conjugate to = € S;\Lb under the Weyl group of GG. Note that S;rb can be naturally identified
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with a subset of cocharacters dominated by A, whose structure has been studied extensively
in [Niel8]. Thus, we can use the connecting algorithm in [Niel8] as a guideline to connect the
pieces Jp ,K/K for z € Sj\r’b with each other. To finish the proof, it remains to connect (for
each x € S)tb) the pieces Jp 5K /K for w € Sy, with each other. This is an essential difficulty
because the structure of Sy, is much more mysterious. To overcome it, we show that each
set Sy, contains a unique (distinguished) element zqis¢ which is of minimal length in its Weyl
group coset, and then connect Jp 4K /K with Jp 5, /K for all 0 € Sy .. This new connecting
algorithm, motivated from the partial conjugation method by He in [He07] and [Hel0], is the
major innovation of the paper.

0.5 Organization

The paper is organized as follows. In §1 we recall some basic notions and introduce the semi-
standard elements. In § 2 we outline the proof of the main result. In § 3 we introduce the set Py
which will play an essential role in our new connecting algorithm. In §4, we introduce the new
connecting algorithm and use it to connect Jp 5K /K for w € Sy, with each other. In §5 we
connect J ,K/K for z € S/J\r,b with each other. In §§ 6-8 we compute the stabilizer in J; of each
connected component of X (A, b) k.

1. Preliminaries

In the body of the paper we assume that G is unramified, simple, and adjoint. Without loss of
generality, we assume further that I = Fy((¢)). Then F' = k((t)) with valuation ring O = k([t]]
and residue field k = IF,.

1.1 Root datum

Let T C B be a maximal torus and a Borel subgroup defined over Op. Let R = (Y, ®V, X, ®,S))
be the root datum associated to the triple (T, B, G), where X and Y are the character group and
cocharacter group of 7" respectively equipped with a perfect pairing (,) : Y x X — Z; ® = &5 C
X (respectively, @V C Y)) is the set of roots (respectively, coroots); Sy is the set of simple roots
appearing in B. Let ®T = ® N Z>(Sy be the set of positive roots. Then we have & = &+ L1~
with @~ = —®*. For a € ®, we denote by s, the reflection which sends u € Y to p — (u, a)a”,
where oV € ®V denotes the coroot of a. Via the bijection a < s,, we also denote by Sy the set
of simple reflections.

Let V=Y ®@zR. We say v €V is dominant if (v,a) >0 for each a € ®*. Let Yt and
V* be the set of dominant vectors in Y and V, respectively. For v,v’ € V we write v’ < v if
v — v € Rso(®F)V. For u, A € Y we write A < puif 4 — A\ € Z®" and \ < fi. Here for w € V we
denote by v the unique dominant Wy-conjugate of v.

Let ® = &g = ® x Z be the set of (real) affine roots. Let & = a + k € ®. Then @& is an affine
function on V' such that a(v) = —(a,v) + k. Let

a={veYg0<(nv)<l,acd'}
be the base alcove. Set ot = o/, = {a € d;a(a) > 0} and d~ = —P+. Then & = & Ly &~ Note
that * C ¢F.

1.2 Iwahori—Weyl group
Let Wy = Wg = Np(F)/T(F) be the Weyl group of G, where Nr is the normalizer of T in G.
The Iwahori—-Weyl group of G is given by

W =Wg = Np(F)/T(Op) =Y x Wy = {t"w; u € Y,w € Wy}

2055

https://doi.org/10.1112/S0010437X23007339 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007339

S. NIE

We can view W as a subgroup of affine transformations of V such that the action of w = t#w is
given by v — u 4+ w(v) for v € V. The induced action of W on ® is given by w(a&)(v) = a(w~1(v)).
More precisely, if w = t#w and & = a + k, then w(&) = w(a) + (w(a), u) + k.

Let a=a+ke® and let sg = t** s, € W be the corresponding affine reflection. Then
{s4; & € ®} generates the affine Weyl group

W =W =73 x Wy = {trw; u € Z®",w € Wp}.

Moreover, we have W = W% x Q, where Q = Q¢ = {w € W;w(a) = a}. Let £: W — N be the
length function given by £(w) = |~ Nw(®1)|. Let S* = {s5;a € ®,4(s5) = 1} be the set of
simple affine reflections. Then (W% §?%) is a Coxeter system, and denote by <=<¢ the associated
Bruhat order on W = W% x Q. We frequently use the following fact on Bruhat order.

LEMMA 1.1. Let @ and & € ®*. Then wss < w if and only if w(&) € .

By abuse of notation, we freely identify an element of W with one of its lifts in NT(F ),
according to the context.

1.3 o-conjugacy classes

Recall that o is the Frobenius automorphism of G (F’) We also denote by o the induced automor-
phism of the root datum R. Then o acts on V as a linear transformation of finite order fixing
a. For & € W there exists a nonzero integer m such that (wo)™ = t& for some & € Y. Define
vy = &/m € V', which does not depend on the choice of m.

Let b € G(L). We denote by [b] = [b]lg = {9 bo(g);9 € G(L)} the o-conjugate class of b.
By [Kot85], the o-conjugacy class [b] is determined by two invariants: the Kottwitz point kg (b) €
71(@), and the Newton point vg(b) € (V). Here kg : G(F) — m1(G)y = m(G) /(o — 1)m(G)
is the natural projection. To define vg(b), we note that there exists w € W such that @ € [b)].
Then vg(b) = vy, which does not depend on the choice of w.

1.4 Affine Deligne—Lusztig varieties
For v € ® let uy : G — G be the corresponding root subgroup. Let

) H ua(tOp) H ug(O (F)

acdt Bed—

be the Iwahori subgroup associated to the base alcove a.
For w € W and b € G(F) the associated affine Deligne-Lusztig variety is given by

Xa(b) = {g € G(F)/I;g "bo(g) € IwI}.
We are interested in the following union of affine Deligne-Lusztig varieties
X(A,b) = X9\, b)r = Upeadm Xa(b),
where Adm(A) is the A-admissible set defined by
Adm(\) = {z € Wiz < t*© for some w € Wy}.

By [Hel6], X(\,b) # 0 if and only if kg (1) = ke(b) and vg(b) < X°, where \° is the o-average
of A. We say the pair (\,b) is Hodge Newton irreducible if g(t}) = kg(b) and \° — vg(b) €
ZaESO R>00{v.
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1.5 Levi subgroups
Let M be a semi-standard Levi subgroup of G, that is, a Levi subgroup containing 7. Then
BN M is a Borel subgroup of M. By replacing the triple (7, B, ) with (T, BN M, M), we can
define, as in previous subsections, @M, W, SGrs Qar, (IJM, Iy, ks, <1, and so on.

Forv € V we set &, = {a € ®;(v) =0} and let M, C G be the Levi subgroup generated by
T and the root subgroups U, for o € ®,. We set W, = WM , ®, = <I>M ,and soon. If v € VT,
let J, = {s € Sp; s(v) = v}.

Let J C SO Then there exists some v/ € VT such that J, = J. We put My = M,,, ®; =
Dy, Wy = WMJ, Wi =Wy, Q5 =Qum,, <j=<um,, and so on. We say p € Y is J-dominant
(respectively, J-minuscule) if (a, y1) > 0 (vespectively, (a, ) € {0, £1}) for o € ®7.

1.6 The left cyclic shift —
Let K C S* Denote by Wx € W% the parabohc subgroup generated by K. Set & W= {w e
Wi < s for s € K} and WK = (Ki7)~1

LEMMA 1.2. Let K C S® and @ € KW. Then:

(1) if w < ws with s € §%, then ws € KW or s = s'w for some s' € K;
(2) if @' € KW lies in the Wx-o-conjugacy class of , then @' = 1.

Proof. If ws ¢ KT, then there exits s’ € K such that s'is < ws, that is, s~ (&) € ®~, where
& € &t is the simple affine root of s'. Note that W~ (&') € ®* (since @ € KW) and that s is
a simple reflection, it follows that w~1(&’) is the affine simple root of s. Thus s = ws and
statement (1) is proved. The statement (2) is proved in [He07, Corollary 2.6]. O

Let @, € W and s € S®. Write @ — @' (respectively, i —, @) if @' = swo(s) and s < W
(respectively, (') < £(w)). Note that w — @’ implies that @w —; @w'. For K CS* we write
w — g W' if there is a sequence W = Wy —g, W1 —5, =+ —s, Wnt1 = W with s; € K for 0 < i < n.
We can define @ — @' in a similar way.

For = € KW we define I(K,z) =max{K' C K;zo(K')z~! = K'}. Note that I(K,z) is
unique by definition. It also can be an empty set.

LEMMA 1.3. For K CS® and x € KW we have I(K,z) C W,,

Proof. As I(K,z) is a finite set, there exists n € Z3; such that (zo)" = t""= fixes each element
of I(K,x), that is, p(s)(vy) = vy for s € I(K,z). Here p: W x (o) — Wy x (o) is the natural
projection. Thus, I(K,z) C W, as desired. O
THEOREM 1.4 [He07, §3]. Let K CS* and w € W. If Wy is finite, then there exist z € KW

and u € Wy, k) such that w — g ux. Moreover, the element z € KW is uniquely determined by
the W -o-conjugacy class of W, which may be empty.

1.7 Semi-standard elements

We say @ € W is semi-standard if wa(&)jm) = éjm, or equivalently, ﬁ’"IMVm = wo(Im,_ Yt =
I M, - We say w0 is standard if it is semi-standard and v is dominant. Let S and ST denote the
set of semi-standard elements and standard elements respectively.

LEMMA 1.5. Let w € S. Then:

(1) zwo(z)~' € S if z € W such that z(i)jw) C P;
(2) there is a unique w' € S in the Wy-o-conjugacy class of w, and moreover, there is a unique

Jog - - —
element 2’ € W,"® such that @ = 2/w'o(2')~;
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(3) W' €8 if i —ge W;

(4) Jy is generated by I N Jgu and wn Jw;

(5) weQy, ifweSt;

(6) w < wib for any u € W,

Proof. Note that Voo (z)-1 = p(2)(vy) and, hence, Z(i)u@) = &)u

Wy x (o) is the natural projection. Thus, z(i);—Lw) = oF -1

where p: W x () —

zio(z)~ 1)
and p;r)t (1) follows by definition.
Let 2/ € W(;]% such that 2/(7g) = vg. Let @' = 2 Moo (2'). Note that z’(‘i),{ﬁ) = i)fjw. So
W' € 8T by (1). Assume there is another @w” € ST such that @ = wi"o(w)~! for some w € Wy.
Write w = 2"u with 2" € W(;]% and u € Wy, . Then vy = vgr = g and 271 e Wy,_. Thus,
Z=2"e W(;]%, and w", @' € 1,  are o-conjugate by W, . Thus, @’ = w” as desired.

To prove part (3) we can assume w —, @' for some s € S” and w # w'. Thus, either sw < w or
wo(s) < w. In view of part (1) it suffices to show s(®;}_) C ®*. Otherwise, the simple affine root
of s lies in i),fm. Hence, sw,wo(s) > w (since ?I}a(cf)jm) = @jm), contradicting our assumption.

Note that Jz C M,,. Then part (4) follows from that %71 My, =Im,_ w”WM% = WM%,
and the Bruhat decomposition M,,_(F) = I M, WM% I, -

Assume @ € S¥, that is, vy = o(vyp) is dominant. As p(wo)(vg) = v, we have p(w)(vg) =
= <I>‘J]r by definition. This
means that w € €0, and part (5) is proved.

By part (2) there exits z € 775 Wy and @' € St such that @' = 2~ Mo (z). Let u € W,,,. Then
2z luz € W since z(vg) = vy,. By part (5) we have @" € Q, and, hence, 0" < (27 'uz). It
follows from TCN19, Lemma 1.3] that

W = ziw'o(2) 7t < z2(z 7 tu)wo(2) 7! = uw

and part (b) follows. O

2. Outline of the proof
We fix A € Y+ and b € G(F) such that X (\,b) # 0. Let J = o) € So. We may and do assume

that b € M;(F) and vz, (b) = vg(b). As b is basic in M (F) we assume further that b € Q. Set
S)\’b = Adm()\) nNsSN [b]

For x € Q; = m(My) 2 Y/Z®Y we set yu, € Y such that 2 = t*=p(z), where p: W x (o) —
Wy x (o) is the natural projection. Define

S:\'—,b ={x € Qrrm,(x) = km,(b), e < A},
Sapz = {zro(2)”! € Adm(\);x € S/J\r’b, ze W}
LEMMA 2.1. We have S;\rb =8NS\, CQyand Sy = uxeSIb Sxp,z- In particular, x € Sy,
for x € S;b.

