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Abstract. In this paper, I develop an algorithmic impossible-worlds model of belief and
knowledge that provides a middle ground between models that entail that everyone is logically
omniscient and those that are compatible with even the most egregious kinds of logical
incompetence. In outline, the model entails that an agent believes (knows) φ just in case
she can easily (and correctly) compute that φ is true and thus has the capacity to make her
actions depend on whether φ. The model thereby captures the standard view that belief and
knowledge ground are constitutively connected to dispositions to act. As I explain, the model
improves upon standard algorithmic models developed by Parikh, Halpern, Moses, Vardi, and
Duc, among other ways, by integrating them into an impossible-worlds framework. The model
also avoids some important disadvantages of recent candidate middle-ground models based on
dynamic epistemic logic or step logic, and it can subsume their most important advantages.

§1. Introduction. According to the standard possible-worlds models of belief and
knowledge, a person, S, believes (knows) a proposition, φ, if and only if φ is true in all
the possible worlds that are doxastically (epistemically) accessible to S. These models
have the following consequence:

Full Logical Omniscience: If S believes (knows) all the propositions
in set Φ, and Φ logically entails �, then S believes (knows) �.

The problem of logical omniscience for the standard model is that Full Logical
Omniscience is clearly false: everyone fails to believe some logical consequences of
the propositions that they believe, and everyone fails to believe some logical truths.
The standard model thus at best provides an idealization of the notions of belief and
knowledge.

At the opposite end of the spectrum are models without any logical constraints on
belief and knowledge, such as impossible-worlds models with a maximally permissive
construal of the impossible worlds. On impossible-worlds models, S believes (knows)
φ if and only if φ is true in all the possible or impossible worlds that are doxastically
(epistemically) accessible to S. On a maximally permissive construal of the impossible
worlds, there are impossible worlds in which, for instance, φ ∧ � is true but neither
φ nor � is true. If such a world is doxastically accessible for some person, S, then S
can believe φ ∧ � without believing either φ or �. The advantage of models of belief
and knowledge that have no logical constraints is that for any given constraint, it
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seems possible for there to be someone who violates it: borrowing an example from
Nolan [33, p. 47], someone convinced that a god is beyond logic might believe that
their god exists and doesn’t exist, while at the same time not believing that their god
doesn’t exist. Arguably, a model of belief shouldn’t by fiat rule out the possibility of
such (albeit unusual) individuals. But these maximally permissive models also have the
disadvantage that they don’t satisfy three common desiderata for models of belief and
knowledge.

The first of these desiderata is to capture ordinary agents who are logically non-
omniscient but still logically competent. An agent is logically competent when, for
instance, she “know[s] at least a (sufficiently) large class of logical truths, and can
draw sufficiently many conclusions from their knowledge” [13, p. 241] or “she at
least does not miss out on any trivial logical consequences of what she believes”
[8, pp. 502f.], where what counts as “sufficiently many” or “trivial” logical consequences
could depend on the agent’s computational capacities and thus be agent-relative (see
[8, p. 503; 14, p. 639]). If one’s goal is to model agents who are in such senses logically
“competent” but non-omniscient, then one needs a middle ground between models that
entail logical omniscience and those that leave open complete logical incompetence.1

The second desideratum is to capture constraints that the nature of logical concepts
(arguably) imposes on logically related beliefs. For instance, some have suggested,
contra Nolan’s example, that possessing the concept of conjunction requires believing
� when one believes φ ∧ � (e.g., Jago [23, pp. 163–169; 24, pp. 1151f.]), or at least
being disposed, when certain normal conditions are in place, to believe� if one believes
φ ∧ � (e.g., Boghossian [9, pp. 493–497], Warren [55, pp. 46f.]). Maximally permissive
models leave open that one can believe or fail to believe any combination of logically
related beliefs, and thus aren’t useful if one’s aim is to capture (apparent) constitutive
constraints on logically related beliefs.2

The third, and in my view the most important, desideratum is to capture that
whatever an agent can computationally “easily access” is—by the very nature of belief
and knowledge—already part of what she believes or knows.3 On the most common
understanding, belief is, or at least grounds, a certain class of dispositions to act.4 As
the standard example goes, one believes that there is beer in the fridge just in case
one is disposed to go to the fridge if one wants to drink beer, to answer “Yes” to the
question of whether there is beer in the fridge if one wants to be truthful, and so on.
For dispositionalists or functionalists about belief such as Lewis [29, 30] or Stalnaker
[47], having certain dispositions to act is even partly constitutive of what it is to have a
belief. On Stalnaker’s view:

To believe that P is to be disposed to act in ways that would tend to
satisfy one’s desires, whatever they are, in a world in which P (together
with one’s other beliefs) were true. [47, p. 15]

1 Jago [24, p. 1152], Skipper [38, pp. 3f.], Solaki [41, p. 2], and Solaki, Berto, and Smets [43,
p. 740] motivate the need for a middle-ground model in this way.

2 Jago [23, pp. 163–169] motivates the need for a middle-ground model in this way.
3 Note that this is distinct from the desideratum that whatever an agent can computationally

easily access from the propositions that she believes or knows is already part of what
she believes or knows. I discuss the latter and its contrast with my third desideratum in
Section 2.2.

4 For explanation of and literature about this standard understanding, see, e.g., [37].
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Knowledge, in turn, is on this view a certain kind of capacity: as Stalnaker puts it,
“[k]nowledge whetherφ [...] is the capacity to make one’s actions depend on whetherφ”
[51, pp. 2f.]. On any view on which belief and knowledge ground or are constitutively
connected to behavioral dispositions, propositions that are computationally “easily
accessible” to an agent should already be part of what she believes or knows. This is
because whenever some information is only a trivial computation or inference away
for an agent, the agent already has the capacity to act upon that information. For
instance, assume that Ola knows that adding 2 to a number d0 ... dn2 yields d0 ... dn4:
she is able to answer relevant questions correctly; she uses this information in ordinary
life, such as in calculating tips, buying the right amount of certain things, and so on.
Assume, further, that Ola has never explicitly thought about the number 19, 822, but
that she is immediately able to give the correct answer to questions such as “What is
19, 822 + 2?” or “Is 19, 822 + 2 = 19, 824?” It would then seem that Ola also knows that
19, 822 + 2 = 19, 824. But the dispositions or capacities characterizing this knowledge
involve a short computation: Ola can only manifest her disposition to answer questions
about 19, 822 + 2 = 19, 824 correctly after, for instance, replacing x in “x2 + 2 = x4”
with “19, 82.” On the standard dispositional understanding of belief and knowledge,
this doesn’t mean that Ola didn’t know that 19, 822 + 2 = 19, 824 until she performed
a calculation or inference. Rather, using terminology from Stalnaker [48, pp. 435f.,
439], what Ola believes or knows is what is “available” to guide her behavior, even if
it hasn’t ever been used or “accessed” to do so. Since maximally permissive models
allow that one doesn’t believe what one can computationally “easily access,” they are
unable to capture the dispositional nature of belief and knowledge. Models that entail
logical omniscience, too, seem unable to capture the dispositional nature of belief and
knowledge. As Stalnaker notes:

Because of our computational limitations, we may have the capacity
constituted by the knowledge that P, or the disposition constituted
by the belief that P, while at the same time lacking the capacity or
disposition that we would have if we knew or believed some deductive
consequence of P. [48, p. 436]

For instance, it seems clear that Ola could be disposed to make her actions depend on
whether the number of students at her school is 6, 299, but lack the disposition to make
her actions depend on whether the number of students at her school is prime: she could
order the right amount of school gear, answer questions about the number of students
correctly, and so on, while being at a loss when asked whether the number of students at
her school is prime.5 The standard dispositional understanding of belief and knowledge
thus seems to require a middle-ground model: not all the logical consequences of one’s
beliefs or knowledge are accessible to guide action and thus are believed or known, but
those pieces of information that are easily accessible are already believed or known.6

My aim in this paper is to develop a middle-ground model of belief and knowledge
that satisfies these three desiderata. My proposal builds upon algorithmic models

5 As I explain in Section 2.2, Stalnaker’s own formulation of the functionalist definition of
belief in [47, p. 15] entails Full Logical Omniscience in a possible-worlds framework, but not
in an impossible-worlds framework.

6 Bjerring and Skipper [8, p. 503] also mention this desideratum, but, as I explain in Section
3, their view doesn’t satisfy it.
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developed by Parikh [34]; Halpern, Moses, and Vardi [17]; and Duc [15]. The unifying
idea of algorithmic models is that whether an agent believes or knows something
depends on the agent’s internal algorithms, and thus on her computational capacities.
As I will explain, algorithmic models are thereby particularly well-suited to capture the
idea that an agent already believes or knows what is easily computationally accessible
to her, to model logically competent but non-omniscient agents, and to account for
possible constitutive relations between logically related beliefs. Algorithmic models
have been developed and studied in logic and computer science, and have been applied
in the study of security protocols and cryptography.7 But there has been very little
discussion or development of algorithmic models in the philosophical literature on
the problem of logical omniscience.8 My aim here is to fill this gap by developing an
algorithmic model that satisfies the philosophical desiderata for middle-ground models
better than any existing algorithmic model, and by motivating it philosophically. I end
in Section 3 by comparing the algorithmic strategy for developing a middle-ground
model to approaches that use dynamic epistemic logic or step logic, such as the one
developed recently by Bjerring and Skipper [8].

§2. Algorithmic models. Algorithmic models of belief and knowledge are devel-
oped as alternatives to the standard possible- and impossible-worlds models to solve
the problem of logical omniscience. The guiding idea behind algorithmic models is that
belief and knowledge have a computational aspect that isn’t captured by the standard
possible-worlds models or by the standard approaches to solving the problem of logical
omniscience.9 Although they don’t explicitly say so, Parikh [34] and Halpern et al.
[17] motivate this guiding idea from the type of functionalist perspective, outlined in
Section 1, on which knowledge is a certain kind of capacity to act. For instance:

We have tried in this paper to make a case that real knowledge is not
a set but a behaviour. [34, p. 7]

[A]n agent that has to act on his knowledge has to be able
to compute this knowledge; we do need to take into account the
algorithms available to the agent, as well as the “effort” required to
compute knowledge. [17, p. 256]

Different algorithmic models give different interpretations to this guiding idea and
to what it means to “compute knowledge.” But they all share the assumptions that
agents have algorithms, and that whether an agent knows or believes φ depends on her
algorithm and its output when given φ. On one way of putting it in intuitive terms, the
view is that one believes φ just in case one’s algorithm efficiently computes that φ is

7 Recent applications of algorithmic models include [20]; Fagin, Halpern, Moses, and Vardi
[16, pp. 412f.] list older applications.

8 Exceptions include [27, 34, 44], and mentions in literature surveys in [22, pp. 95–97; 40,
p. 25].

9 For a survey of standard approaches to solving the problem of logical omniscience, see
[16, chap. 9]. As Halpern et al. [17, p. 261], Fagin et al. [16, pp. 398f.], and Halpern and
Pucella [19, p. 231] explain, although algorithmic models differ from these other approaches
by explicitly modeling agents as having algorithms, they can subsume some of them, such
as awareness or syntactic approaches, with the addition of certain assumptions about the
relevant algorithms or about the notion of awareness.
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true, and one knows φ just in case one’s algorithm efficiently and correctly computes
that φ is true.10 Failures of logical omniscience are then diagnosed as computational
failures: if an agent knows or believes φ but fails to know or believe some � entailed
by φ, this is because the agent doesn’t have either the right kind of algorithm or
sufficient computational resources. This fits with an intuitive characterization of cases
of failures of logical omniscience: for instance, if Ola knows that the number of students
is 6,299 but not that the number of students is prime, or if she knows the axioms of
number theory but not some theorem, this is because she can’t check for primality or
theoremhood, she can’t retrieve this information from a reliably stored memory base,
and so on, or because it would take her too long to run such algorithms.11

Already at this level of generality, algorithmic models should strike us as promising
starting points for developing a middle-ground model of belief and knowledge. On
algorithmic models, an agent knows whatever her algorithm can efficiently compute.
One can thus hope to delineate logically competent agents by putting certain constraints
on the algorithms and resources that these agents use. For instance, logically competent
agents might have algorithms that compute a certain class of logical truths with minimal
effort. Similarly, one can hope to model constitutive connections between logically
related beliefs by putting constraints on the kinds of algorithms that conceptually
competent agents use. For instance, being conceptually competent with conjunction
might require having an algorithm that computes that� is true if it computes thatφ ∧ �
is true. Finally, algorithmic models capture the view that belief and knowledge are
connected to action. In general, it is highly plausible that whenever one is disposed to
exhibit some behavior, this is because one has an (internal) algorithm that produces this
behavior. It thus makes sense to model agents as having algorithms, and to model belief
and knowledge as dependent on the characteristics of these algorithms. Algorithmic
models thereby also straightforwardly capture the view that whatever one is able to
efficiently compute and thus act upon is already part of what one believes (knows),
because they entail that efficiently (and correctly) computing that φ is true is sufficient
for believing (knowing) φ.

One disadvantage of the existing algorithmic models that we can already see is
that they give up on the worlds-based framework for modeling belief and knowledge:
one’s belief and information states are no longer modeled as sets of worlds, belief and
knowledge are no longer modeled as truth in all doxastically or epistemically accessible
worlds, and acquiring beliefs and learning are no longer modeled as ruling out doxastic
or epistemic possibilities. This is unfortunate, for the worlds-based framework captures
some important aspects of belief and knowledge—such as their independence from
linguistic action and world-connectedness—in a formally elegant manner, and it yields
a unified account of mental, linguistic, and informational content.12 In Section 2.1, I
outline the formal details of the existing algorithmic models that are most relevant given
our purposes and explain their other advantages and disadvantages. In Section 2.2,

10 This is roughly how Parikh [34, p. 5] and Halpern and Pucella [19, p. 222] put it. As we will
see in Section 2.1, Halpern et al. [17] instead say that the algorithm computes that φ is true
in all accessible worlds.

11 See [19, 34, 48–50, 52] for the claim that failures of logical omniscience are intuitively
characterized as computational failures.

12 Stalnaker [46, 47], Lewis [30, sec. 1.4], Nolan [32], Jago [23, pp. 24–27], and Berto and Jago
[5, pp. 213–216] explain the benefits of the worlds-based framework for modeling belief and
knowledge.
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I then develop an algorithmic model that satisfies the desiderata for a middle-ground
model and doesn’t have these disadvantages.

2.1. Standard algorithmic models. The standard and most sophisticated existing
algorithmic model is due to Halpern et al. [17]. In the single-agent and static setting
(i.e., where we don’t consider the evolution of belief and knowledge over time), Halpern
and Pucella [19] work with standard Kripke structures of the form 〈W ,W ′, �〉, where
W is a set of possible worlds, W ′ is the set of possible worlds that are accessible
to the agent, and � is an interpretation function that associates each possible world
w ∈ W with a truth assignment �(w) to the primitive propositions of the language.13

An algorithmic knowledge structure is defined as a tuple M = 〈W ,W ′, �,A〉 where
〈W ,W ′, �〉 is a Kripke structure and A is a knowledge algorithm that takes as input
a formula and returns either “Yes,” “No,” or “?” (knowledge algorithms are thus
assumed to terminate). “The agent knows φ,” symbolized standardly as “Kφ,” then
gets the following satisfaction (or truth) conditions:

〈M, w〉 � Kφ ⇔ A(φ) = “Yes.”

To capture the evolution of knowledge over time, Halpern et al. [17] give a run-based
semantics on which agents can use different algorithms in different states. The local
state of an agent is modeled as consisting of some local data and a local algorithm. The
agent then knows φ at a state if her local algorithm outputs “Yes” when given both φ
and the local data as inputs.14

On this semantics, whether one knows φ has nothing to do with the truth-value of
φ in any accessible world, and there are no constraints on the algorithm A. Halpern
and Pucella [19, p. 223] propose the following constraint: a knowledge algorithm A is
sound for M if and only if for all φ, A(φ) = “Yes” implies 〈M, w〉 � φ for all w ∈ W ′

and A(φ) = “No” implies 〈M, w〉 � ¬φ for some w ∈ W ′.15 That is, an algorithm is
sound just in case an output of “Yes” implies that φ true in all epistemically accessible
worlds (and thus “known” in the sense of the standard possible-worlds model), while
an output of “No” implies that φ is false in some epistemically accessible world (and
thus “unknown” in the standard model’s sense). This is the sense in which knowledge
algorithms “compute knowledge” on Halpern et al.’s [17] construal: they compute
whether the input formula is true in all accessible worlds. According to Halpern et al.
[17, p. 259], what is defined without the soundness constraint is a notion of belief, i.e.,
using “Bφ” to formalize “the agent believes φ”:

〈M, w〉 � Bφ ⇔ A(φ) = “Yes.”

Knowledge is thus defined as above but with the additional constraint that M’s
algorithm is sound.

The standard algorithmic model avoids the problem of logical omniscience: since
there are no constraints on the knowledge algorithms, one’s knowledge algorithm can
output “Yes” given φ but either “No” or “?” given � even if φ entails � or is logically
equivalent to it. But given that one’s knowledge algorithms can be extremely weak,
we don’t yet have a model that captures agents who are logically (or conceptually)

13 In [19] this is assumed to be a K45 Kripke structure.
14 For details, see [17, pp. 257–260].
15 In the run-based semantics, an algorithm is sound for an agent if and only if this holds at all

points in which the algorithm is local [17, p. 259].
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competent. For instance, an agent can have a sound knowledge algorithm that never
outputs “Yes.” As it stands, the standard algorithmic model thus isn’t an adequate
middle-ground model.