Proof. Let z € 8, CQy. Then rar, () = riar, (b) € m1(My)/(1 — o)m1(My) by definition. In
view of the natural identification J =2 m(My), the previous equality means that =z =05
mod (1 — 0)Q, or equivalently, z and b are € j-o-conjugate. In particular, v, = var, (b) = vg(b)
is dominant and x € ST. Moreover, as x € Qy, x <; t'* € Adm()\) (since pu, < \). Thus, z €
St and Sf, CSTNSyp. Let 2/ € ST NSyp. Then v, is dominant and, hence, v, = vg(b)
(since 2’ € [b]). In particular, we have 2’ € Q; (by Lemma 1.5(5)) and ki, (') = Kk, (b)
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(by [CKV15, Remark 2.5.8]). Since 2’ € Adm(\), it follows that u,s < A. Therefore, 2’ € S)tb
and, hence, S;tb =S8 NS

Let w € Syp. Then vy = vg(b). By Lemma 1.5 there exist z € ST and 2 € W(‘)] such that
W= zxo(2)7L. Asw € [b], we have v, = Vg = vg(b) and kg(7) = kg(W) = kg(b). By the proof of
[GHN15, Proposition 3.5.1] we have ks, (z) = kar, (b). Moreover, as w € Adm(\) and WywWy =
WoxWy = Wytt=Wy, we have u, = A. Thus, = € Sj\r,b and the second statement follows. ]

For ¥/ € G(F) we set Jpy = ng, ={g € G(F);g7"o(g) =¥} and put J, = Jpy if b=1"
Then Jj, acts on Jpy and X (A, b) by left multiplication.

THEOREM 2.2 [HZ20]. Each connected component of X (\,b) intersects [y 1/ for some w €
Sxp-

Proof. By [HZ20, Theorem 4.1], each connected component of X (A, ) intersects X (b) for some
o-straight element @w € Adm(\) which is o-conjugate to b. Then the statement follows from
[Hel4, Proposition 4.5] and the proof of [Niel5, Theorem 1.3] that X;(b) = Jp 41 /I and @ € Sy,
respectively. ]

For g, ¢ € G(F) we write gI ~xp ¢'1 if they are in the same connected component of X (A, b).
For w,w" € Sy, we write Jp 5 ~xp Jpa if their natural images in 7o (X (A, b)) coincide.

In the following four propositions, we retain the assumptions in Theorem 0.2. The proofs are
given in the remaining sections.

PROPOSITION 2.3. For xz € S)tb and w,w € Sx b,z we have Jy g ~xp Jp -
PROPOSITION 2.4. For z,2' € S/J\r’b we have Jp o ~xp Jpa-
PROPOSITION 2.5. The natural action of ker(nys,) N J, on mo(X (A, b)) is trivial.
PROPOSITION 2.6. The natural action of
(ker(na) N 3y)/ (ker(mar,) N1 Jy) = (Z0V /20Y)7
on mo(X (A, b)) is trivial.
Proof of Theorem 0.2. By [Hel6, Theorem 1.1], it suffices to consider the Iwahori case K = I.
By Proposition 2.2, the natural projection
Uaesy ,Jb,o — mo(X (X, b))

is surjective. Note that Sy, = Uxesj@s/\:b@‘ It follows from Propositions 2.3 and 2.4 that the
natural projection

Jb0 — mo(X (A, D))

is surjective for any w € Syp. Since Jp, acts on Jp 4 transitively, Jp also acts on mo(X (A, b))
transitively. Thus, by Propositions 2.5 and 2.6,

mo(X (A, b)) = Jp/(ker(ng) N Jy).

Asbec Qyand J, = Jéw", it follows by Lemma 1.5(4) that J, is generated by Ips, N Js, Wi, N
and Q7N Jy, = Q9. Hence, J, = (ker(nar,) NJp) x Q9. Since ker(nar,) C ker(ng), ker(ng) NJy =
(ker(nar,) N Jp) x (ker(ng) N Q%). Thus, we have

Io/ (ker(ne) Nds) = QF/(ker(ng) N QT) = m(G)7,

where the last isomorphism follows from [CKV15, Lemma 2.5.11] that the natural map Y7 —
m(My)? = Q% — 11 (G)? is surjective. The proof is finished. O
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3. The set Py

In the rest of the paper, we assume that G is adjoint, simple, and its root system ® has d
irreducible factors.

3.1 The set Py
For @ € Adm(\) we denote by Py the set of roots a € @\ @, such that wo(s) € Adm())
and (wo) M@ (a) € ®T. Here

Mes = min{i € Zsy; (o) "*(a) € &\ D},
=min{i € Zx1; <O‘vp(w0)i_1(,uﬁ))> # 0},
where 5 € Y such that @ € t#@ ;. Note that m  is well defined since (o, vg) # 0, and « € Py
if and only if (a, p(iwo) ™o~ (ug)) < —1.

The sets Py will be used to construct affine lines of X (), b) in the next section. The main
result of this section is as follows.

PROPOSITION 3.1. Assume (), b) is Hodge-Newton irreducible. Then Pg # () for @ € Sy \ SOW.

The proposition is proved in § 3.4. The proof is based on induction on left cyclic shifts studied
in §3.3. In a single induction step, we will come up against an extreme (and harder) case, which
involves distinct elements introduced in §3.2.

3.2 Distinct elements

Let R be a o-orbit of Sg. We say w € Adm(\) is left R-distinct (respectively, right R-distinct)
if sw ¢ Adm(\) (respectively, ws ¢ Adm(\)) for s € R. Let wr denote the longest root of Wg.
As 0(R) = R we have o(wpg) = wg.

LEMMA 3.2. Let R be a g-orbit of So. If i € Adm()) is left R-distinct, then w € BW . Moreover:
(1) wrpwwr € Adm(\) is right R-distinct; and (2) Pypiwy 7 0 if Py # 0.

Proof. Let s € R. If sw < @, then sw € Adm(\) since w € Adm(A), which is a contradiction.
Thus, sw > w and, hence, w € Ry

To show part (1) we can assume d = 1. Then one checks that R is either commutative or is
of type As. Thus, part (1) follows from Lemma A.4.

Now we show part (2). Let a € Pg and set of = (o) () € ® for i € Z. Let

Ne = min{i € Zsp;a~" ¢ @E} < M-
It suffices to show that wr(a™") € Pypiws- First we check that
(a) a™" € ®* and WRWWRO (S (a-na)) = WRWO(Sq—na )wr € Adm(X).

If no =0, then ™" = € &1\ &g, and part (a) follows from Corollary A.6. Otherwise,
a et e @f C ®~. Noting that @ € BW (since @ € Adm()) is left R-distinct), by Lemma 1.1
we have o™ " = (o) (a ") € 7. Hence, a™ " € &F since n, < map and o Med € T,
Moreover,

wrpwwro(wr(a™ ")) = wr(a ") € &, C o,

By Lemma 1.1, WRwWRO(Sy,(a-na)) < wrwwr € Adm()), and part (a) follows.
Note the following three facts: (wrpwwr) (wr(a™")) = wr(a ") for i€ Z; wg€
Wy preserves ¢\ ®; and n, < negp (since a™ " € ®). Then it follows, by definition, that
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Nawp(a—na)wriwy = Mo — Mo and

(wawR)*"wR(a—na),wawR (wr(a™™)) = wr(a ") € ot \ ®,

where the inclusion follows from "% € &+ \ ®. Therefore, we have wr(a™"*) € Pypiwy 2
desired. 0

LEMMA 3.3. Let R be a o-orbit of Sg. Let w € Adm(\) NS. If & ¢ BW and & is not right
R-distinct. Then Py # 0.

Proof. By assumption, there exist s’ € R and 0 <i < |R| —1 such that ¢~%(s')% < @ and
wo(s') € Adm(N). Thus, we can define

k=min{0 <i < |R| - 1;07(s)w < W, wo(s') € Adm()) for some s’ € R}.

Choose s € R such that o~k (s)w < @ and wo(s) € Adm()). Let o € ®F be the simple root of s.
Set 7 = (wo)i(y) € ® for v € ® and i € Z. We claim that

(a) o' =0""(a) for 0 <i <k, and hence my 5 >k + 1.

Let 0 < i < k — 1. By the choice of k we have @ < 0~%(s)w and 1o ~%(s) ¢ Adm()\), which means
that wo~*(s) = 0~ %(s)®w by Lemma A.2, that is, 0 ~*(a)) = wo~*(a) (since @ < o~*(s)w). Thus,

a1 — (0_111)_1)i+1(04) _ (O_—lw—l)ia—l(a) = .. = (U_lﬁj_l)o'_i(a) = a_i—l(og).

Thus, part (a) is proved.

By part (a) we have =% € ®F. Thus, a *~! = (o) (a %) € &+ since o (s)w < . As
we S, it follows that a=* ¢ ®,_ and, hence, o ¢ ®,_ for i € Z. If a ¢ Py, then a M €
®~\® by definition. Thus, a1 € ®*N® =&~ since k+1<myyz by part (a). Let
B=—-aF1edt\®, . Then f7"8% = —a Mew € &\ &, and wo(sg) < w € Adm()\) since
wo(f) = —a~F € ®=. Thus, § € Py as desired. 0

3.3 Reduction by cyclic shifts
To show Proposition 3.1, we introduce a reduction method via the left cyclic shift. We adopt the
notation from §1.6.

PROPOS}TION 3.4. Let K C Sy and w € Sy . Then there exists a unique semi-standard element
W' € KW which is o-conjugate to W by Wy. If, moreover, K = Sy and (\,b) is Hodge-Newton
irreducible, then @' is not left R-distinct for any o-orbit R of Sy.

Proof. By Theorem 1.4, there exist unique @’ € KW and some u € I(K, ') such that & — g ui’.
Thus, ®7(x ) € Py, (by Lemma 1.3) and {(ui') = £(u) + £(@"). As w € S, by Lemma 1.5(3)
and (6) we have ui’ € S and uw’ < v~ luw’ = @w'. Thus, u = 1, and the first statement follows.
The second statement is proved in [CN19, Lemma 6.11]. O

LEMMA 3.5. Let K C Sy and w € §. Then is no infinite sequence
U‘}:@O —s1 12)1 s T
where s; € K for i € Z>q. In particular, W — W' for some @' € SN Ky,

Proof. We argue by induction on |K|. If K = (), the statement is trivial. Assume |K| > 1. Suppose
there exists such an infinite sequence. As w € S, w; € S for i € Z>p by Lemma 1.5(3). Noting
that ¢(wg) > €(w1) > ---, we can assume that: (a) £(wg) = l(w1) = ---. Write w; = w;y; with
u; € Wi and y; € KW . Then Si+1u; < u; and, hence, y;0(s;+1) > y;. By Lemma 1.2(1), for each
i € Z>o we have y; < y;+1, and more precisely, either y;11 = yio(si+1) > ¥i or yir1 =y; and

2061

https://doi.org/10.1112/S0010437X23007339 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007339

S. NIE

yiU(Si+1)yi—1 € K. Thus, we can assume further that yo =y = ---, that is: (b) there exists
y € KW such that @; € Wy and yo(s;)y~' € K for i € Zzy. Let K' = {s;;i € Z>1} C K. If
K' = K, then by part (b) we have K = I(K,y) C W,,_, see §1.5. Thus, w; =y € KW since
w; € S, which is impossible. Otherwise, K’ C K and it contradicts the induction hypothesis for
the proper subset K. O

PROPOSITION 3.6 [CN19, Proposition 6.16]. Let @ € S and let @' € S°W be the unique element
in the Wy-o-conjugacy class of w. Then there is a sequence

W =Wy =R, W1 =Ry, "* —R, Wn =10,
where R; C K is a o-orbit and w; € S N RiW for 1 <i < n.
Proof. Assume otherwise. Then by Lemma 3.5 there is an infinite sequence
W= Wy —Ry W1 —R, """ »

where w; 1 € Riyy and R; is some o-orbit of Sy for i € Z>g. This contradicts Lemma 3.5. Thus,
the statement follows. O

3.4 Proof of Proposition 3.1
By Proposition 3.6, there exists a sequence

~ ~ ~ ~ ~/
W =Wy —R; W1 —Ry """ —R, Wn =W,

where @y, . .., W, € S are distinct elements, Ry, ..., R, are g-orbits of Sy, @’ € oW, and w; €
R’L’Wforlgién.

We argue by induction on n. If n = 0, then @ € S°W and there is nothing to prove. Assume
n>1.1f @ € W, then @ = @, by Lemma 1.2(2), contradicting our assumption that @ = 1y #
wy. Thus, @ ¢ Buyl If @ = @y is not right Ri-distinct, then Pg # 0 by Lemma 3.3. Otherwise,
by Lemma A.4, wr, wwgr, € Adm(\) is left R;-distinct, where wg, is the longest element of W, .
In view of Lemmas 3.2 and 1.2(2), we have wg, wwg, = w; € BT1W. Thus, @; € Sy ;. Moreover,
w ¢ SOV by Proposition 3.4. Thus, Pa, # 0 by the induction hypothesis, which implies that
Pg # 0 by Lemma 3.2.

4. Proof of Proposition 2.3

In this section, we prove Proposition 2.3 for all = € Sj\ib. We introduce a new algorithm in §4.3
to construct affine lines connecting the sets [ 5 for w € Sy, with each other. This algorithm
is based on an induction on the vectors l/fb introduced in §4.1. The construction of affine lines is
given in §4.2, which relies on the sets Py studied in previous section.

Assume that (A, b) is Hodge-Newton irreducible. Recall that d is the number of connected
components of Sy.

4.1 The vector I/,;bb

Let n € Y. Let A = max{[{a,n)|; &« € ®}. Fix M € Z>5 such that M|{«,n)| > 2A for any o €

with (a,n) # 0. Motivated from the a-function in [Hel0], for @ € t*Wy C Wyt"W, we define
N—

=% p(iwo)* (1)
Vg = - eV,
i M

[y

where N is the order of the natural projection image p(wo) € Wyo.
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LEMMA 4.1. Let o € ® and 0 < n < N — 1 such that {a, p(wo)™(u)) # 0 and {a, p(wo) (1)) = 0
for0 <i < n—1. Then (o, V{E>(~a,p(wa)”(u)> > 0. In particular, if« € ® \ ®,,, then (a,v2%) <0
if and only if (wo) M@ (a) € 1\ P.