There are other disadvantages of the standard algorithmic model given our purposes.
The first is that the model is overly linguistic. Belief and knowledge are assumed to
manifest always and only in linguistic action: the agent is given a sentence and in return
provides a verbal response. But this is too narrow, as people can have knowledge that
they aren’t able to verbally articulate. Stalnaker provides many such examples: the
“shrewd but inarticulate” chess player who can access information for choosing a
move but not for answering questions [48, p. 439], or the experienced outfielder who
knows exactly when and where the ball will come down for the purpose of catching
the ball but not for the purpose of answering the question “Exactly when and where
is the ball going to come down?” [50, p. 263]. More generally, on the dispositional
understanding, belief and knowledge are supposed to help explain people’s overall
behavior—whether linguistic or otherwise.

A related disadvantage of the algorithmic model is that the objects of belief and
knowledge are taken to be sentences, because the algorithms operate on sentences.
Parikh [35, pp. 472–474], whose algorithmic notion of knowledge is even called
“linguistic knowledge” [34, p. 4], explains that this choice is made so that belief and
knowledge on the resulting account aren’t closed under necessary equivalence (if φ
and � are possible-worlds propositions and necessarily equivalent, then φ = �, and
thus the algorithm’s output is the same for φ and �.) As we will see in Section 2.2, one
can maintain that the objects of belief and knowledge are propositions while avoiding
closure under necessary equivalence by moving to an impossible-worlds framework.

Finally, the most important gap in the standard algorithmic model given our
purposes is that it doesn’t address limitations of computational resources. On this
model, an agent knows φ if her knowledge algorithm will eventually output “Yes”
given φ, but that could take an unlimited amount of computational resources. For our
purposes, we need to model bounds on the resources that the algorithms can use: In
particular, if it would take an agent too long to compute φ, then she is unable to act
on the information that φ and thus neither knows nor believes φ. For instance, an
outfielder who would need to sit down for 3 hours to calculate the trajectory of the ball
clearly neither knows nor believes that the ball will come down at the relevant location
and time before they perform the calculations.

Halpern et al. [17, pp. 260f.] briefly discuss this problem and mention that one could
put constraints on local algorithms so that they have to complete their run within a
given unit of time.16 Duc [15, pp. 39–51] develops an algorithmic system for knowledge
that involves this idea. He introduces the formula “Kni φ” to stand for “if asked about
φ, i is able to derive reliably the answer ‘yes’ within n units of time,” and the formula
“K∃
i φ” to stand for “agent i can infer φ reliably in finite time” [15, p. 41]. The latter

captures the spirit of Halpern et al.’s notion of knowledge: K∃
i φ holds just in case the

agent has an algorithm that computes that φ is true within a finite but unbounded
amount of time. In these definitions, the qualification “reliably” is supposed to imply

16 They also note that if one wants to model algorithms with longer running times, the
algorithms could be “split up among successive states” [17, p. 261]. In Section 3, I consider
one way to develop this type of idea and explain why it doesn’t yield an adequate middle-
ground model.

https://doi.org/10.1017/S1755020323000059 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000059


AN ALGORITHMIC IMPOSSIBLE-WORLDS MODEL 593

both that the agent’s computation is correct (i.e., if either Kni φ or K∃
i φ hold, then φ

is true) and that the agent doesn’t choose a procedure that correctly computes φ by
chance, but is able to “select deterministically a suitable procedure for the input” [15,
p. 41]. The idea is that the agent has a general procedure or algorithm that, given φ,
correctly computes that φ is true within n units of time, and this general algorithm
might involve steps for choosing the right sub-algorithms to run on φ.

Duc [15] thus defines infinitely many “time-stamped” notions of knowledge, one for
each time unit n. This is slightly counterintuitive, given that we presumably only have
one non-time-stamped notion of knowledge. As I will explain in Section 2.2, however,
it is highly plausible to define knowledge in terms of such time-stamped notions by
using a threshold.

Duc [15, pp. 45–48] goes on to provide a derivation system for his language of
algorithmic knowledge. Some of his assumptions are too strong for our purposes. He
assumes that both Kni φ and K∃

i φ imply that the agent is able to prove φ. On this view,
agents employ a decidable axiom system extending propositional logic, and thus “all
proofs can be generated algorithmically” by a general-purpose theorem prover [15, p.
44]. Duc only considers agents who have such a general-purpose theorem prover. After
analysing a query and trying out special algorithms, these agents revert to using the
general-purpose theorem prover. Thus, if φ is a theorem of the agent’s axiom system,
the agent will eventually find its proof. In other words, the following rule of inference
is valid in Duc’s system:

K∃
i φ may be inferred from φ. (NECA)

Similarly, Duc assumes that if formulae φ1, ... , φn can all be derived in the agent’s
system and φ1 ∧ ··· ∧ φn → � is a theorem, then the agent will also eventually output
a proof of � if queried about it [15, p. 44]. A special case of this principle is that agents
can use modus ponens in their reasoning, which yields the following as an axiom in
Duc’s system:

K∃
i φ ∧K∃

i (φ → �) → K∃
i �. (KA)

As I will argue in Section 2.2, principles such as (NECA) and (KA) can form plausible
constraints on logically or conceptually competent agents. But we should avoid the
extremely strong assumption that knowing φ always requires being able to find a proof
of φ in some derivation system. After all, an agent might know even mathematical
or logical truths by retrieving them from a memory base that was reliably stored (for
instance, via expert testimony), without having any ability to produce proofs. Generally
speaking, it is overly restrictive to think of all belief and knowledge that φ in terms
of features of a proof of φ in some derivation system. (I come back to this point in
Section 3.)

2.2. An algorithmic impossible-worlds model. My proposal is to build an algorith-
mic model on the basis of an impossible-worlds model. An important advantage of
impossible-worlds models is that they preserve some core aspects of the standard
possible-worlds model, including the idea that one’s belief and information states are
sets of worlds, that belief and knowledge are truth in all doxastically or epistemically
accessible worlds, and that acquiring beliefs and learning are ruling out of doxastic
or epistemic possibilities. Moreover, impossible worlds allow for more fine-grained
constructions of content: sentences that are true in all the same possible worlds
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correspond to the same possible-worlds proposition, but most often (if not always)
differ in truth-values at impossible worlds and thus correspond to different propositions
construed as sets of possible and impossible worlds.17 As such, the impossible-worlds
framework will enable us to avoid three disadvantages of the standard algorithmic
framework discussed above, viz., that it gives up the standard worlds-based framework
for modeling belief and knowledge, that belief and knowledge are assumed to
manifest always and only in linguistic action, and that the objects of belief and
knowledge are sentences and not propositions. Impossible-worlds frameworks also
have some disadvantages, for instance, because the account of content that they yield
is extremely fine-grained.18 But they are widely and increasingly used for solving
problems of hyperintensionality in philosophy and, as we will see in Section 3, they
are used in the most important competitor approaches to developing a middle-ground
model.19

Let us turn to some of the details of impossible-worlds models. Let L be the language
of our model, defined as follows:

At � p, q, r, ...
φ � At | ¬φ | (φ ∧ φ) | Bφ | Kφ,

where “Bφ” formalizes “the agent believes φ” and “Kφ” formalizes “the agent knows
φ.” An impossible-worlds model is a tuple M = 〈W ,P , d, e, v〉, where W is a non-empty
set of worlds; P ⊆ W is a non-empty set of possible worlds (thus I � W \ P is the set
of impossible worlds); d : W → 2W is a doxastic accessibility function that assigns each
world w ∈ W to the set of worlds doxastically accessible from w; e : W → 2W is an
epistemic accessibility function that assigns each world w ∈ W to the set of worlds
epistemically accessible from w; and v is a valuation function that maps each atomic
sentence p ∈ At and world w ∈ P to either 0 or 1, and maps each sentence φ ∈ L
and world w ∈ I to either 0 or 1.20 Since knowledge entails belief, it is standard
to assume that doxastically accessible worlds are also epistemically accessible, i.e.,
that d (w) ⊆ e(w) for all w ∈ W . I also assume throughout that worlds are centered,
i.e., they are worlds with a marked individual at a time. As Lewis [30, pp. 27–30]
explains, this should be assumed in all doxastic and epistemic models because agents
can obviously have different beliefs and knowledge at different times.21 Finally, I add
to the satisfaction relation (written “�” as usual) the dissatisfaction (or making false)

17 Nolan [31, p. 563] discusses how to construct propositions in terms of possible and impossible
worlds. For these and other advantages of impossible-worlds models, see [4, 5, 33].