Proof. Note that u,n are conjugate by Wy. By the choice of M > 2 we have
(coplio)" ()| 24 A 3= 5 (@ P(07) ()
Mn Mn+1 Mn+1 Mz Ni—n—1 Z :
i=n-+1 i=n+1
Thus, the statement follows. ]

COROLLARY 4.2. We have the following properties:

1) (a,v2) =0 if and only if (o, p(wo)'(p)) = 0 for i € Z;

2) 12, is dominant for of ifweS;

(

(2)

(3) Vzuva(z)—l = 2(v%) for z € Wy;

(4) @wo(®F,) =& if b € S;

(5) if o € Py, then the roots (wo)'(a) € ® for 1 —mge < i < 0 are linearly independent, and
moreover, {(Wo)'(a),v%) <0 for 1 —mgg < i < 0.

Proof. Statement (1) follows from Lemma 4.1 and the deﬁnition of V7.

Suppose there exists a € &} C &~ such that <a v >< 0. By Lemma 4.1, there exists
n € Zxo such that (o, p(wo)™(n)) <0 and (o, p(wo)'(u)) =0 for 0 <i<n—1. In particular,
we have (wo) % (a) = p(wo)~H(«) for 1 <i < n and (wo) " (a) € T\ @, contradicting that
w € S. Thus, statement (2) follows.

Statement (3) follows by deﬁnition

By statement (1) we have ® v = wo(®,,) C Ci> .Asw € S, we have wa(CI) ) = <I>i Thus,

statement (4) follows from that (iD =, N
a

»en

A
Let o € Py. Set m = mq z;Iuld = ) ( ) for i € Z. By definition, (a'=™, u) <0,
a~ = p(wo)~Ha), and (a7, u) = (o, p(wo) 1 (p)) = 0 for 1 < i < m — 1. Thus, it follows from
Lemma 4.1 that (af,1%) < 0 for 1 —m < i < 0. Suppose Z%;Sn cia = 0, where the coefficients

¢; € R are not all zero. Let 49 = min{1 —m < i < 0;¢; # 0}. Then

1-m 20

=0 =0
which is a contradiction. Thus, statement (5) follows. O
LEMMA 4.3. Let @ € S. Then w € S°W if 1’ is dominant.

Proof. Assume Vb~ is dominant. Let p €Y such that w € t*W,. Then p is dominant by
Lemma 4.1. VVeshovvw<sawfo1r04€<I>Jr If (o, 1%) > 0, then either (a,pu) > 0, or {(a,pu) =0
and (p(wa)~ (), v%) > 0 (hence, p(iwo) ™ (a) € @) by Corollary 4.2, Wh1oh means W < SpW as
desired. Suppose (o, %) = 0, that is, a € <I>+ C ®~. Thus, (wo)~(a) € <I> by Corollary 4.2(4),

U}

which also means W < s,w as desired. O

4.2 Construction of affine lines

Let & = a+ k € ®. We denote by Us C LG be the corresponding affine root subgroup of the loop
subgroup LG associated to G. More precisely, Uz (2) = uq(2t*) for z € k, where u, : G, — G is
the root subgroup corresponding to a. For simplicity we write Uz = Uz (k) C G (F) if no confusion
is caused.
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For g € G(ﬁ’), Fed, weW,and me Z>0, we define
n wo)l—m wo) "1
Gyaim A = GE) /1, 2 g% " Us(2) - )7 Us (2) Uz (2)1.
It extends to a unique morphism from P! = A U {oc} to G(F)/I which we still denoted by
8y 5.5.m- Here 97 Us(2) = go'(Us(2))g ™! for g € G(F) and i € Z.

HyYPOTHESIS 4.1. Recall that F, is the residue field of F. Assume that q® > 2 (respec-
tively, ¢* > 3) if some/any connected component of Sy is non-simply-laced except of type G2
(respectively, is of type Ga2).

Note that if Hypothesis 4.1 is not true, then d = 1 and Sy is non-simply-laced, which implies
that G is residually split, and hence split (since G is unramified).

LEMMA 4.4. Suppose Hypothesis 4.1 holds. Let w € W, v € ®, and m € Zxq such that the roots
7' = (wo)*(y) € ® for 1 —m < i < 0 are linearly independent. Let g = gy ,  n,- Then there exist
a sequence of integers 1 — m < i, < --- < ig < 0 (which may be empty) such that

g(00) = Syir -+ 8yio L, and 5. ---s,yik,l(’yik’) cedt for0< k<

Moreover, if there exists v €V such that (y,v) <0 for 1—m<i<0, then v<
(8yir "'S,Yio)_l'(U), where the equality holds if and only if the sequence iy, ...,iy Is empty, or
equivalently, v* € ®~ for 1 —m < < 0.

Proof. By assumption, we have

(a) (wg)iUﬂy(z) = U, (cizqi) with ¢; € O; for 1 —m < <0.

For a # —a/ € ® there exist constants ¢y o/ j € O for i, j € Z31 such that
(b) Ua(@)Uar (Ua(—2) = Unt(y) [ Uiatjor (Caar,ijz'y’).
i,j€Z>1

Now we argue by induction on m. If m = 0, the statement is trivial. Assume m > 1. If v €
@, then U,(z) € I and, hence, g(o0) = gy ;-1 i ,—1(00), from which the statement follows by
induction hypothesis. Otherwise, we have

g(z) = @)U (2) - T () U (27 Y)sy T for 2 £ 0.
As the roots v¢ for 1 —m < i < 0 are linearly independent, it follows by parts (a) and (b) that

wo 1-m wo -1
(o) U'Y(Z)M( ) UW(Z)U,W(z_l): H Uﬁ(ca.zna.)a

(B,a0)
where ae = (ai)o<icm—1 € (Z>0)™ with a9 > 1, = —apy+ Z;’Sl ay "t ED, ¢, € O and
Ng, = —ag + Zﬁzl a;q~". Note that a; =0 unless i € dZ since 3 € ®. Moreover, ajq/ao <1

(respectively, ajq/ap < 2; respectively, ajq/ap < 3) for j > 1 if some/any connected component
of Sp is simply-laced (respectively, is non-simply-laced except of type Ga; respectively, is of
type G2). Thus, by Hypothesis 4.1 we have a;q/a0 < q% — 1 for j > 1, which implies that n,, < 0
and, hence,

S wo) "L
lim (o) UW(Z)“'( ) U“/(Z)U,,Y(Z_l) — 1.

zZ—00

Then we have

g(OO) = 59815, (v 1), 850 (54),m—1 (OO)
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By the induction hypothesis, there exist a sequence 2 —m < j, < --- < j1 < 0 of integers such
that

gl,s—y('yfl),s—yﬂ)a(s.y),m—l(OO)
= (s, 008,)97 (35 (171) " (st )1 (s (v 1) L = SySyormt e Syn-rsyl,
and for 1 <k <7,
S(anioas)1 (s (1)) " (s he (s 1) (578987} (55 (1))
= SySyir—1 - 'S,ij_lfl(’yjk_l) c ot

Take ig =0 and i, = ji — 1 for 1 < k < r. Then one checks directly that the first statement is

true.
Set Bk = s.io "'S,Yik_l(’}/ik) € &t and vy = 5.4 sy (v) for 0 <k <. As (v, v) < 0 we
have
vk = 58, (Ve—1) = Vi1 — (Brs ve—1)B = ve—1 — (Y*, 0B > vp—1.
Thus, the ‘Moreover’ part follows. ]

Remark 4.5. In view of Corollary 4.2(5), we apply the above lemma (by taking (y,m,v) =
(o, Mg, V) for @ € Sypy and @ € Py) to construct affine lines in X (), b).

4.3 A connecting algorithm
Let J = J, ). Let x € Sj\rb. Let Jy0 = 0(Jz0) € J be the union of connected components K

of J such that o?(y;) is central on K for all i € Z. Let Je1=J\ Jpo0. Let Hy C MJ(F') be the
subgroup generated by Ins,, Wy, ,, and W3 . see §1.5. By definition, J; 1 commutes with J; o,

and z € W. Jon
Remark 4.6. The reason for distinguishing J, ¢ and J, ;1 is that we will employ different methods
to study the actions of two normal subgroups of ker(nas,) NJ, on Xo(X (A, b)) coming from

Jz1 and Jg 0 in §6. Moreover, this distinction also plays a delicate role in handling the case of
Lemma 6.5, see §6.3.

Note that W = |—|Z€Wé] Wy = Uzer’ Uoeq, 2w WY
LEMMA 4.7. Let x € S;\rb, W E Sapa, 2 €W with W= zzo(z)"t. Let y € W (respectively,

y € Wy) such that yiwo(y)~t € Adm(N). Let 2’ € Wy, w € Q, such that yz € 2w 'W$. Let
7 =wlzo(w) and W' = 2'2'c(2')~L. Then:

(1) 2’ € Sj\rb and W' € Syp;
(2) ywo(y)~! and @' are o-conjugate under W2 = (respectively, We.);

(3) there exists h € ker(na,) NJ, (respectively, h € H, NJ,) such that gy='I ~y, gzhw? I
for g € Jp -

Proof. Write yz = 2'w™'u with u € W§. Let § = uzo(u)"'z~' € W§. Then x <; 6z (see §1.5)
since z € ;. As Z’w™!(@F) C @7, it follows from [CN19, Lemma 1.3] that

W = (Yo Nzo(Zw )™ < (ZwHdze(Fw™H) T = ywe(y) Tt € Adm(N).

Thus, W' € Adm(A\) NS by Lemma 1.5. Note that @' € Wytt=' Wy and 2’ € Qy. Then py < A
and 2’ <; t"s' € Adm()), which means 2’ € Adm()\) and 2’ € S,. Thus, part (1) follows.
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Note that J = J,, = J, ,. By definition ywo(y)~!, @' are o-conjugate by
Ywuw Tt e W = Z/me/zlfl =Wy .

Moreover, if y € Wy, then w = 1, u € W and hence z/w luwz' "' € W, Thus, part (2) follows.
Now we consider the following closed affine Deligne-Lusztig variety

X2, (2) = {m € My(F)/Iag,im ™" wo(m) € Up< 5,6, }-

Note that u™'ly, € Xﬁ{;’(;x(x). As z € Qy, by [HZ20, Theorem 4.1] (respectively, [CN20,
Lemma 6.13]), there exists h € ker(na,) N J, (vespectively, h € H, NJ, if y € W) such that
u™ )y, , hIy, are connected in Xi/{]‘%x(x). For g € Jp 5 there is an embedding

X]SV{IJéQ?(m) - X(Aa b)7 mIMJ = gzmwz’_ll,

1

from which we have gy~ = gzu~lwz' "I ~ab gzhw? "I as desired. O

LEMMA 4.8. Assume Hypothesis 4.1 holds. Let x € Sjb and W € Syp . If 0 ¢ SOW, then there
exist h € Hy NJ, and @' € Sy, such that V%) < Vfbl and gl ~y gzh2' 7' for g € Jp,5. Here
z,2' € W§ such that W = zxo(2)~! and @' = 2'zo(2')71.

Proof. By Proposition 3.1, there exists a € Py. Set m =mqz and o' = (wo)i(a) for i € Z.

Let g = gy o.4,m for g € Jpw. Let A C I be the kernel of the natural reduction map G(O}) =0

G(k). Since ™™ € ®F\ ® and o’ € ® for 1 —m < i <0, we have (“9)""U, = U, m C A and
(@o)' 7, = Uyi € G(Op) for 1 —m < i <0. Thus, for z € k we have

)1—m

((i)o‘

F(z2): Ual2)-Ual) " (@0) ™17 (_2)) € AC I

Now one computes that

8(=)"bog(2) = Ua(=2) - """ Ua(=2)00 ") " Ua(2) -+ Ual2)
=Un(—2) - @ " U (=2) 50 " Up(—2) @) " Up(2) -+ Un(2)
= Up(=2) - @V Uy (=2) 00 ) " Up(2) - - Un(2) F(2)
C Un(—2) - @ " U (=2) 0 @) " Up(2) -+ Ual2)1

= woUy(2)I C I{wo,wose}H C ITAdm(N)ol.

By Hypothesis 4.1 and Corollary 4.2(5), the conditions in Lemma 4.4 are satisfied (for
(v, m,v) = (a,Mg.q,v%)). Thus, by Lemma 4.4 we have gI = g(0) ~y; g(o0) = gy~ ' for some
y € Wp such that y(v%) > 2. Then ywo(y)~' € Adm(\) and 1% < y(12) = (y)-1- Let b€
Hy, @' € Sxpu, and 2/ € W be as in Lemma 4.7 such that gl ~y, gy~ 11 ~xp gzhz'"'I. Then
ywo(y)~! and @' are o-conjugate by W,,,, and, hence, V,IZD, and I/Z _, are conjugate by W,,_,.

v -
ywo

wo(y)
b - + : b b b :

By Corollary 4.2(2), v;, is dominant for ®,_,, which means v < Vo (y)-1 < v}y as desired. [

COROLLARY 4.9. Letz € S;\Lb and W, W' € Sy, with @' the unique element in SoW . Then there

exists h € Hy NJ, such that gl ~y; gzhz’flf for g € Iy, where z,2' € W such that @ =

zxo(z)! and @' = Zxo(2) 7L

Proof. Note that the statement follows from Theorem 0.2, which is proved in [CN19] when
G is split. Thus, we can assume G is not split and Hypothesis 4.1 holds. If @ ¢ SoTW, by
Lemma 4.8, there exist h € H; NJ, and @' € Sxp, such that sz) < I/ED, and gl ~y gzhz’fll
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for g € Jp.5, where 2’ € W such that @' = 2z’zo(2')~!. Thus, the statement follows by repeating
this process. O

Proposition 2.3 is a consequence of the following result.