18 Stalnaker [49] and Bjerring and Schwarz [7] discuss this criticism. Bjerring and Schwarz
[7, pp. 23–30] also argue that permissive impossible-worlds models fail to preserve some
important features of the standard possible-worlds model, viz., the recursive semantic rules
of possible-worlds semantics and the idea that worlds are maximally specific ways things
might be.

19 That being said, Soysal [44] and Kipper, Kocurek, and Soysal [27] also develop similar
algorithmic models based on a possible-worlds framework.

20 This presentation follows [8, pp. 509f.] with minor changes. See also [16, pp. 357–362], and
originally [36].

21 For further motivation, for using centered worlds, see [29]. It isn’t completely obvious how
to develop a theory of centered impossible worlds, but see [11] for the related development
of centered epistemically possible worlds.
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relation, written “ �.” If w ∈ P , � and �are defined recursively:

〈M, w〉 � p ⇔ v(p,w) = 1,

〈M, w〉 � ¬φ ⇔ 〈M, w〉 � φ,
〈M, w〉 � (φ ∧ �) ⇔ 〈M, w〉 � φ and 〈M, w〉 � �,

〈M, w〉 � Bφ ⇔ 〈M, w′〉 � φ for all w′ ∈ d (w),

〈M, w〉 � Kφ ⇔ 〈M, w′〉 � φ for all w′ ∈ e(w),

〈M, w〉 �φ ⇔ 〈M, w〉 � φ.
If w ∈ I, then � and �are defined as follows:

〈M, w〉 � φ ⇔ v(φ,w) = 1,

〈M, w〉 �φ ⇔ v(¬φ,w) = 1.

The idea here is that a sentence φ is dissatisfied (or false) at a world if and only if its
negation¬φ is satisfied (or true) at that world, for both possible and impossible worlds.
Given a possible world w ∈ P , only one of φ and ¬φ is satisfied at w and the other is
dissatisfied at w. But this needn’t be the case at impossible worlds: given an impossible
worldw ∈ I, both φ and ¬φ could be satisfied atw (if v(φ,w) = 1 and v(¬φ,w) = 1),
and neither φ nor ¬φ could be satisfied (if v(φ,w) = 0 and v(¬φ,w) = 0). Impossible
worlds can thus be both inconsistent and incomplete entities. I further adopt the
maximally permissive construal of impossible worlds on which for any incomplete
and/or inconsistent set of sentences Γ ⊆ L, there is an impossible world w ∈ I such
that for all φ ∈ L, v(φ,w) = 1 if and only if φ ∈ Γ.22 There are thus no constraints on
what sentences impossible worlds can satisfy, and there are at least as many impossible
worlds as there are sets of sentences of our base language L.23

As I explained in Section 1, permissive impossible-worlds models don’t face the
problem of logical omniscience. For instance, assume that 〈M, w〉 � Bφ, and that φ
logically entails �, i.e., that � is true in all the possible worlds in which φ is true. For
all that we have said about the doxastic accessibility function d, it might be that d (w)
includes a world w′ ∈ I such that 〈M, w′〉 � �, and thus that 〈M, w〉 � B�. On the
other hand, the model as it stands allows any combination of beliefs and knowledge,
and thus doesn’t capture logical or conceptual competence. It also doesn’t capture the
idea that one already believes (knows) what one can easily (and correctly) compute.

Here is the main idea of my proposed supplementation of the impossible-worlds
model. I propose to add the following constraints on the accessibility functions: a
world w′ is accessible from w if and only if w′ respects what is “easily computable”
from w, i.e., w′ satisfies all the sentences that the agent can easily compute in w to be
true, and doesn’t satisfy any sentence that the agent can easily compute in w not to be
true (which might not be equivalent to computing that the sentence is false). At a first
pass, an agent “computes” φ to be true if she would answer affirmatively when asked

22 Nolan [31, p. 542] introduces this as a comprehension principle on impossible worlds; it is
also adopted by Bjerring and Skipper [8, p. 509].

23 Note that these assumptions about the structure of impossible worlds are compatible with
different accounts of the metaphysical nature of impossible worlds, e.g., accounts on which
impossible (and possible) worlds are concrete entities [57], points in modal space [58], or
constructions out of positive and negative facts [23, chap. 5]. For an overview of accounts of
the metaphysical nature of impossible worlds, see [5, chaps. 2 and 3].
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whether φ is true, given that she desires to give the correct answer. The answer could
be incorrect in the doxastic case, but not in the epistemic case. In either case, an agent
can compute φ to be true without having a proof (or what they take to be a proof) of
φ. As we will see, we can generalize this understanding of “compute φ to be true” to
cover non-linguistic actions as well.

The qualifier “easily” is supposed to bound the algorithmic notion of belief and
knowledge as discussed in Section 2.1. In general, an agent who believes (knows) φ
is disposed to act (capable of acting) upon φ—including to answer questions about
φ—using only a small amount of resources. For instance, we wouldn’t say that Ola
believes that 38, 629 is prime if she would have to think for 3 weeks before answering
“Yes” when asked about it. But Ola knows that 38, 624 is composite even though she
has never considered the question, because it only takes her a very small amount of
computational resources to answer “Yes” to the question “Is 38, 624 composite?” For
simplicity, here I will only consider the resource of time. I will thus model “easily” as “in
≤ � units of time,” where � is a small “threshold” natural number (assuming also that
units of time can be counted in natural numbers). It is clear from the examples above
that a couple of seconds count as “in ≤ � units of time,” while 3 weeks or 3 hours don’t.
But there are plausibly indeterminate cases in between. As Stalnaker notes in a similar
context, this fits with the plausible view that attributions of belief and knowledge are
context-sensitive:

There is obviously a continuum here, and no very natural place
to draw a line between information that is easily accessible and
information that is not. I don’t think this is a serious problem.
Attribution of belief and knowledge are obviously highly context-
dependent, and the line between what we already know and what we
could come to know if we made the effort may be one thing determined
somewhat arbitrarily in different ways in different situations. [48,
p. 437]

I will henceforth assume that the threshold � is a small enough unit of time in the range
of a few seconds, but follow Stalnaker in allowing the value of � to be sensitive to the
context of attribution of belief or knowledge.

On this algorithmic impossible-worlds model, it will turn out that an agent believes
(knows) φ if and only if she has an algorithm that would (correctly) output an
affirmative answer if asked “Is φ true?” in less than or equal to � units of time. Our
worlds-based algorithmic model will thus turn out to be a combination of the non-
worlds-based algorithmic models of Halpern et al. [17] and Duc [15], but where belief
and knowledge are bounded (unlike Halpern et al.’s notions of belief and knowledge
and Duc’s notion of knowledgeK∃

i ) and not themselves time-stamped notions (unlike
Duc’s notions of knowledgeKni ). The model will obviously satisfy the third desideratum
on middle-ground models outlined in Section 1: an agent already believes (knows) what
is easily (and correctly) computationally accessible to her. But further constraints will
be needed to satisfy the other two desiderata, viz., to capture logically competent
agents, and to capture conceptually competent agents.

Here, then, is the proposal in more detail. Let L, as defined above, be the
language of our model, and let an algorithmic impossible-worlds model be a tuple
M = 〈W ,P , d, e, v,A, A〉, where M = 〈W ,P , d, e, v〉 is an impossible-worlds model;
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A is a set of algorithms that take as input a sentence φ ∈ L and output either “Yes,”
“No,” or “?”;24 and A is a local algorithm function that assigns each w ∈ W to a local
algorithm in A, which I denote “Aw .” I abbreviate “Aw outputs ‘Yes’ given φ in less
than or equal to n units of time” as “A≤n

w (φ) = ‘Yes’,” and “Aw outputs ‘Yes’ given φ in
some finite unit of time” as “Aw(φ) = ‘Yes’” (and do the same for the other outputs).
Thus A≤n

w (φ) = “Yes” implies Aw(φ) = “Yes” and Aw(φ) = “Yes” implies that there
is an n ∈ N such that A≤n

w (φ) = “Yes” (and the same holds for the other outputs).
Let me first explain what I take the local algorithms to capture. As I mentioned

above, on a first-pass understanding, Aw captures the agent’s dispositions in state w
to answer questions about the truth-values of certain sentences. Thus Aw(φ) = “Yes”
captures that in state w, the agent is such that if she were asked whether φ is true and
wanted to give the correct answer, she would engage in a certain chain of reasoning and
answer affirmatively within some finite unit of time. “No” corresponds to a negative
answer, and “?” to “I don’t know” or “I give up.”25 I assume that agents can have
different local algorithms in different states, and that a local algorithm in a state can
run different sub-algorithms given different inputs.26 For instance, it might be that 10
years ago, Ola had no local algorithm that would check for primality if asked “Is n
prime?” for any n, and that in her current state, Ola has a local algorithm that would
run a trial division if asked “Is 55, 579 prime?” but directly output “No” if asked
whether a number ending in 4 is prime. As in [15], I thus assume that a local algorithm
captures all the steps for choosing different sub-algorithms for different inputs.

On the first-pass understanding, local algorithms capture linguistic dispositions—
just as in the standard algorithmic models from Section 2.1. This understanding
is simpler to work with, which is why I will adopt it in discussing the model.
Importantly, however, this understanding can be generalized now that we have adopted
an impossible-worlds framework. For instance, following Stalnaker’s [47] definition of
belief, we can take Aw(φ) = “Yes” to capture that in state w, the agent is such that,
all else being equal, she would output behavior that would tend to satisfy her desires
in worlds in which �φ�, together with her other beliefs, are true, within some finite
unit of time (where “�φ�” stands for the proposition expressed by φ). “No” could then
correspond to behavior that would tend to satisfy her desires in worlds in which �φ�
is not true, and “?” to behavior that would tend to satisfy her desires irrespective of
whether �φ� is true. On this generalized understanding, outputting the correct answer
to the question of whether φ is true is only one example of behavior that would tend
to satisfy the agent’s desires in worlds in which �φ�, together with her other beliefs,
are true; thus, Aw(φ) = “Yes” on the generalized understanding doesn’t require that
the agent in state w would answer affirmatively if asked about φ (she can misspeak,
for instance) or that she has any linguistic dispositions at all. On a possible-worlds

24 To generalize this model to credences, we could instead let the algorithms output a set of
reals in [0, 1].

25 Following Parikh [34, p. 5], we could assume that there is some large resource bound � such
that after � units of time, the agent’s local algorithm returns “?” (we can choose � such
that � units of time is weeks, months, or even longer). We would then have to reinterpret
“Aw(φ) = ‘Yes’” as equivalent to “A≤�

w (φ) = ‘Yes’.”
26 We could assume that agents only have local algorithms at possible worlds (and thus

restrict A’s domain to P ), but I opt for the more general construal for simplicity. See
[25] for a discussion of why it makes sense to say that agents have dispositions in impossible
circumstances.
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framework, the first-pass understanding of the local algorithms can’t be generalized in
this way, since on a possible-worlds construal of propositions, Stalnaker’s definitions
of belief and knowledge imply that they are closed under entailment. In the case of
single-premise entailment, this is because for possible-worlds propositions A and B, if
A entails B, then A ∩ B = A, and belief distributes over intersections on Stalnaker’s
definition, i.e., if S believes A ∩ B , then she believes A and she believes B. (This is
because if S is disposed to satisfy desires in worlds in which A ∩ B , together with her
other beliefs, is true, she is also disposed to satisfy desires in worlds in which A, together
with her other beliefs—which include A ∩ B—is true.)27

On the algorithmic impossible-worlds model as I have defined it, the objects of
knowledge, the objects of belief, and the inputs of local algorithms are all sentences
and not propositions—just as in the standard algorithmic models from Section 2.1.
But because we have adopted an impossible-worlds framework, we can now also
easily modify this definition and give an alternative interpretation of the formalism:
we can instead let the inputs of the algorithms in A be propositions, �φ�, and
interpret “Kφ” as the formalization of the proposition that the agent knows �φ�.
The reason this is possible is that unlike in the construction of propositions as sets
of possible worlds, for any two sentences φ �= � ∈ L, the respective propositions as
sets of worlds �φ� = {w ∈ W | 〈M, w〉 � φ} and ��� = {w ∈ W | 〈M, w〉 � �} aren’t
identical. (This follows from the maximally permissive construal of impossible worlds
on which there is some w′ ∈ I such that for all α ∈ L, v(α,w′) = 1 if and only if
α ∈ {φ}, and this w′ ∈ �φ� \ ���.) I will use the original definitions here for ease of
notation, but officially adopt the modified definition and interpretation.

I retain the standard definitions of satisfaction and dissatisfaction given above.
The key remaining task is to define the accessibility functions d and e. We first need
to contrast the epistemic case with the doxastic case. Recall that on the first-pass
understanding, the general idea is that one believesφ just in case one would affirmatively
answer the question of whether φ is true. Since it is standardly assumed that knowledge
entails belief and is factive, a natural addition for the case of knowledge is to require
that the answer would be correct. Accordingly, given an algorithmic impossible-worlds
model, M, let an algorithm X ∈ A be veridical about φ at 〈M, w〉 if and only if, if
X (φ) = “Yes,” then 〈M, w〉 � φ, and if X (φ) = “No,” then 〈M, w〉 � φ. That is, an
algorithm is veridical about φ at w just in case if it answers “Yes” to whether φ is
true, then φ is true at w, and if it answers “No” to whether φ is true, then φ is not
true at w (we relativize veridicality to a world to leave it open that different worlds
can have the same local algorithm).28 In the following, I will adopt veridicality as a
minimal condition on knowledge. Plausibly, knowledge requires more than true belief.
Other potential conditions could be integrated into the algorithmic framework as
well. Take, for instance, the condition that knowledge is safe true belief, i.e., belief
that is true in all nearby possible worlds.29 Our model could incorporate this idea
by requiring that a local algorithm isn’t just veridical about φ locally but in all the

27 See [44, p. 5; 45, p. 443] for further discussion of this feature of Stalnaker’s account.
28 On the generalized understanding, the veridicality constraint would correspond to the

addition that the output behavior would satisfy the agent’s desires in the world that the
agent is currently in.

29 See, e.g., [56] for a defense of safety conditions on knowledge.
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nearby worlds in which that algorithm is local.30 Or take the sensitivity condition on
knowledge, i.e., that the agent wouldn’t believe φ if it were false.31 Our model could
incorporate this idea by requiring that a local algorithm doesn’t output “Yes” in the
nearest world(s) in which it is local and φ is false. In similar ways, we could require
the algorithms to take information as input, or to not rely on false lemmas, and
so on.32 The algorithmic approach thus yields novel and potentially fruitful ways of
formally representing conditions on knowledge, by making these conditions on agents’
algorithms.33

We can now define the accessibility functions d and e. Following the main idea
explained above, for any w ∈ W :

d (w) �
{
w′ ∈ W | for all φ ∈ L, if A≤�

w (φ) = “Yes,” then 〈M, w′〉 � φ, and

if A≤�
w (φ) = “No,” then 〈M, w′〉 � φ

}
;

e(w) �
{
w′ ∈ W | for all φ ∈ L, if A≤�

w (φ) = “Yes” and Aw is veridical about φ at 〈M, w〉,
then 〈M, w′〉 � φ, and

if A≤�
w (φ) = “No” and Aw is veridical about φ at 〈M, w〉,

then 〈M, w′〉 � φ
}
.

As before, � is our threshold unit of time, which we assume to be fixed by the context
we are modeling.

On our definition, the worlds accessible from w satisfy all the sentences that the
agent can easily (and correctly) compute in w to be true, and don’t satisfy any of the
sentences that the agent can easily (and correctly) compute not to be true (there are
no constraints on sentences for which the agent outputs “?.”)34 As desired, it follows
from these definitions that for any w ∈ P , (i) and (ii) are equivalent, and (iii) and (iv)
are equivalent:

(i) 〈M, w〉 � Bφ.
(ii) A≤�

w (φ) = “Yes.”
(iii) 〈M, w〉 � Kφ.
(iv) A≤�

w (φ) = “Yes” and Aw is veridical about φ at 〈M, w〉.
To see that these equivalences hold, consider, first, the equivalence between (i) and (ii).
Let w ∈ P , and assume (i). Let Yw = {α ∈ L | A≤�

w (α) = “Yes”}. By the maximally
permissive construction of impossible worlds, there is some y ∈ I such that for all
α ∈ L, v(α, y) = 1 if and only if α ∈ Yw . Thus, for all α ∈ L, if A≤�

w (α) = “Yes”

30 One could also have this hold for a class of propositions Γ � φ that are “similar” to φ, along
the lines of the idea that knowledge globally method safe, i.e., belief produced by a method
that is reliable for a class of similar propositions; see, e.g., [3] for a discussion of global
method safety.