PROPOSITION 4.10. Letx € S)tb and W € Sy .. Then there exists h € H, N ], such that gI ~
ghz~I or, equivalently, gh=I ~y gz~ 11 for g € Jp ., where z € Wy such that @ = zxo(z) L.
In particular, Iy 5 ~xp Jp.z-

Proof. By Proposition 3.6 and Lemma 1.5(2), there exists 2/ € Wy such that 2’zo(z')~! € SN
Soyy. By Corollary 4.9, there exist hi,ho € Hy N J; such that gl ~y ghlz’fll and gz~ ~Ab
ghoz' ' for g € Jp,z. Then we have

_ - . -1 -1
ghz T = jgz7 T~y Gigha?’ ™ T = ghi2' ™ T ~yy gl,
where h = hihy' € H, N J, and j = ghihytg™! € Jp. O
The following result will be used to compute the stabilizers of connected components of
X (A, b) in the remaining sections.

PROPOSITION 4.11. Let z € S), and y € W (respectively, y € Wy) such that yxo(y)~' e
Adm(\). Then there exists h € ker(nar,) NJs (respectively, h € Hy N J;) such that gy='1 ~y,
ghwl (respectively, gy='I ~y, ghl) for g € Jy», where w € Q such that y € W(j]w%WL‘}.

Proof. 1t follows from Lemma 4.7 and Proposition 4.10. g

5. Proof of Proposition 2.4

In this section we show Proposition 2.4, which is based on an algorithm introduced in [CKV15],
see §5.3. To this end, we need a detailed study on a single reduction step. This is carried out in
§85.1 and 5.2.

Recall that d is the number of connected components of Sg.

5.1 The set Adm(\)
We collect more properties on Adm(\). For K C' Sy we denote by pry : R®Y — (]R(P%)L the
orthogonal projection with respect to the usual Killing form (,) on R®Y such that (a, ) =

2(e, B)/(8, B) for i, § € @.

LEMMA 5.1. Let x € Sy, and let O be a g-orbit of J-anti-dominant roots in ®*\ ®; with
J = Jys)- Then we have: (1) 3 cola, pry(pe)) > 0; and (2) (w;(B), ptz) > 1 for some 3 € O.
Here wy is the longest element of Wj.

Proof. Let v € O. By definition, (v, v (b)) = (v, prj(1z)®) > 0, where pr;(ug)® is the o-average
of prj(py). Thus, part (1) follows since

Y (apry(pe)) = Y (aupry(ue)°) = [0/(v, v (b)) > 0.

acO acO

By part (1), there exists § € O such that (3, pr;(pz)) > 0. As wy(B) is J-dominant and i, —
pry(pz) € Rxo(®F)Y, we have

(wi(B), pa) = (wy(B), pry(pa)) = (B,pr;(1a)) > 0.
Thus, part (2) follows. O
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LEMMA 5.2 [CN20, Lemma 1.6]. Let K C Sg and w = (t'Wg) N Qi withp € Y. Let a € T be
K-anti-dominant. Then: (1) sq € Adm(\) if 4 ¥ < X; (2) Wsq € Adm(N) if g — p(w) ()" =
\; and (3) ziwz~! € Adm(\) for z € WK,
LEMMA 5.3. Let K C S, w = (W) N Qk withp € Y. Let 1 € Zxp and vy € T \ O with vV
K-dominant and K-minuscule such that

po i ="t p(@)o" (v1), = 4" + plw)a” (v7) 2 A
Let ¥ =~+1 € ®*t. Then we have:
(1) p=+",p+p@) (" (v")), =" + p(w)o”(v") are K-minuscule;
(2) W, s5W, Ws4r(5), s5Ws5 € Adm(N);
(3) syWs,r(5) € Adm(A) if v # ¢"(7) and (p(w)o" (), w), (v, ) = —1;
Proof. Note that parts (1) and (2) were proved in [CKV15, Lemma 4.4.6] and [CN20, Lemma 1.5],
respectively. To show part (3) we claim that

(a) there exists n € Wy () such that n — ¥ + 0" (y") is K-minuscule.

Indeed, let n be a Wx-conjugate of p such that n — Y + ¢”(7") is minimal under the partial
order <. If n — v + " (7") is not K-minuscule, then there exists a € ® such that {(a,n — vV +
o"(vV)) = 2. As n is K-minuscule, and 7", 0" (v") are K-dominant and K-minuscule, we deduce
that (a,n) = 1. Let ' = s4(n) =n — V. Then we have
n =" +0" () =n—-7"+0"(y") —a’ <n-7"+0"(7"),

which contradicts the choice of 1. Thus, part (a) is proved.

Let w = p(w) € Wk. By parts (1) and (a), n — Y 4+ 0"(v"), p — 7" + wo” (v") are conjugate
by Wk. In particular, n — " + o"(7") < A. Then part (3) follows from that

87WSr(5) < s5t"185r(5) = swt”_w“ﬂ'(“’v)sar(v) < et ¢ Adm(\),

where the first < follows from [CN19, Lemma 1.3], and the second < follows from that

(7.0"(+")) < 0 since 5 # 0" (7);
(von—=~"+0"(4") < (v, ) —2 < =15
(0" (¥),n =" + 0" (vY)) = (wo" (), u) +2 > 1.

The proof is finished. 0

5.2 Strongly K-minuscule coroots
For K C Sy we say vV € ®¥>F \ @}, is strongly K-minuscule if 4" is K-minuscule, and moreover,
7 is a long root if: (1) some/any connected component of Sg is of type Ga; and (2) K is the set
of short simple roots.

For any K C Sy there is a natural isomorphism Qg = 71 (Mg ). We identify these two sets
according to the context.

LEMMA 5.4. Let K, w, 7, 7, and r be as in Lemma 5.3. Assume further that v is strongly

K-minuscule. Then U_3w0U_,r5y € TAdm(A)I unless
(+) (v, 1) = = (p(w)o" (7), ) = 1 and (v, p(w)o" (7)) = 1.
Moreover, if (x) holds, then

W # W, U_prsy@'U_y € TAdm(N)I, and p+ (v 4 p(w)o” (7)) = A,

where W' = p— vV + 0" (V) € m(Mg) = Qk.
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Proof. Let w = p(w) € Wg. First we claim that
(a) U= ®N(Zy+ Zwo" (7)) is of type Az, or A} x Ay, or Aj.

Otherwise, then W is of type By or Gs. In particular, ¥ = 0" (7) (since 0 = id with d the number

of connected components of Sp), v # wo”(y) = w(y) are short roots, and, hence, K # 0. If ¥ is

of By, then v+ wo”(y) € ® and (v, wo”(y")) = 0 since v, wo" () are of the same length. Thus,

v —wo"(y) € Pk and (y —wa"(y),7Y) = 2, contradicting that vV is K-minuscule. Thus, ¥ is

of type Ga. As v # wo”(vy) are short roots and " is strongly K-minuscule, we deduce that K

consists of long simple roots. This contradicts that " is K-minuscule. Thus, part (a) is proved.
Now we claim that

(b) U_50U_gr(5) € TAdm(A)I if one of the following holds:
(b1) cither (v, 1) > 2 or (y,p) = 1 and (y,wa(y")) > 0;
(b2) either (wo” (y), u) < —2 or (wo" (y), ) = —1 and (v, wo" (y¥)) > 0.

By symmetry we may assume (bl) occurs. By part (a) we have
U—s-13) W13, U—or)) € 1
where [g,¢'] = 99’9~ ¢’ denotes the commutator of g, ¢’ € G(F). Thus,

U_50U_gr(3) C ®U_yr(3y] € I{th, B5,r(5)} € TAdm(N)1,

where the last inclusion follows from Lemma 5.3(2). Thus, part (b) is proved.

Suppose U_50U_,r(5y € TAdm(X)I. Then —(wo” (), ), (v, 1) < 1 by (b), which implies that
W () # o™ (7y). Assume (v, ) < 0. We claim that

Ug—13), a1, U-orp)) € 1

The first inclusion follows from that @~ 1(3) = w=(y) + 1 — (v, ) € ®*. Note that [Us-1(3)s
U_or(3)] = Us-1(3)—0r(5) by part (a). Thus, we can assume that Ug-1(3)_,r(5) is nontrivial,
that is,

0'F) —0" (@) =w () — 0" () = (v, ) € D

As vy is K-dominant and w € Wg, w™(v) — v € Z>o®P. Thus, the o-average of w™(vy) — 0" (v),
which equals the o-average of w™1(y) — v, lies in R5o®~. This means that w™1(y) — 0" (y) € &~
and, hence, w0~ (5) — 0" () € ®F (since (7, ) < 0). Thus, the second inclusion follows, and the
claim is proved.

Thus, by Lemma 5.3 we compute that

U_fyﬁlU,Ur(:y) - [S@UN)U,Ur(:y)I - I{S@’LD, S@UN}SUT(;/)}I - IAdm(/\)I,

which contradicts our assumption. Thus, (v,u) =1, and (wo”(v),u) = —1 by symmetry.
Moreover, we have (v, wo”(v")) = —1 by parts (b) and (a).

Write @' = t*'w' € Qi with ¢/ € Y and w’ € Wg. Applying Lemma 5.3(1) to @ and @' we
deduce that

pop =" +wo" (V)1 —o"(v), =Y p ' (7)), g+ wo” (1Y)
are K-minuscule, and, hence, are conjugate by Wy . Since

(v ) = —(wa"(v), 1) = —(y,wo" (")) =1,
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it follows that u — 7" +wo” (V) and p + (v¥ + wo”(v")) are conjugate by Wy. Hence, pu + (7" +
wo (YY), ' 2 A As wi () (with wg the longest element of W) is K-anti-dominant, we have

(W'(7), 1) = (wi (v), 1) < (v, =7 +wo" (7)) = 2.
Thus, 0" (7) # 7 (which means @ # @) and U_,r5y@0'U-5 C TAdm(A)I by (b2). O

5.3 The second connecting algorithm
Let J = J,, @) Let z,2' € S§, C m(M;). Write = @) & for some y€®\®; and r € Zx; if

(v,7) ,
o' —x=0"(v") =" and pp_v, fytor(yv) = A, see §2. Moreover, write x — 2’ if x @D x,

and for each 1 <7 < r — 1 we have

neither T (7_’? T — ,y\/ + Ui(’yv) (a*(vy),r—i) :L',,

(0 (7),r—1)
nor x 5 ‘x-—

)

Note that x ) 2’ is equivalent to z’ (yr T.

)
LEMMA 5.5 [CKV15, Remark 4.5.2]. Let z # 2’ € S, such that z 0 x' for some y € \ @
and r € Z>1. Then za'(8) = ¢*(8) for any Wy-conjugate § of v and 1 <i <r—1 withi,i —r ¢
dZ.

For v € ® we denote by O, the o-orbit of ~.

PROPOSITION 5.6 [Niel8, Lemma 6.7]. Let z # 2’ € S)\,. Then there exist distinct elements x =
L0, T1, ..., Ty, =2’ € SY, such that for each 1 < i < m we have:
(viri)
(1) xi—1 e x; with v; € ® \ ®; such that v, J-dominant and J-minuscule;
2) 1<r<d—1if|0,|=d; 1<r; <dif |0, =2d; 1 <r; <2d—1if |0y < 3d.

Proof of Proposition 2.4. The case when o has order 3d is handled in §8.2. We consider the
case when o has order < 2d. Without loss of generality, we can assume that |O,| = 2d. By

Proposition 5.6 and symmetry, we may assume x D) 2’ for some 1 <r<dand yedT\ P,
with " J-dominant and J-minuscule. Then +" is also strongly J-minuscule since |O,| = 2d.
Moreover, we can assume that

(a) U_:YxU_ ) Q IAdm()\)I.

o (¥

Indeed, if 1 <r <d-—1, part (a) follows from Lemma 5.3(2). If » = d, by Lemma 5.4 we can
switch the pairs (z,7) and (z',0%(y)) if necessary so that part (a) still holds.

Now we can assume further that x (ﬁ) /. Let y=~v+1edt andlet g= 8g,—om1(3),a.r for
g € Jp (see §4). By Lemma 5.5, (z0)'(y) = o*(7) for 1 <i < r — 1. Then by part (a) we have
g b0 (g) C U_52U_yr(5) € TAdm(N)I, which means that gI = g(0) ~»; g(co) = gsI, where s =
85+ Sgr-1(3). By [CN20, Lemma 1.3] we can write s = w2zt where 2 € Wy andw =~Y + -+ +
o™ 1(vV) € Q; = m(My). By Proposition 4.11, there is h € Jp, such that gI ~yp~xp ghwl. So
Jv2 ~ap Jp 2 as desired. O
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6. Proof of Proposition 2.5

In this section we prove Proposition 2.5, that is, ker(nas,) NJp acts trivially on 71 (X (X, 0)).
To this end, we divide ker(nas,) N Jp into two part: the Ji-part and the Jy-part, see §6.1. The
triviality of the action of Ji-part follows from a main result in [HZ20], see Lemma 6.3. For the
Jo-part, we first use Lemma 6.4 to reduce it to the situation of Lemma 6.5. Finally in §6.3 we
addressing this remaining case in an ad hoc way.