31 See, e.g., [21] for a recent defense of the sensitivity condition on knowledge.
32 One could also add a probabilistic constraint following a similar proposal by Halpern and

Pucella [18] for weakening the soundness constraint discussed in Section 2.1.
33 Standard approaches to modeling the justification condition include [1, 54].
34 Halpern and Pucella [19, p. 232] in passing suggest a similar idea for conjoining the

algorithmic and impossible-worlds models by letting the unique accessible world from w
be the one that makes true all and only φ such that A(φ) = “Yes.” But this construal gives
up many benefits of the worlds-based epistemic framework, including the account of learning
as ruling out of epistemic possibilities.
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then 〈M, y〉 � α, and if A≤�
w (α) = “No” then 〈M, y〉 � α. Thus, by the definition

of d, y ∈ d (w). Thus, by (i), 〈M, y〉 � φ. By the choice of y, φ ∈ Yw , and thus (ii)
follows. For the converse, assume (ii). Let w′ ∈ W be such that w′ ∈ d (w). Thus, by
the definition of d, for all � ∈ L, if A≤�

w (�) = “Yes” then 〈M, w′〉 � �. Thus, by (ii),
〈M, w′〉 � φ. Thus, (i) follows. A parallel argument establishes the equivalence of (iii)
and (iv). It is easy to see that our definitions of d and e entail the factivity of knowledge
(since e is reflexive, i.e., for all w ∈ W , w ∈ e(w)) and that knowledge entails belief
(since d (w) ⊆ e(w) for all w ∈ W).35

Let me now turn to the three desiderata on middle-ground models from Section 1 and
explain how this algorithmic impossible-worlds models can be supplemented to satisfy
the first and second desiderata, and how it already satisfies the third desideratum.
Consider the first desideratum, viz., that our model should capture agents who are
logically competent. At an intuitive level, there are different ways to understand what
it is for an agent to be logically competent. For one, and as Duc [13, p. 6; 14, p. 637]
mentions, one might want a logically competent agent to “know at least a (sufficiently)
large class of logical truths.” For instance, it might be that any logically competent
agent will know all propositions of the form φ → φ (although perhaps only as long
as φ is simple enough). Similarly, and as captured by Duc’s (NECA), one might want
a logically competent agent to be capable of eventually giving the right answer to the
question of whether some sentence is a tautology in some basic logical formal system,
if they have enough time to think about it. Our algorithmic framework can capture this
first intuitive sense of logical competence by putting both time-sensitive and non-time-
sensitive constraints on logically competent agents’ local algorithms. Let F be some
formal system such that all the tautologies of F are true in all possible worlds w ∈ P
(for instance, F might be propositional logic), and let the basic tautologies of F be
some set of tautologies we deem to be required for logical competence (what counts
as “basic” in this sense might be context-sensitive). We can then require that for any
world w ∈ P and sentence φ ∈ L:

(a) If φ is a tautology of F, then Aw(φ) = “Yes” and Aw is veridical about φ at
〈M, w〉.

(b) If φ is a basic tautology of F, then A≤�
w (φ) = “Yes” and Aw is veridical about

φ at 〈M, w〉.
Given the equivalence of (iii) and (iv), (b) entails that logically competent agents know
all the basic tautologies.

As we saw in Section 2.1, we can also follow Duc [15] and introduce new formulas
of the form “K∃φ” in our object language L to formalize propositions such as “the
agent would correctly answer ‘Yes’ when asked whether φ is true in finite time” or “the
agent is in a position to know φ” (assuming that after having correctly computed that

35 One possibly counterintuitive consequence of our definitions of e and d is that for any Γ ⊆ L,
if for each � ∈ Γ there is an accessible world that satisfies �, then there is an accessible world
that satisfies all of Γ. This means, for instance, that if an agent doesn’t rule out φ and doesn’t
rule out ¬φ, then she also doesn’t rule out that φ and ¬φ both obtain. This consequence isn’t
clearly problematic, since such an agent can still rule out (φ ∧ ¬φ) and know ¬(φ ∧ ¬φ).
In any case, one could avoid this consequence by moving to a language that can express the
claim that φ and � both obtain (e.g., with a formula of the form “φ � �”), thereby leaving
open that an algorithm could output “?” to φ, “?” to ¬φ, but “No” to “φ � ¬φ.” (Kocurek
[28] offers a language that has the expressive power to define such a connective.)
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φ is true, an agent knows φ). By defining the relevant kinds of accessibility relations,
we can then just as above get the equivalence between (v) and (vi) for all w ∈ P :

(v) 〈M, w〉 � K∃φ.
(vi) Aw(φ) = “Yes” and Aw is veridical about φ at 〈M, w〉.

We can thus in the object language capture that for any tautology, φ, the logically
competent agent is “in a position to know φ” in that she would give the right answer
to whether φ is true within a finite unit of time. Given our purposes here, however,
putting constraints directly on the local algorithms suffices to constrain our model to
capture logically competent agents.

On a second intuitive understanding, logical competence is a conditional achieve-
ment. This is captured by the statements that, for instance, a logically competent agent
“can draw sufficiently many conclusions from their knowledge” [13, p. 6], “does not
miss out on any trivial logical consequences of what she believes” [8, pp. 502f.], or that
“rational agents seemingly know the trivial consequences of what they know” [24, p.
1152]. On one way of understanding them, these statements suggest a closure principle
of the form: if the agent believes (knows) certain propositions Φ, then she also believes
(knows) the “trivial” consequences of Φ. However, as Bjerring and Skipper [8, pp.
506–508] point out, a “collapse argument” shows that such closure principles entail or
“collapse into” Full Logical Omniscience: Assume that φ is a trivial consequence of Φ
if φ is derivable from Φ in one application of a standard rule of inference. Since any
logical consequence of Φ is derivable from Φ via a chain of trivial consequences, if one
fails to know some logical consequence of what one knows, then one must also fail to
know some trivial consequence of what one knows.36 The challenge for capturing the
second intuitive sense of logical competence, then, is to formulate some conditional
constraint(s) that doesn’t (don’t) face a collapse argument; let me call this “the collapse
challenge.” In Section 3, I will outline how Bjerring and Skipper [8] propose to meet
the collapse challenge. In our algorithmic impossible-worlds approach, we can meet
the collapse challenge by adopting (some of) the following conditional constraints
on logically competent agents’ local algorithms. For simplicity, I only formulate these
constraints for the primitive logical expressions of our base language L, viz. “∧” and
“¬,” but similar constraints can be formulated for other logical constants. I also omit
the veridicality condition, but similar constraints that include it can be formulated.37

Consider, first, the following non-time-sensitive constraints. For any w ∈ P and
φ,� ∈ L:

(c) If Aw(φ) = “Yes” and Aw(�) = “Yes,” then Aw((φ ∧ �)) = “Yes.”
(d) If Aw((φ ∧ �)) = “Yes,” then Aw(φ) = “Yes” and Aw(�) = “Yes.”
(e) Aw(¬φ) = “Yes” if and only if Aw(φ) = “No.”
(f) Aw(¬φ) = “No” if and only if Aw(φ) = “Yes.”

In outline, constraints (c)–(f) capture the intuitive idea that a logically competent agent
should respect the introduction and elimination rules for the logical connectives, even
though it might take her a long time to do so. For instance, constraint (c) states that
if a logically competent agent would eventually assent to φ and to �, then she would

36 This collapse argument is also raised and discussed earlier in [6; 23, chap. 6; 24].
37 I also assume that the logical connectives have their classical meanings, but alternative

constraints can be formulated for non-classical background logics.
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also eventually assent to their conjunction. Similarly, constraint (d) states that if a
logically competent agent would eventually assent to a conjunction, then she would
also eventually assent to its conjuncts. Constraints (e) and (f) capture that a logically
competent agent computes something to be not true just in case she computes it to
be false (i.e., computes its negation to be true), and vice versa. Constraints (c)–(f),
together with analogous constraints we could formulate for other logical connectives
and with veridicality, thus entail that if a logically competent agent believes (knows)
certain propositions Φ, and φ can be derived from Φ in one application of a standard
rule of inference, then the agent would also eventually, though perhaps not immediately,
(correctly) compute that φ is true. Constraints (c)–(f) thus closely capture the second
intuitive understanding of logical competence.

A useful consequence of (e) and (f) is that for any w ∈ P , if 〈M, w〉 � Bφ, then
〈M, w〉 � ¬B¬φ and if 〈M, w〉 � B¬φ, then 〈M, w〉 � ¬Bφ. That is, if an agent believes
φ, then she doesn’t believe ¬φ, and if she believes ¬φ, then she doesn’t believe φ. To
see this, consider the former conditional (the second is equivalent to the first given
the classical truth-conditions for “¬”). Let w ∈ P , and assume that 〈M, w〉 � Bφ. By
the equivalence of (i) and (ii), it follows that A≤�

w (φ) = “Yes.” It thus follows that
Aw(φ) = “Yes.” Thus, by (f),Aw(¬φ) = “No.” It thus follows thatA≤�

w (¬φ) �= “Yes.”
By the equivalence of (i) and (ii), it follows that 〈M, w〉 � B¬φ, and thus that 〈M, w〉 �
¬B¬φ. Similarly, (c)–(f) together entail that if an agent believes (φ ∧ �), then she
doesn’t believe¬φ or¬�, and if an agent believesφ and�, she doesn’t believe¬(φ ∧ �).
The following three closure principles thereby follow from (c)–(f): for any α, �, � ∈
L and w ∈ P , if 〈M, w〉 � Bα and 〈M, w〉 � B¬α, then 〈M, w〉 � B� ; if 〈M, w〉 �
B(α ∧ �) and 〈M, w〉 � B¬α, then 〈M, w〉 � B�; and if 〈M, w〉 � Bα, 〈M, w〉 � B� ,
and 〈M, w〉 � B¬(α ∧ �), then 〈M, w〉 � B�. As desired, these closure principles are
too weak to entail Full Logical Omniscience. Constraints (c)–(f) thus don’t face a
collapse argument, and we have thus met the collapse challenge for capturing the
second intuitive sense of logical competence.

We can also consider the result of adding time-sensitivity to (c) and (d) as possible
candidate conditional constraints on logical competence:

(g) If A≤i
w (φ) = “Yes” and A≤j

w (�) = “Yes,” then A≤i+j+k
w ((φ ∧ �)) = “Yes” for

some small k ∈ N, for any i, j ∈ N.

(h) IfA≤i
w ((φ ∧ �)) = “Yes,” thenA≤j

w (φ) = “Yes” andA≤k
w (�) = “Yes” for some

j, k ∈ N such that j, k ≤ i for any i ∈ N.

Constraint (g) puts a limit on how long it should take a logically competent agent to
say “Yes” to a conjunction if she believes each of its conjuncts. This constraint leaves
open that logically competent agents can believe some conjuncts without believing
their conjunction. I think this is a plausible conclusion: if the computational resources
it takes for an agent to compute each of the conjuncts are close to the threshold for
what counts as believing something, then it might be that the agent would just take
too long to compute that a conjunction is true if asked about it, in which case we
wouldn’t intuitively say that the agent believes the conjunction before she performed
the computation. In the case of knowledge, accepting pragmatic encroachment can
further strengthen this intuition: imagine that the stakes are such that an agent doesn’t
count as knowing φ unless she can make a split-second decision about whether φ
(say, she needs to answer a timed quiz). The agent can then know φ and know �,
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but, assuming that it would take her longer than the allowed time to answer whether
(φ ∧ �), fail to know (φ ∧ �).38

Constraint (h), in turn, states that a logically competent agent’s belief algorithm
outputs “Yes” to conjuncts in less or equal time than it outputs “Yes” to their
conjunction. Typicality effects such as those involved in the conjunction fallacy might
provide counterexamples to (h): an agent might be quicker to judge that a conjunction
such as “Linda is a bank teller and is active in the feminist movement” is true than to
judge that its conjunct “Linda is active in the feminist movement” is true, because the
conjunction is more “typical.”39 One might perhaps maintain that logically competent
agents would judge the conjunct and the conjunction to be true at least equally fast. In
any case, given the equivalence of (i) and (ii), (h) entails a fourth closure principle, viz.,
distribution over conjunction (i.e., if a logically competent agent believes a conjunction,
then she also believes its conjuncts). Although the case for distribution over conjunction
isn’t decisive either,40 it is widely assumed and it doesn’t by itself imply anything like
Full Logical Omniscience. Constraint (h) could thus also be an additional constraint
on logically competent agents, depending on how strong one wants such constraints
to be.

Next, consider the second desideratum on middle-ground models, viz., that our
model should capture agents who are conceptually competent with the logical
connectives. In my view, the constraints we have laid out in (c)–(h) can serve just
as well as constraints on conceptual competence with conjunction and negation. Let
us take conjunction as our main example. On traditional inferentialist metasemantic
theories, possessing the concept of conjunction requires inferring according to the
rules of conjunction-introduction and conjunction-elimination, or, at least, inferring
according to these rules when “given a chance,” for instance, “when someone or
something brings the conclusion to your direct attention, perhaps by querying you on
the matter” [55, p. 46].41 Our constraints (c)–(h) capture precisely such a view: they
entail that an agent who believes a conjunction would assent to its conjuncts if queried
about them, and that an agent who believes the conjuncts of a conjunction would
eventually (though perhaps not immediately) assent to the conjunction if queried about
it. Different versions of inferentialism could impose slightly different interpretations
on what exactly it is to have a belief algorithm that outputs “Yes” given a proposition,
but the general inferentialist picture is nicely captured by constraints along the lines of
(c)–(h).

Finally, consider the third desideratum on middle-ground models, viz., that our
model should entail that whatever an agent can computationally easily access is already
part of what she believes or knows. Our algorithmic impossible-worlds model satisfies
this desideratum because it entails the equivalences between (i) and (ii) and between
(iii) and (iv): on our model, an agent believes (knows) φ just in case she can easily (and
correctly) compute φ to be true. In light of our discussion of the collapse challenge
above, it is worth noting that this third desideratum doesn’t require a closure principle
of the form: agents believe (know) whatever is easily computationally accessible from
what they believe (know) (as opposed to whatever is easily computationally accessible

38 For discussion of pragmatic encroachment, see, e.g., [26].
39 Tversky and Kahneman [53] provide this as an example of the conjunction fallacy.
40 For discussion of the case, for distribution over conjunction, see [56, pp. 276–283].
41 See also [10] for an outline and discussion of inferentialism.
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“simpliciter”). “Easily accessing � from Φ” means that we ignore any potential
computational costs of accessing Φ itself: we only consider the computational costs of
accessing � once one has already accessed Φ. But on the dispositional understanding
of belief and knowledge, believing and knowing propositions Φ are compatible with
the existence of computational costs of accessing Φ: as we saw in Section 1, one can
believe (know) φ even if it takes a short computation to access and thus be able to
act on φ. This idea is reflected in our algorithmic impossible-worlds model. But then
some proposition,�, can be easily accessible from what one knows, Φ, while not being
easily accessible simpliciter: the computational costs can add up, or the agent might
not even consider Φ in situations where she needs to act on � (e.g., if she is asked
about whether �). So, one won’t necessarily believe (know) every proposition that is
easily accessible from what one believes (knows): the dispositional understanding of
belief and knowledge that motivate our third desideratum is incompatible with closure
principles of the type that face collapse arguments.

§3. Comparison with other candidate middle-ground models. Following ideas from
Duc [13, 14] and Skipper Rasmussen [38], Bjerring and Skipper [8] have recently
developed a candidate middle-ground model in our sense. Their model is a dynamic
doxastic model, and it uses a notion of triviality that is connected to lengths of proofs.
I will explain some disadvantages of these two features of their approach, and argue
that the algorithmic impossible-worlds model can subsume its advantages.42

In outline, dynamic doxastic models are models that capture transitions between
doxastic states: among other things, their language has an operator, “〈a〉,” where a is
some action, and 〈M, w〉 � 〈a〉φ just in case 〈N , w′〉 � φ for some 〈N , w′〉 obtained
by transforming 〈M, w〉 according to the rules of transformation given by action a.43

On Bjerring and Skipper’s [8] model, the relevant action is inference: they take “〈n〉φ”
to formalize “φ is the case after some n steps of logical reasoning,” where a step of
logical reasoning is one application of a rule of inference of some given background
logical system R [8, pp. 503, 509]. Accordingly, “〈n〉Bφ” formalizes “the agent believes
φ after some n steps of logical reasoning” [8, p. 509]. On their construal, a proposition,
φ, is a trivial consequence of a set of propositions, Γ, just in case φ can be inferred
from Γ within n steps of logical reasoning, where n is a small enough number [8, p.
504]. Bjerring and Skipper allow that the background system R can be sensitive to the
context of belief attribution; for instance, R can be a partial or a complete proof system
for classical propositional logic [8, p. 504]. Moreover, the value of n, and thus also what

42 Solaki [41, 42] and Solaki et al. [43] develop very similar dynamic models; the arguments
against the dynamic feature of Bjerring and Skipper’s model apply to them as well (see fns. 44
and 47). Jago [23, 24] proposes an impossible-worlds model on which it can be indeterminate
which worlds are epistemically accessible to the agent, and from which it follows that an agent
can fail to know trivial consequences of what she knows, but never determinately so. His
approach also uses a notion of triviality and accessibility that is connected to lengths of
proofs, and so the arguments against that feature of Bjerring and Skipper’s model apply
to his model as well. Moreover, our discussion of constraint (g) in Section 2.2 suggests,
contra Jago’s model, that there are cases in which one determinately knows φ and � but
determinately doesn’t know φ ∧ �. For further criticisms of vagueness-based approaches to
developing a middle-ground model, see [8, pp. 516–520].