Assume that (A,b) is Hodge-Newton irreducible. Let J = J,,,4)-

6.1 The stabilizer
Define J; = UxeSjb‘]ﬁvl (see §4.3) and Jy = J \ Ji. Note that J; = o(J;) is a union of connected
components of J for i € {0,1}. By definition, x € Qj, and p, is central on Jy for all x € S;\“b. Let

K; (with i € {0,1}) be the set of subsets K C J; such that K = U;cz0%(K') with K’ a connected
component of J. Set I = ICq LU Ky.

THEOREM 6.1 [HZ20, Theorem 6.3]. Let x € Sy,. Then ker(na, ) NJe fixes each connected
components of X1 (1, z).

Let J denote the set of simple reflections of W7 = Wy, . For x € Q; the group Wj N,
is a Coxeter group whose simple reflections are parameterized by the (Ad(z) o o)-orbits of J®.
For w € W$ N, denote by supp”(w) the set of simple reflections of W§ N J, which appear in
some/any reduced expression of w. Moreover, for h € ker(nys,) N J, we set supp®(h) = supp”(u),
where u € W$ N J, such that h € Ips,ulyy,.

LEMMA 6.2. Let C be a connected component of X (X, b). Let « € S,. Then there exists g € J,
such that gI € C. Moreover, the stabilizer Staby, (C) of C in J, equals gQg~! with Q C J, a
subgroup containing I N J, = Ipnr, N J,. In particular, supp®(h) C Q for h € ker(na,) N Q.

Proof. The existence of g follows from Proposition 2.4. As g(Inr, N J.)g~ ! fixes g1, it also fixes C.
Let @ = g~ !Staby, (C)g. Then I, NJ, C Q as desired. Note that the conjugation by x preserves
the standard Bruhat decomposition My(F) = In;, Wy, of My(F). Thus, Ins, N J, is a stan-
dard Iwahori subgroup of J,. Hence, there exists a unique subset E = zo(FE)xz~! C J% such that
Q= (In, NJz)(WgNJz)(Inr, NJz), from which the ‘In particular’ part follows. O

Let K be a union of connected components of J. We denote by L C M the normal subgroup
generated by U, for a € ®.

LEMMA 6.3. For x € S, the group Ly, , (F) N J, fixes each connected component of X (\,b).
Proof. Let C,z,g be as in Lemma 6.2. Moreover, gl lies in the image of the embedding
XMWt (g, ) = X(A), hlng,, | = ghl.

By Theorem 6.1, LJM(Z*!’) NJz € ker(ny,,) NJ, fixes the connected component of XMz (g, 2)
containing Iz, . Thus, g(LJI,l(F') NJ)g™ ! = LJZJ(FV‘) NJy fixes C. O

LEMMA 6.4. Let K € Kg. If pup + ¥ < X for some x € Sj\rb and some « € K, then LK(F) NJp
fixes each connected component of X (A, b).

Proof. Let C,z,g,@ be as in Lemma 6.2. Then I, NJ, C Q. Note that LK(F’) N J; is contained
in the subgroup generated by Ips, NJ, and Wg N J,, it suffices to show Wi NJ, C Q.

As p, is central on ®x (since K € Ky), by replacing a with a suitable W-conjugate we can
assume «a is K-dominant and, hence, ¢%(«) = .. Moreover, the action Ad(z) o o restricts to o
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on Wi O Wi. Let g =gy .4 and g =8y o144 be asin §4. By Lemmas 5.2 and 5.3,
g 'bo(g) C Upzr € TAdm(A)I  and ¢’ 'bo(g') € 2U_a_1 C IAdm(N)I,
which means
gsI = g(00) ~xp 8(0) = &'(0) ~ap &'(00) = gs'T

where s = s+ S5d-1(q), 8’ = Sat1" " Spd-1(q)+1 € Jz. Thus, s,5' € Q.
As « is a highest root of @}, supp®(s) U supp”®(s’) consists of all simple reflections of W5 N J.
Hence, Wi NJ, € @ by Lemma 6.2. O

6.2 A technical lemma
Let O be a o-orbit of &1\ ®; whose roots are J-anti-dominant and J-minuscule. We define
Vyo=PNZ(JUQO). If ¢ is simply laced, then J U O is a set of simple roots of ¥ ;0.

The following lemma is proved in Appendix B.
LEMMA 6.5. Let K € Ko. Suppose jizn 4+ 6Y £ X for any z” € Sj\r,b and any 6 € K. Then there
exist x € S;Cb and 3 € @+ \ ®; with 8V J-anti-dominant and J-minuscule such that:

(1) pe+ BY < A, and B3Y is non-central on K;
2) xo'(B) = ol(B) fori € Z\ nZ;

(2) =
3) (p(z)a™(B), pa) = 1;
(4) if o™ does not act trivially on Wz N Jo, then ¥ = ®, Vg is of type Eg, V3N Jy = {1, a6},

UsNJi = {az, a4}, B = a3, pzlw, = wj —wy, and Ma:!\p\q/g =0.

Here, ¥ =V 0, with Og the o-orbit of 3; Vg is the irreducible factor of V containing (3;
n € {d,2d,3d} is the minimal integer such that o™ (3) € ¥g; and in part (4) the simple roots

(with w;’ the corresponding fundamental coweights) for the root system of type Eg are labeled
as in [Hum?72].

LEMMA 6.6. Retain the situation of Lemma 6.5. Let a = o(a) € ®}; such that («,Y) =
Then UgzUqn gy, Uasprsen(g)Ua © TAdm(A)I.

Proof. As K € Ky, a € Pk, and = € Q,, we have z(a) = o and
pa + BY + oV = pa + 54(8Y) = salpiz + ) <A
Moreover, since 3, a" and s4(3Y) = a" + 3" are Ji-anti-dominant, we have sq, g, S, (g) €

W', By Lemma 5.2, SBT, S5, (3)T € Adm(A). By Lemma 6.5(3) we have zo™(f) € ot \ @
Moreover, as z(a) = a = 0™ («) we have

8528 (g) () = sgro”sg(a) = spro™(a + ) = sg(a) + sgro™(B) € ot \ @,
where the inclusion follows from that zo™(3) € ®* \ ®. Therefore,
Uﬁ$U0n(g) - IUﬁx, Ua85x80n(ﬁ)Ua - IUas/gzsgn(B).

Then it remains to show sa85T55n(8), S5T5sn(g) € Adm(N). As z0o"(83) € dt\ @, we have
wzo™(B) € w(®t\ @) = &+ \ & and, hence, wrs,m(s < wz for any w € Wy. In particular,
83T55n(8) < sgr € Adm()) and

5a58T8gn(8) < SaSpT < 8a53TSa = SaSSaT = S, (3)T € Adm(A),

where the second inequality follows from that sysgz(a) = sasg(a) € . The proof is
finished. O
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6.3 The action of ker(nng,) N Jp
We are ready to show that ker(nar,) N Jp acts on mo(X (A, b)) trivially.

LEMMA 6.7. If Lg(F ) N Jp fixes each connected component of X (\,b) for K € K, then so does
ker(nar, ) N Jp.

Proof. Let C,x,g,Q be as in Lemma 6.2. Then Ip;, NJ, € Q. By assumption, g_l(LK(F) N
Jb)g—LK( )ﬂJm CQ for K € K. Note that ker(na,) NJ, is generated by In;, NJ, and
Lig(F)Nl; for K € K. Thus, ker(na,) NJz € Q, which means that g(ker(na,) NJz)g™" =
ker(nar,) NJp fixes C' as desired. O

Proof of Proposition 2.5. Let C' be a connected component of X (A, 0). By Lemma 6.7 it suffices
to show L (F) NI, fixes C for all K € K. If K € Ky, by definition K C J,/ .1 for some 2’ € S/\ b
and the statement follows from Lemma 6.3. Now we assume K € Kq. If v» + o < X for some
' e Sj\r and some a € @, it follows from Lemma 6.4. Thus, it remains to handle the situation
of Lemma 6.5. Let z ,B,¥, W3, n be as in Lemma 6.5. Let g € J; , with gI € C and Q) C J,; be as
in Lemma 6.2. As in the proof of Lemma 6.4, it remains to show Wz NJ, C Q.

Case (1): o™ acts trivially on WgN Jy. As 3 is noncentral on K, there exists a highest root

o€ @} such that <a BY) = —1. As in proof of Lemma 6.4 it suffices to show s,s” € Q, where
§=Sq " Syn— 1(a)75 —Sa+1 Sgn—1(q )+1€Jm.

Let r = sg- L(s5). We claim that
(a) gl ~yp grl ~yp grsl ~yp gsl, and, hence, s € Q.

To show the first relation ~) ; in part (a) we define g = g, ;n-1(g) 5.,,- By Lemmas 6.5(2) and 6.6
we have

g 'bo(g) C UsaUyn(g) € TAdm(N)I,
which means gI = g(0) ~xp g(00) = grl as desired. The last relation ~ ; in part (a) follows the
same way by replacing g, 5 with gs, so(3), respectively.
To show the second relation ~) ; in (a) we define g’ = g, ;n-1(q) 4,n- Note that r~ oo (r) =
58TSsn(3)- Then by Lemma 6.6 we have
g 00(g) C Unspason(sUa C IAdmM(N)I,
which means grl = g'(0) ~x g'(00) = grsl. Thus, part (a) is proved.
Let 2/ =2+ Y — o™(B)"Y € m(My). We claim that
(b) if 3# 0"(B) then (w(B),o"(B)") =0 for any w € W,.
Indeed, as 3 # o™(), ® is simply laced and, hence, J U Op is the set of simple roots of U*. Thus,
B,0™(B) are neighbors of ¥gN K (in the Dynkin diagram J U Og) on which o™ acts trivially.
This means they are in distinct connected components of (J U Og)\ K D J;. Thus, part (b)
follows.
By Lemma 6.5(1) and (3) and part (b) we have 2’ € S;rb Moreover, pir and g + 8V —
p(x)(BY) are conjugate by W, as they are conjugate by W; and g is central on Jo. Let

v =wy, (B) and 2 = wy, (sa(F)) which are Ji-dominant (since o € @, is central on Ji). By
Lemma 5.3(1) and that o™ acts trivially on Wz N Jp,

fias e — 0" ()5t + P(2)(1)s e — () + p(2) (7)) 2 A

are conjugate to
par =% + @)™ (7 ) et — W par + ()0 (1), par XA

under W, , respectively.
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Let7=8Y+-+ 0" 1 (B)Y € m(My) Q. Thenz = 77 12/0(7) and, hence, g7 ! € Jp 1.
Define g; = gyr—1 _gn-1(y,)—1,0'm- AS Jo # 0, 7 is strongly Ji-minuscule. By Lemmas 6.5(2)
and 5.4 and part (b) we have

g 'b0(g;) C U, 12'U_gn(y;)—1 C TAdm(N)I,

which means g7 711 = g;(0) ~xp g;j(00) = g7 1s;] with s; = 54,41 Sgn—1(y)41- As v is Ji-
minuscule and Ji-dominant, we have s; = 7y, 1, where 7; € 0, and y; € Wy. Note that gr it €
bz, T =71, and 77y = s's € J,. By Proposition 4.11, there exist h; € H, NJ, for i € {1,2}
such that
gTﬁlsiI = gTﬁlTiyi_ll ~Ab gTﬁlTihiI.
In particular, ghil ~yy gr I ~Ab gT Ymohol, that is, gl ~Ab hflTTgthI and, hence,
hitr i mhy = hits'shy € Q.
Note that s, h1, he belong to the subgroup H N J, generated by Ips, NJ, and (W5 Wy )N

Jz, while s’ is a simple reflection of W$NJ, not contained in (leWJO) NJz. Thus, s’ €
supp®(hy 's'shy). By Lemma 6.2 we have s’ € Q as desired.

Case (2): o™ acts non-trivially on W5 N Jo. By Lemma 6.5(4), ¥ = ® and fiz|y\w, = 0. Thus,
we can assume that n =d =1, o is of order 2, and ® is of type Fg. Then p(x) = Sq,Saq,, and it
suffices to show s,s" € Q, where s = 54,54, and 8’ = Sa,+1Sag+1 are all the simple reflections of
WenNJs.

Let Op=ac+ag+as+ag, 0h =as+aq+as, n; = (p(l’U)*l(Qi) and ¥; = n; + 0;. Define
g =8y —0,—102 f0r g€ Jpe As p+ay,p+ay +af XA, we have W;s,(p,)41 € Adm(A) by
Lemma 5.3. Then

g, 'bo(g;) CIU_y, 12U_o(9,)-1 C TaU_p(g,)—11 C TAdm(M)I,

which means

9590+15n01 = gp(00) ~xp 80(0) = gI = g1(0) ~xp g1(00) = g5y, 115y, 1.
As ¥ is J-dominant and J-minuscule, syg,418,, = wyo_l, where w =49y € Q;NJ, and yo € Wp.
Then sy, 115, = 55994+157,5 = swyfl for some y; € Wy. By Proposition 4.11, there exist hg, hy €
H, NJ; such that gwhol ~yp gI ~xp gswhil. Thus, who, swhi € Q and
(c) swhihglw™ € Q.
As hohf1 € H,N Iy C Iy, {1,s}p, and wsw ! =45 by part (c) we have swhohflw_l €
I{s,ss'}I and s € suppx(swhlhglwfl). By Lemma 6.2, we have s € Q. Noting that (W§ W) N
J.={1,s}, we have H, NJ, C Q, w € Q, and s’ = wsw™! € Q as desired. O

7. Proof of Proposition 2.6

In this section we show that (Z®Y/Z®Y)? acts trivially on mo(X (A, b)). We follow closely the
strategy of [CKV15, §4]. This is based on the connecting algorithm in the previous section and
together with a delicate analysis on the sets C)  , for z € S)tb introduced in the following.

Assume that (A, b) is Hodge-Newton irreducible. Let J = Jue(v) and let wy denote the longest
element of Wj. Let O be a o-orbit of ®*. We set

wo = ZO&VEWl(MJ)UgQZQQJﬂJb.
acO
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Let ' = ®NZ(OUJ). We say O is of type I (respectively, type II; respectively, type I1I) if |O|
equals n (respectively, 2n; respectively, 3n). Here n € {d, 2d, 3d} is the minimal positive integer
such that «, 0" (a) are in the same connected component of ¥ for some/any a € O. If O is of
type II or III, then n = d, ® is simply-laced, and O U J is a set of simple roots for ¥. In this
case, for a € O we denote by ¥, € ®* the sum of simple roots in the (unique) minimal o"-stable
connected subset of O U J which contains «, see [CKV15, §4.7].

Let x € S;b. Following [CKV15, Proposition 4.19] and [Niel8, Lemma 7.1] we define

Crpz ={a € ins \ ;e + a’ =<\ a" is J-anti-dominant and strongly J-minuscule},

where strongly J-minuscule coroots are defined in §5.2. As in [Niel8] the sets C)  , will be used
to construct affine lines connecting ¢gI and gwo! for g € Jp,, and various o-orbits O of ®7.

Once affine lines are constructed, we will use the following result to detect elements in
ker(ng) N Q9 that fix any/some connected components of X (A, b).

PRrROPOSITION 7.1. Let x € Sj\rb, g€y, and y € W such that gI ~xb 9y . Then we have
gl ~xp ghwz"1I ~xp gwl, where z € W[j] and w € Q) such that y € zw‘lwg.
Proof. The proof follows from Propositions 4.11 and 2.5. O

7.1 Computation of stabilizers
Fix a o-orbit O of roots in ®* \ ®; which are J-anti-dominant and J-minuscule.

LEMMA 7.2. Assume x 0D o with o = 2 — VW4 (y)V € S/J\r,b for some v € O and 1 <r <
n. Let w ="+ 0" )Y € m(My) = Q. I Uery) gy -12U1y 7)1 € TAdM(N)]T, then
gl ~yp gwl for g € Jp ;. Recall that w; is the longest element of W .

Moreover, if O = O, for some a € Cyy 4, the inclusion condition above holds if: (1)1 < r <
n—1; (2) x =a'; or (3) pz + 93 A X when O is of type II and r = n.

Proof. Let § = wjo" (y) +1 € ®*. Suppose we have

(a) U—cfl*T(é)xU—a(é) = U_wJ(v)_la:U_ngr(,y)_l - IAdHl()\)I.
By [Niel8, Lemma 6.5] and that 1 < 7 < n, we can assume further that
(b) 2 ', and, hence, (z0)'(9) = o*(f) for 1 —r < i < 0.

Define g = 8, for g € Jp . By parts (a) and (b) we have

,—é,x,r
g '0(8) CU_jivalU_y g C TAdm(N)1,

which means

gl = g(0) ~xp g(oo) = gsg- - - SUT_1(9~)I = gwu I

for some u € Wy = WOJWJ. So gl ~xp gwu T ~xb gwl by Proposition 7.1.
If O is of type II and r = n, then 791// is J-anti-dominant and J-minuscule, which means
Ua + 19¥ is J-minuscule and, hence,

fw + 05 = i+ (w5 (7) + p(r)wo" (7))

Thus, the second statement follows from Lemma 5.4(*) by noting that (w;(7y), p(z)wso"(v¥)) =0
Hfl<r<n—-1. OJ

Let Ay, be the group of elements w € m(My)? = Q% which fix some/any connected
component of X (A, b).
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LEMMA 7.3. Suppose O = O¢ for some § € Cyy . If O is of type 1, then there exist v € O,
1<r<n,and 2’ € Sj\rb such that x ) x'. Moreover, wo € Ay .

Proof. Note that p+a¥ <\ If (wjo"(a),uy) =1 for some 1 <r <n—1, then (wyo"(a),
V) =0, which means z (@) D o Gith o =@ — o"(@V) +a" € 8f,. Otherwise,
(wyot(a), ) <0 for 1 <i < n— 1, which means (wy(a), uz) > 1 by Lemma 5.1. Thus, = (o)
x and the first statement follows. As O is of type I, the second statement follows from
Proposition 7.1 and Lemma 7.2(1) (respectively, Lemma 7.2(2)) if r # n (respectively, r = n). O

a,n
—

LEMMA 7.4. Suppose O is of type II. Assume pn +9); A A for any 2" € S\, and 8 € O. If there
(v,r)
exist y € O,n+1<r<2n—1, and 2’ € S, such that x — z’, then:

(1) (0i(7), pa) = 0, p(z)0i(y) = 0%(y) for 1 <i £ r—n<r—1;
(2) p(z)o" " (y) = 0" (94 — 0" (7)) and (p(x)o" (V) pz) = 1;
(3) (p(@)(Vy — 0™ (7)), ) = 1.

Moreover, gI ~yp, gwl for g € Jp ., where w =~V +--- 0" 1(yY) € m (M) = Q.
)s

Proof. Write 2’ = x +0"(y") — 07 "(¢"(v")). Then parts (1), (2), and (3) follow from [Niel8,
Lemma 8.2] by using o' instead of 0. Let § = wyo" }(y) +1€ " and 9, =, +1€ o™

Note that p(z)~'wy = wyp(z) since x € Q. By parts (1) and (2) we have (zo)*(8) = *(8) =
wyot T y) + 1 for 1 —n <i <0, and

(.%'U)Z(é) _ Ji-‘rn—lp(x)—lear—n(,y) _ Ui-i—n—lep(x)ar—n(,y) — wJO'i+r_1(79,Y _ Un(,y))

for 1l —r << —n. Define g=g for g € Jp . Then we have
g El

,_é,$77’
where the second inclusion follows from parts (1) and (3) that (wg(Y~), pte) > 1. Thus,
gl = g(0) ~xp g(oo) = L ()R S(M)fl(g)sgf = gwu_lf,

where u € Wy and w =Y + - + 0"} (yV) € m1(My) = Q. It follows from Proposition 7.1 that
gl ~yp gwl as desired. O

LEMMA 7.5. Suppose O = O for some § € Cyp, and O is of type II. Assume fi,n + 9% £ X for
any 2" € S}, and B € O. If there do not exist v € O, 1 <r < 2n—1, and 2’ € S, such that

(vr) .
x — «', then there exists o € O such that:

(o' (), pz) = 0, p(x)oi(a) = ol(a) for 1 <i#n<2n—1;
p(x)o™ (@) = o — o and (wyo"(a), pio) =
(p(x)(Va); pr + ¥) 2 1;

4) (p(x)(Va), pe) = 1.

As a consequence, wo € Ay .

i
1;

Proof. Statements (1), (2), and (3) follow from [Niel8, Lemmas 8.3 and 8.4]. Note that ¥, is
J-anti-dominant. Thus, statement (4) follows from statement (1) and Lemma 5.1. By statements
(3) and (4) we have

(a) (p(@)(Va), ia) > 1, and either (p(2)(Va), tz) = 2 or (p(x)(Pa),a’) > 0.
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Let g € Jp, and 0 = wyo (a) +1€®t and 9 = wyo ' (¥,) + 1 € dt. By statements (1) and
(2) we have (z0)'""(0) = o' (V) = ( o) and

(xa)*”(e) = o p(@) twio (@) = o twyp(x)o T (@) = wioT (Vs — ).
Define g: P! — G(F)/I by
g(z) = gU_g(2) - =)

where ¢ € Og (as @ is simply-laced) such that

1-n

U_5(z)U_5(cz'T07") - (:w)lf"U_@(czlJrq—n)I’

COU_G(U_(V_jlezH") = U_g(2) ™) "U_g2).

Then by statement (1) we compute that

g tho(g) =U_ y2U_y I € IaU

@1 € TAdm(\)T,

wg ('l§a

where the first inclusion follows from part (a) that

Thus, we have
gI = g(0) ~xp g(c0) = g(sgse) -0 "(szs9) ] = gwou™'I,

where 0’ = (3:0)1_”(15) € ® and u € Wy. By Proposition 7.1, gI ~y; gwol and wp € Ay, as
desired. 0

7.2 The action of ker(ng) N Jp
Now we have the following result.

PROPOSITION 7.6. Let O be the o-orbit of some element in UxeSj\'bCAvva' Then wo € Axp.

Proof. If O is of type I, the statement follows from Lemma 7.3. If 1, + 95 < X for some 2" € Sy,
and G € O, then we also have wp = wo,, € Axp since Oy, is of type . Assume pizr + ﬁ\ﬁ/ £ A

for any 2" € S/J\rb and € O. If O is of type III, the statement is proved in §8.2. Suppose
O is of type II. By Lemma 7.5 we can assume that there exist vy€ O, 1 <r <2n—1, and

a' e Sj\r’b such that z D) x', and, hence, 2/ y (e7(0)2n=r) . If n+1<7r<2n—1 (respectively,
1 <r < n), we have gI ~yp gwl by Lemma 7.4 (respectively, by Lemma 7.2(1) and (3)), where
w=9" 40" tV) € m(My) = Qy. Similarly, we have gw ~yp gww'l = gwol, where W' =
o" (W) + -+ 0N (yY) € mi(My) = Q. Thus, g1 ~p gwol and wo € Ay as desired. O

7
—

Proof of Proposition 2.6. First note that (Z®"/Z®Y)? is spanned by we, where O ranges over
o-orbits of Sy. Let J C S C Sy be such that wp € Ay, for each o-orbit of Sf. It suffices to
show S, = Sp. Assume otherwise. Following the proof of [Niel8, Proposition 4.3, p. 1381], we can
assume that ® is simply-laced, and there exist o = 0%(a) € Sp \ S}, ¥ = 0%(¥9) € &+ such that
9 —aV e Z(I)\S/g and either: (bl) ¢ € UxeS;bC&bM or (b2) x (Bd) 7' and z (0+08.4) 2’ for some
xES;Cb and f € ®g \ ©; such that o =x— 8" +04BY) ESj\r’b and ¥+ 3 € .

Note that |Og|=|0y|=d and wy'wo, € (Z@gé/Zq)})" C Ayp. If part (bl) occurs,
then wp, € Axp by Proposition 7.6. Hence, wp € Ayp and «€S), which is a con-
tradiction. Suppose part (b2) occurs. Let w= 3" +---+ 0% 1Y) € m(My) = Q. Then
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wwo, = (B+9)Y + -+ o H(B+I)V) € m(My) =2 Q;. We claim that
(a) gwl ~yp gl ~yp gwwo, I for g € Ty 4.
Given part (a) we have gwl ~yp gwwoe,I, and, hence, wp, € Ay, which is again a contradiction.
Thus, S = Sy as desired.

It remains to show part (a). By symmetry, it suffices to show gl ~y; gwl. By switching
x with 2/ we can assume 8 € &+ \ ®; and f is J-anti-dominant and J-minuscule (see [Niel8,

Lemma 6.6]). In particular, 0%(8) € Cy .. If Og is of type L, it follows from Lemma 7.2. If Og
is of type III, it follows from Lemma 8.1. If Op is of type II, by Lemmas 5.4 and 7.2 we have

either gI ~) gwl or gwl ~yp gww'l = gwoyl for g € Jpz,

where o' = 0%(8Y) + -+ + 0271(8Y) € m1(M). Note that gI ~xj; gwo,I by Proposition 7.6.
Thus, we always have gI ~y; gwl as desired. Hence, part (a) is proved. O

8. The case when o has order 3d

In this section we handle the case when o has order 3d. We follow the strategy of [CKV15, §4.7.7].
However, more details are involved. Note that in this case some/any connected component of Sy
is of type Dy. Let J = J,,1)-

8.1 Construction of affine lines
Let o, 3 € Sg such that (o, 3") = —1 and 3 = 0%(8). Then the subset {a, 0% (), 0% (a), 5} is a
connected component of Sg. In this subsection, we assume that J = J, ) = Og.

Let 2,2’ € S)Tb such that z (@) 2’ for some J-anti-dominant root o € ®T\ ®; and 1 < r <
3d — 1. Let w:’}/v+"'+UT_1(’7)V em(My) =Qy.

a,r
—

LEMMA 8.1. If 1 <r < d, then gl ~yy gy~ ‘I for g € Jp o and some y € WOJw_IWj.

(ou,r)
Proof. As in the proof Lemma 7.2, we can assume x — 2/, and it suffices to show

U,(a+ﬁ)71$U70-7‘(a+ﬁ),1 g IAdIIl()\)I

Assume otherwise. Then r = d. Moreover, by Lemma 5.4(x) we have (a + 3, p(z)o%(a + B)V) =
—1 (which implies (3, it;) = 1 and p(x)o?(a + ) = sg(c?(a) + B) = 0%(a)) and

(B, 1) = (@ + B, ) = =0 (@), pz) = 1, and pp £67 2 A,
where § = a + 3 + 0%(a). As § is central for J = Op, by Lemma 5.3(2) we have
U_(a+8)-17U_gr(a+p)—1 S TU_s1 izl C H{ssiz, v} € TAdm(N)I,
which is a contradiction. O

LEMMA 8.2. Suppose 2d < r < 3d — 1 and the following conditions hold:

(1) (a, pa) 2 1;

(2) if r = 2d, then (0%(a), uz) = 0;

(3) if2d+1<r <3d—1, then (6"(B), uz) = 1, (B, pz) = 0, and {(o*(t), pz) = 0 for i € {r —d,
r—2d,d,2d};

(4) zo'(a) =o'(a) for 1 <i<r—1withi ¢ {r—d,r—2d,d,2d}.

Then we have gI ~ gy I for g € Jb. and some y € W@Jw_le.
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Proof. Let 0 = 0" '(a+ ) +1 € &*. Define g = 8y 4

—v,z,

Case (1): r = 2d. By conditions (2) and (4) we have

, for g € Jp ..

s lbo(g) C 4 L U-tatprate)-12Uorarpls (B ) = 1
- IU_(a+ﬂ)_1$U_gT(a+ﬁ)—1I’ if <5a Mx> = 0;

By conditions (1) and (2), (o + 83, iz) = (o + 8+ o), ps) = (B, piz) + 1, which means
g 'bo(8) € aU_gr(a+p)—11 € TAdm(N)I.
Thus, g = g(0) ~xp g(00) = gsI, where s = [[{20 Syi(as g4ot(a))+1 1 Limo Soi(a) if (3, p2) = 1, and
s = 125" soiasgy 1 i (B, 1) = 0.
Case (2): 2d+1<r <3d—1. Let ¥ = a + 0%(a) + 0?¥(a) + 26. By conditions (3) and (4),
g 00 (g) C TU_y_12U_gr(arp)-11 C IzU_pr(qsp)—11 € TAdm(N)I,

which means gI = g(0) ~ g(oo) = gsI, where

r—1 d—1
s = H 501(19)—1—1502(044-5) Sa”‘i H sal(a—l-ﬂ—l-ad(a))—‘rlsal(a—i—ﬁ)
=0 1=r
The proof is complete. ]

The following two lemmas follow from the same construction as in Lemma 8.2.

LEMMA 8.3. Assume d + 1 < r < 2d — 1 and the following conditions hold:

(1) 4B, pa) = 0 and (0" (), jiz) € {0, 1};
(2) (o), pz) = (0"(@), pz) = 0, and (@, piz) > 1;
(3) zol(a) =c'(a) for 1 <i<r—1withi¢ {r—d,d}.

Then we have gl ~y gy~ ‘I for g € Jp o and some y € Wojw_IWj.

LEMMA 8.4 [Niel8, Lemma 8.6]. If (B, u,) =1, (0%(), uz) = (0?4 (), pz) =0, (o, pz) = —1,
and zo'(a) = « for i € Z\ dZ, then gI ~yp, gy~ for g € Jp,, and some y € Wowain. Here
wo, = aV + - 'U3d_1(av) S 7T1(MJ) ~0;.

0.k
LEMMA 8.5. Let x1,x9 € S;“b, §=a+p+0%(a), and 1 <k <3d—1 such that x; R Z.
Then we have gI ~, gy~ I for g € J}, ,, and somey € W w 'W¢. Herew = §¥ +---oF71(5V) €
mi(My) =Qy.

Proof. 1t follows from Lemma 7.3 by noticing that Os is of type I. g

LEMMA 8.6. Assume d+ 1 < r < 2d — 1 and the following conditions hold:

(1) (B, pz) = 1 and (0" (8), pa) = 0;
(2) (0%(a), pa) = =1, (0"~ (a), pa) = 0, {a, ptz) <0, and (0" (@), ) < —1;
(3) zoi(a) =o'(a) for 1 < z<r—1w1thz§é{r—d,d}.

Then we have Jp ; ~xp Jp -
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Proof. Let § = a + 3+ 0?¥(a). Assume j, — §¥ < X. By condition (2) we have

r o™~ a),3d—r
2D =6V 4 a”(8Y) (7 3d=) o1

Thus, Jp 2 ~p Jp 2 by Lemma 8.5. It suffices to show Jp g~y p Jp 0. If (0" (o), pgr) < —1, then

r—d r
IL‘// (o _>7d) SCH - O,rfd(a\/) + O.r(aV) (o Vo 7,

and the statement follows from Lemma 8.1 that Jp ;v ~xp Jp 7. Otherwise, by condition (2) we
have (0" (), pz) = —1, that is, (¢"(0), uy) = 0. The statement follows from Lemma 8.3 that
T ~xp Jpar. Let I =min{r + 1 <i < 2d — 1; (0%(a), pz) # 0}. If {o!(), pz) = 1, then

l _ r—d _
o (o (a)_:%d 1) 2 O’l(av) + O_Qd(a\/) (o (oi,)l-i—d T) 2

and the statement follows from Lemmas 8.1 and 8.3. If (¢!(c), uz) < —1, then

(0'(a),2d~1) ,

r—d ,k d— _
T L V) +ol(aY) - 'z,

and the statement also follows from Lemmas 8.1 and 8.3.
Now we assume pi; — 6 A A, which means (as p; — " — 3Y = py_ov < A) that

(2) (0% (), 1) < 1.
If (o"*4(a), py) = 1, then we have

or—d ortd(q —r
g IO o ()Y + o (a)V (o7 2=) z,

and the statement follows from Lemmas 8.5 and 8.1. Thus, we assume
(b) ("), pa) < 0.
By parts (a), (b), (1), and (2), we have
> (o' (), pry(pa)) < 0.
ie{r—d,r,r+d,0,d,2d}

By Lemma 5.1, there exists r +1 < k < 3d — 1 with k ¢ {2d,r + d} such that
(c) E=min{r+1<i<3d—-1;(c"(a), pe) > 1}.
Suppose (07 (a), pz) < —1 for some r +1 < j < 3d — 1 with j ¢ {2d,k +d, k — d,r + d}. Let

z=x— 0" (6)V +071(8)Y, 2 =2 — M (6)Y + 01 (6)Y € S;tb,
where k1 =k +d if k> 2d and ki = k otherwise, and j; is defined in the same way. By
Lemma 8.5, we have Jp, ~xp Jp . and Jp 2 ~xp Jp .. Moreover, there exist z1, 29 € S;b such

that

_ k—2d _
z (a’k—>2d) 21 (o (Oﬂzdﬁﬂ k) Zifr+d+1<k<3d—-1;

(a,k—d)  (o*24(a),d+r—k)
—

z z1 = Zoifr+1<k<2d—1;

N b—d _ k—2d
p (k) @il @D g 1<k <r+d— 1.

By Lemma 8.1, [l . ~xp Jp .- and the statement follows. Thus, we can assume

(d) (0%(a), pz) =0 for 1 <i < k—1withi¢ {r—drr+dd2d}.
As (0774 a), ) = —1, we have y := 2’ + 0" %)Y — o¥(a)V € S;\r’b.
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Case (1): 7+ 1<k <2d—1. Then

ok r— a,k— o 4(a),k—r
27 k)$—ak(5)v+ar(5)v( ’k—>d)y( (@fe=r+d)

By Lemma 8.1, it suffices to show Jp, ~xp Jp o If (07 (0), o) < =2, that is, (0" (o), py) < —1,
it follows from that
O.T—d o’ _
y ( _()a),d) 33/ + O_r(a)\/ o O_k;(a)v ( (C&)k T) .’,U/.
Otherwise, we have (o" (o), pt) = —1 by (2), that is, (¢"(«), pty) = 0. Then the statement follows
from Lemma 8.3.

Case (2): 2d+1 < k < 3d — 1. Then we have

(ok+d(8),r—k—d)

ak— o 4(a),k—r
T AN z — of ()Y 4 o7 (6)V (ok=2d) y (") —r+d) Z

Again, it suffices to show Jpy ~ap Jpor. If B <7 +d—1, it follows similarly as in case (1).
Otherwise, it follows from that

ok—d(a),r — o
( ( )_7)+2d k) y— kad(a)\/ + 0.1‘+d(a)\/ (

o4 (a),k—r— o™ta(a) k—r—
( (l)k d) y— Jr—d(a)v + O.r-‘rd(a)v ( (l)k d) l’l,

k—2d
_ga)vd) y— O_k72d(a)\/ + O,r+d(a)\/

where the first arrow follows from part (b) that (¢"T4(a), i) = (0" T4 (), pz) — 1 < —1. O

8.2 Proofs of the main results
Recall that J = J,, ). We are ready to finish the proofs when o is of order 3d.

Proof of Proposition 2.4. Let z,x’' € S/J\rb. To show Jp . ~xp Jp2r, by Proposition 5.6 we can

(vr)
assume z s ' for some 1 <r<2d-1andye€®"\ d; with vV is J-anti-dominant and J-

minuscule. In particular, 6" (y) € C) p .. If O is of type I, the statement follows from Lemma 7.2
and Proposition 4.11. Otherwise, we can assume J = Og and v =« as in §8.1. If 1 <r < d,
the statement follows from Lemma 8.1 and Proposition 4.11. Otherwise, by the proof of [Niel8,
Proposition 6.8, p. 1378, Case 2], either Lemma 8.3 or Lemma 8.6 applies. Thus, the statement
also follows. O

Proof of Proposition 7.6. As O is of type III, we can assume O = O, and J = Og, where a, 8
are as in §8.1. Again we can assume that e +9Y £ X for any z” € 8, and v € O. If there

donotexist ye O, 1<r<3d—1,and 2’ € S;b such that x (ﬁ) 2’, by [Niel8, Lemma 8.6] the

statement follows from Lemma 8.2 and Propositfon 7.1. Assume otherwise. Then there exists x; €
S)tbv v €0, and 1 <r; <3d—1 for 1 <i<m such that wp =", Z;i:_ol o’ (vY) € m(My)
and

(y1,7m1) (y2,r1) (Ym,Tm)
—r ==

T = x0 m = .

If d+1<r; <2d—1, then either Lemma 8.3 or Lemma 8.6 occurs. If for each 1 <7< m we
have either 7; < d or 2d < r; < 3d — 1 or Lemma 8.3 (for (z,2/, a,r) = (x;_1,x;,7vi,7i)) occurs,
it follows that wp € Ay by Lemmas 8.1, 8.2, and 8.3 and Proposition 7.1. Otherwise, by the
proof of [Niel8, Proposition 6.8, p. 1378, Case 2], there exists 1 < ¢ < m such that the situation
of Lemma 8.6 occurs (for (z,2’,a,7) = (zi—1, Zi, Vi, 73))-
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Let z,2',a,7 be as in Lemma 8.6. If (¢""%(a), u,) <0, then we have (07 (¥4), pz) < —1,
which contradicts our assumption. Thus, (6"+%(a), uz) > 1, and, hence,

ot (a —r o(a),r
g )3 y =1z — 0" )" 4+ oa)" (@),

Then it suffices to show that
(a) 921 ~xp gawal for go € Ty y;
(b) g1l ~xp grwi ! for g1 € Jp 4,
where wy = o™t ()Y + - + o)V, wy = 0¥ (@)Y + -+ o™ ()Y € m (M) 2 Q.

First we show part (a). Note that (0" (a), py) = (0" (), ) < —1. We have

d _ r
y (o (0‘_);7’ d) y— O_d(a)\/ + O_T(a)\/ (o (_O‘>)ad) ,

and part (a) follows from Lemma 8.1 and Proposition 7.1.

Now we show part (b). If («, pz) < —1, the statement follows from that

r+d d— d
(o774 2d=r) o) + aV (e.d) .

Thus, we can assume (a, i) = 0. If (0%(a), piz) =0 for 7 +d+1 <4 < 3d — 1, it follows from
Lemma 8.3. Otherwise, let

k=max{r+d+1<i<3d—1;{c"(a), ) # 0}.
If (¥ (), uz) = —1, then (6¥~4(a), ) = 1 since (0¥ (94), pz) = 0, which means
2d

ok—d
x( _(‘f)v )-Tl — x_|_0_k(a)\/ _O_k—d(a)\/

ok=d(8),2d _
gy =y oM (@) - o),

By Lemma 7.3, we have
G I ~xp i’ for g1 € Jppy, g2l ~ap gow'I for go € Ty y,

where W' = a*=4(§V) + .- + oFT4(Y) € 11 (My) = Q. Thus, we can replace the pair (x, ) with
(z1,y1) so that (¢¥(a), uz) > 1. Then

O’k o 0.T+d o
T (0" (@) 4d=k) T — crk(oz)v + o’d(oz)v (7" (@) fe—r~d) n
and part (b) follows from Lemmas 8.3 and 8.1 and Proposition 7.1. O
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Appendix A. Distinct elements in Adm(\)
In this appendix, we study the distinct elements defined in § 3.

Al
First we recall the following lemmas.

LEMMA A.1. Let s,s' € S* and @ € W such that {(sw) = £(s') and {(sws') = £(). Then W =

sws’.

LEMMA A.2 ([CN20, Lemmas 1.8 and 1.9] and [Hai0l, Lemma 4.5]). Let s € S* andw € Adm(\)
with A € Y such that w < sw. Then we have:

(1) ws € Adm(A) if ws < sws;
(2) ws = sw if ws ¢ Adm(N);
(3) sws € Adm(\) if {(sws) = ().

LEMMA A.3. Let w ¢ Adm(\) and s € S® such that ws > w. Then sws ¢ Adm(\).

Proof. Assume sws € Adm()\), then sws < ws and, hence, ¢(sws) = ¢(w). By Lemma A.2(3),
we have w € Adm(\), contradicting the assumption that @ ¢ Adm(\). O

A.2
Fix A\e Y. Let RC Sy and w € Adm()\). We say w is left R-distinct (respectively, right R-
distinct) if sw ¢ Adm(\) (respectively, ws ¢ Adm(\)) for all s € R. Let wr denote the longest
element of Wg.

For a reflection s € Wy we denote by as € ®* the corresponding simple root.

LEMMA A.4. Let R C Sy be commutative or of type Ay. Let w € Adm(\) be right (respectively,
left) R-distinct. Let u,u’ € Wg with £(u') < £(u). Then u'wu~' € Adm()\) (respectively, v iu’)
if and only if u = u’. As a consequence, wpwwr € Adm(\) is left (respectively, right) R-distinct.

Proof. By symmetry, it suffices to handle the case when w is right R-distinct. Suppose the
‘only if’ part is true, we show the ‘if’ part, that is, uwu~' € Adm()) for u € Wg. We argue by
induction on £(u). If u = 1, the statement is true. Let u = su; > uy with u; € Wgr and s € R. We
assume ulﬂ)ufl € Adm()) by induction hypothesis. It remains to show that uwu~' € Adm(\).
Otherwise, we have £(utu=") = £(uywu;’) + 2 and ujdu~' € Adm(\) by Lemma A.2(1) and
(3), which contradicts the ‘only if’ part.

Now we show the ‘only if’ part. Note that w € WE, see §1.1.

Case (1): R is of type A1 x Ay or Ay. Without loss of generality, we can assume R = {s1, s2} is
of type As. By symmetry, it suffices to consider the following cases.

Suppose sws’ € Adm(A). Then sws’ < ws’' and sws's ¢ Adm(A) (see Lemma A.3). By
Lemma A.2(2) we have sws'(as) = ag, that is, w(as + ay) = —as. This is impossible since
w e WE

Suppose swss’ € Adm(A). Then swss’' < sws’ (as sws’ ¢ Adm(N)), that is, sws'(s'(as)) =
s(a,) € T, Since w(ay) € ®~ (as w € WH), we have () = ;. This means siwss’ = ws' ¢
Adm(\), a contradiction. Note that sws’s ¢ Adm(\) by Lemma A.3.

Suppose ss’'wss’ € Adm(\). Then ss'wss’ < s'wss’. If s'wss’ < s'wss's, then ss'wss's ¢
Adm(\) by Lemma A.3. Otherwise, by Lemma A.1 we have s'wss’s = wss’ (since wss’ < wss's)
and hence ss'wss’s = swss’ ¢ Adm()\). Thus, we always have ss’wss’s ¢ Adm()\). By Lemma A.2
we have ss'ss(as) = s, that is, W(ay) = —(as + o), which is impossible as @ € W,
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Suppose ss'wss’s € Adm(A\). Then ss'wss's < s'wss’s. Since ss'wss’ ¢ Adm(\), by
Lemma A.2 we have ss'wss's(as) = ag, that is, w(ay) = as + ay. This means ss'wss's =
s'wss’ € Adm(\), a contradiction.

Case (2): R is commutative. We argue by induction on |R| and £(u). If R = () or v/ = 1, the state-
ment is trivial. Assume £(u') > 1. Let s € R such that su’ < «'. If su < u, then sws € Adm(\)
is right (R \ {s})-distinct by case (1), and, hence, the statement follows by induction hypoth-
esis. Assume su > u. We need to show that w/@wu~! ¢ Adm()\). By the induction hypothesis
and the previous discussion we have su'wu !, u/wu~'s ¢ Adm(\). Applying Lemma A.2(2) we
have u/wu~!(as) = as, that is, W(as) = —a, (as R is commutative), which is impossible since
w e WE O
LEMMA A.5. Let w € Adm(\) and s € Sy such that sws € Adm(\) and sw ¢ Adm(\). Let a €
®+ \ {as} such that ws, € Adm(\). Then swsys € Adm(\)

Proof. Suppose swsqs ¢ Adm()), then sws, € Adm(A) by Lemma A.2. As sw ¢ Adm(}), we
have sw(a) € @*. On the other hand, as s(a) € @, sws,s ¢ Adm(A) and sws € Adm(N), we
have sw(«) € @7, which is a contradiction. O

COROLLARY A.6. Let R be as in Lemma A.4. Let w € Adm(\) be left R-distinct. Let « €
®* \ ®r such that ws, € Adm(\). Then uiwsau~t € Adm(\) for u € Wp.

Proof. We argue by induction on ¢(u). If u = 1, the statement follows by assumption. Supposing it
is true for uq, that is, ulwuflsul(a) = ulﬁ)saufl € Adm(\), we show it is also true for u = su; >
uy with s € R. By Lemma A.4 we have ujiu; ', supu; 's € Adm()\) and sujiu;* ¢ Adm()).
Moreover, we have uj(a) # a, since o € ®1 \ ®p. Thus, us,u~' = sulﬁ)uflsul(a)s € Adm(\)
by Lemma A.5. O

Appendix B. Proof of Lemma 6.5
We start with a general lemma on root systems.

LEMMA B.1. Let p €Y, A€ Y™t and a € &t such that p <\, p+a¥ <A, and p+a’ £\
Then there exists 3 € ®* such that (3, u + ) < —2, and either u+ Y < Xorp+a¥ + Y <\

Proof. We argue by induction on p+ oV via the partial order <. If u+a¥ € YT, then p+
a¥ < ), contradicting our assumption. Thus, there exists 3 € Sg such that (3, u +a) < —1
and, hence, pu + oV + 3 < X\ (by [Gas10, Proposition 2.2]). If (8, u + V) < —2, the statement
follows. Assume (8, + a¥) = —1. Then p+ ¥ < sg(p+a¥) A X If § =a, then (o, p) = —3
and p + o < p <\, a contradiction. Thus, 8 # « and sg(«) € . By the induction hypothesis,
for the pair (sg(u), sp(a)) there exists v € ®* such that

(7,88(n+ ")) = (sp(7), p+ ') < =2

(which means 8 # v and sg(vy) € @), and either sg(u) + 7" < Aor sg(p+ aV) ++Y < A If the
former case occurs, we have p + sg(vY) < A, and the statement follows. Otherwise, (sg(), ) > 0
and the latter case occurs. In particular, (s3(7), @) < —2, and, hence, means 7 is a long root.
Thus, we have

pta’ +s3(v) <p+al +97 + 8 =sp(p+a’) +97 <A,

and the statement also follows. OJ
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Proof of Lemma 6.5. By [Niel8, Lemma 3.3], there exists x € S;\tb such that p, is weakly
dominant, that is, (8, ;) > —1 for 6 € ®T. As (\,b) is Hodge-Newton irreducible, \° — v, €
Y s Rooa¥. As p(z) € Wy, we have ul — v, € R@}l. Note that u, < A. Thus, there exists
a € K =0(K) C Jp such that p, + a¥ < A. We show that

(a) (al) there is £ € ®T \ @ such that (o, ") < —1 and p+ &Y < \;
(a2) if, moreover, ® is simply laced then, (£, u,) = —1.

By assumption, u, +«" A \. By Lemma B.1, there exists ¢ € ®* such that ((, puz + V) < -2
and either ,ua; + ¢V 2 Aor puy +a¥ + ¢ <A As g, is weakly dominant, we have: (i) (¢, a")
(Cotte) = —15 (i) (G 0") < ~2 and (G i) = 05 o () (€%} = =3 and (G, ) = 1. Take € = ¢
if choice (i) occurs. Assume choice (ii) or (iii) occurs. Then @ is non-simply-laced and («, (V) =
—1. If pyp + ¢V =2\, take & = (. Otherwise, pu; +¢Y < A is not weakly dominant (by [Gasl0,
Proposition 2.2]). Thus, there exists v € ®* such that (v, pu; + ¢V) < —2, which means (v, (") =
(7, pz) = —1 since p, is weakly dominant and ( is a long root. Then v € ®* \ ®; and p, + "
A. Note that a is a short root and (a, pu,) = 0. If {(a,vV) = —1, we take & =~. If (a,7")
0, then choice (ii) occurs (since if choice (iii) occurs, then v = —3a — 2(, contradicting that
(¥, ig) = —1), which means piz + " + ¢¥ < X. Thus, we take £ = s,(¢). If (a,7") =1, we take
€ = 54(7). It remains to show & € &T\ CIJ}F. Otherwise, £ € ®k since (o, £Y) # 0, contradicting
our assumption that p+ &Y £ A. Thus, part (a) is proved.

Let 8 be the J-anti-dominant conjugate of £ under W;. Let Ky C ¥z be the connected
component of K containing o. By part (a) we have

N

I 1A

(b) (B, uz) = —1if ® is simply laced;
(c) Ha + ﬁ\/ =N
(d) (Y is non-central on Kj.

We claim that
(e) (Y is K-minuscule.

Otherwise, (0, 8Y) < —2 for some 0 € ®}. Then p, + 8" + 0¥ < X If (B, pg) = 0, then (3, uy +
BY +60V) > 1 and p, + 60V <\, contradicting our assumption. Otherwise, we have

(B, 1a) = —1 and (sg(0), pa) = —(0, BY) (B, ta) < 2,

which contradicts that p, is weakly dominant. Thus, part (e) follows.

Applying [Niel8, Lemma 6.6] we can assume furthermore that 3 is J-anti-dominant and
J-minuscule. Hence, Lemma 6.5(1) is proved.

If (p(x)o(B), ) =1 for some i € Z \ nZ, then

i o= e + 67 = p(2)o’(8)” < X and hence 1 := x + 3V — *(8)" € S

By part (d), w1 is non-central on Ky. As pu,,,p1 are conjugate by W (see Lemma 5.3),
iz, is also non-central on Ky, contradicting that Ko C Jo. Thus, (p(x)o?(8), us) <0 for i €
Z\nZ. If {o'(B), puz) < —1 for some i € Z\ nZ, by Lemma 5.1 there exists j € nZ such that
(p(2)09(8), 2} > 1. Then

2 = iz — p(x)o? (B)Y + o (B)Y < X and, hence, x :=z — o’ (8)Y + " (B)" € Sy

which is also impossible since po is non-central on o7 (Ky). So (0(83), pz) = (p(2)0*(B), i) = 0
for i € Z \ nZ and Lemma 6.5(2) is proved.
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If 02"(B3) # 3, then ® = ¥ and Ug is of type Dy, whose simple roots are 3,0™(3),02"(8), a
with ¢"(a) = a. Moreover, J = Jy = O,. By Lemma 6.5(2), we have ,ux|\1,\\1,ﬁ = 0. Thus,
S o(0U(B), ey = 1 by Lemma 5.1. If (6™(8), uz) > 1, then part (3) follows. If (0™(8), pz) <
—1, it follows by replacing # with o™(3). If (¢™(8), ) =0, it follows by replacing x with
r— (B + o (B)Y € Sj\fb.

Now we assume 02"(3) = 3. By Lemmas 6.5(2) and 5.1,

(f) (B+0"(B),pry(pa)) = (B+0"(B),pry (1a)) > 0.

Thus, Lemma 6.5(3) follows if 5= 0"(3). Assume 3 # o™ (3). Then ® is simply-laced, and,
hence, (3, pz) = —1 by part (b). Moreover, OgU J is a set of simple roots of ¥ by [CKV15,
Proposition 4.2.11]. As 3 is a neighbor of Ky in W3 and (3, u,) = —1, one checks (on the type of
W) that (3, pry, (1)) < 0. By part (f), we have (p(x)o™(8), ptz) > 1 and Lemma 6.5(3) follows.

Assume ¢" does not act trivially on Wg N Jy. Then @ is simply-laced and (3, pu) = —1. We
may assume o” does not fix each point of Ky. Let o € Ky such that (3,a") = —1. If "(8) = 3,
then one checks directly (on the type of Ug and using the assumption on Ky) that (3, pr;(us)) <
0, which contradicts part (f). Thus, 8 # c™(0) € ¥g. Let x5 =z + Y — o™(8)Y € m(My). If
B,0™(3) are in distinct connected components of Og U J \ {a, 0™(a)} 2 Og U Jy, then z3 € Sy,
by Lemma 6.5(2) that (p(z)o™(8), pz) = 1. As (o, pigs) = 0, we deduce that a = o™(«) is the
common neighbor of 3, 0" () in ¥g, which implies that ¢” fixes each point of Ky, contradicting
our assumption. Thus, 3,0"(3) are connected in OgU J \ {,0"(a)}. Then a # o™ (), and it
follows from part (f) that either (p(z)o™(53), uy) = 2 or the case in Lemma 6.5(4) occurs. The
former case does not occur since 3 € Sy, but iz, is non-central on Ky. Thus, Lemma 6.5(4)
follows. 7 O
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