43 See [2] for an overview of dynamic epistemic logics.
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is “trivial” in their sense, “depend[] on the cognitive resources that agents have available
for logical reasoning” [8, p. 503] and hence are agent-relative. Their model results in
〈M, w〉 � 〈n〉Bφ just in case φ follows within n steps of logical reasoning from the
truths at each world doxastically accessible from w. This means that if 〈M, w〉 � Bφ
and � is a trivial consequence of φ, then 〈M, w〉 � 〈n〉B� [8, pp. 515f.]. That is, if
� is a trivial consequence of what the agent believes, then there is some n-step piece
of reasoning such that if the agent follows it, then she will come to believe �. This
is the sense in which Bjerring and Skipper claim their model captures agents who are
logically competent: on their understanding, “an agent counts as ‘logically competent’
just in case she has the ability to infer at least the trivial logical consequences of
what she believes” [8, p. 504]. Because Bjerring and Skipper don’t endorse any closure
principle on beliefs, their constraint on logical competence doesn’t face a collapse
argument.

The first, and in my view the most important, disadvantage of Bjerring and Skipper’s
model is that it doesn’t get our third desideratum on middle-ground models. On
their model, agents don’t already believe the propositions that they can easily infer
or compute to be true; rather, agents can come to believe such propositions after
performing some short piece of reasoning. But this is too weak: if an agent can easily
compute φ to be true and is thereby able to act on the information that φ, then we
should say that she already believes φ. Bjerring and Skipper themselves propose the
following related test for the intuitive sense of “logical competence” that they are trying
to capture:

Suppose an agent believes p, and let q be any trivial consequence of
p. We can then ask: upon being asked whether q is the case, is the
agent immediately able to answer “yes”? If she is, she passes the test
and counts as logically competent. For example, suppose you believe
that it rains and that it rains only if the streets are wet. We can then
ask: are you able to immediately answer “yes” when asked whether
the streets are wet? Assuming that you are attentive, mentally well-
functioning, and so on, it surely seems so. So you do not miss out
on this trivial logical consequence of your beliefs, and hence count as
logically competent in the relevant sense. [8, p. 503]

On Bjerring and Skipper’s construal, an agent who is immediately able to answer “Yes”
to the question of whether the streets are wet is “logically competent” in the sense that
she can come to believe that the streets are wet at the end of some n-step chain of
reasoning. But this isn’t the correct intuitive or theoretical verdict about such cases: an
agent who is able to immediately answer “Yes” to the question of whether the streets
are wet should be modeled as already believing that the streets are wet, even before
they are asked about it. Intuitively, we would clearly judge such a person as already
believing that the streets are wet; in general, we clearly believe many more things
than what we are currently thinking about. Theoretically, this verdict follows from
the standard dispositional understanding of belief from Section 1 that generated our
third desideratum. On this view, beliefs (and knowledge) are supposed to explain one’s
abilities to act on the basis of information, such as the ability to immediately answer
“Yes” to certain questions: it is because I believe that the streets are wet that I am able
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to immediately answer “Yes” when asked about it. Our algorithmic impossible-worlds
model easily satisfies this third desideratum, whereas dynamic models don’t.44

Dynamic models could provide a useful way to capture in the object language
what happens after an agent performs a calculation that is obviously too long for its
conclusion to count as “easily accessible” in our sense. They could thus be adapted
to our algorithmic model to capture how agents can transition to new belief states.
However, as I mentioned at the end of Section 2.2, the algorithmic impossible-worlds
model can already be easily and minimally supplemented along the lines of Duc
[15] to capture in the object language what agents would eventually do (such as
answer a question) after performing a computation that takes longer than � units
of time. Our algorithmic model can thus capture an important advantage of dynamic
models.

A second disadvantage of Bjerring and Skipper’s model is its construal of triviality.
Assume that an agent, S, believes all the propositions in Γ. The fact that there is a
short chain of applications of rules of inference of R to propositions in Γ that ends
with φ (i.e., a short derivation of φ from Γ in R) is neither sufficient nor necessary for
φ to be intuitively “trivial” for S. It could be that φ has a very long derivation from
Γ that is nonetheless very easy for S to output when asked about φ, because she can
quickly retrieve it from her memory. Conversely, it could be that φ has a very short
derivation from Γ that is very difficult for S to find, because her search algorithm is
highly inefficient or the search breadth is too big. Length of derivations is generally an
inadequate measure of triviality; thus, requiring logically competent agents to (be able
to come to) believe all the “trivial” consequences of what they believe in this sense is
also too demanding: very few (if any) people we would ordinarily think of as logically
competent would be able to immediately determine the truth-value of any proposition
that is shortly derivable from what they believe, given that the relevant branching factor
is so big. On the algorithmic models, triviality is instead construed computationally:
what is “trivial” for or “easily accessible” to an agent is what she can compute in less
than � units of time, given the algorithms that are available to her. Moreover, these
algorithms could (and likely would) work very differently from a stepwise application
of rules of inference of some background logical system R.45

This second problem is also the reason why agents who are logically competent
in Bjerring and Skipper’s formal construal neither clearly fit their own intuitive

44 On the dynamic models of Solaki [41, 42] and Solaki et al. [43], at each state, an agent
has both a set of rules that are “available” for her to use and a cognitive capacity. On their
semantics, the dynamic operator “〈	〉φ” captures that φ is the case after an application of the
rule of inference 	 that is both available and “affordable” given the agent’s current resources.
Similarly to Bjerring and Skipper’s result, it then follows that “competent agents would come
to know and believe consequences lying within affordable applications of rules” [43, p. 752],
but these agents don’t already know or believe such consequences. The first objection thus
applies to these models as well.

45 As Fagin et al. [16, pp. 405–407, 412] explain, the framework of step logic [12] of which
Bjerring and Skipper’s construal is a type can also be embedded in the algorithmic approach.
One might worry that the step logic and algorithmic approaches are very similar after all given
that each Turing Machine (and thus, plausibly, each agent’s belief algorithm) corresponds
to a formal system (for a proof of this correspondence, see [39, pp. 191f.]). But the formal
system that corresponds to a given agent’s algorithm would look very different from a
standard logical system like R; in particular, the rules of inference would look nothing like
standard rules such as modus ponens.
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characterization of “being logically competent” as being able to infer the trivial
consequences of what one believes, nor pass their own intuitive test for logical
competence. Consider, once again, the agent who believes that it rains and that it
rains only if the streets are wet. On Bjerring and Skipper’s construal, such an agent is
logically competent just in case there is an n-step piece of reasoning such that if the
agent follows it, then she believes that the streets are wet and thus answers “Yes” to
the question of whether the streets are wet. But there is no guarantee that a logically
competent agent in this sense will (immediately) follow this n-step piece of reasoning, or
that she is even able to do so.46 For instance, it might be that when she is asked whether
the streets are wet, the agent never thinks to apply modus ponens to the relevant
propositions, or that she first tries other steps of reasoning and only comes to perform
modus ponens on the relevant propositions after a long and tedious search. Bjerring
and Skipper’s model thus doesn’t seem to get the result that agents who are logically
competent in their sense are able to infer or come to believe the trivial consequences
of what they believe, or to immediately answer “Yes” when asked whether a trivial
consequence of their beliefs is true. Their model thus also doesn’t seem to satisfy
our second desideratum, i.e., to capture “logically competent” agents in an intuitive
sense.47

§4. Conclusion. I presented an algorithmic impossible-worlds model as a middle
ground between models that entail logical omniscience and those that leave open
complete logical incompetence. On this model, an agent believes (knows) a proposition
just in case she is disposed to act (capable of acting) upon it. The model thereby captures
the most standard understanding of belief as (grounding) a behavioral disposition, and
of knowledge as (grounding) a capacity to act. I then proposed some constraints one
can add to the algorithmic impossible-worlds model to capture agents who are logically
and conceptually competent. These constraints capture that an agent is logically or
conceptually competent only if her algorithms respect the introduction and elimination
rules of the standard logical connectives; this doesn’t mean that logically competent
agents already know all the logical truths or all the logical consequences of what they
know, only that they would eventually compute them, if given enough computational
resources. Finally, I compared the algorithmic strategy for developing a middle-ground
model to dynamic approaches and approaches based on step logic, and argued that
the algorithmic impossible-worlds model has none of their disadvantages, and that it
can subsume their advantages.
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46 Berto and Jago [5, p. 121] raise a very similar point but in response to an earlier draft where
Bjerring and Skipper’s test is formulated in terms of what the agent will answer, and not what
she is able to answer.

47 The models of Solaki [41, 42] and Solaki et al. [43] could avoid this problem at least for single
applications of rules if the rules that are “available” to an agent at a state are understood as,
e.g., the rules she would apply within a suitably small unit of time if prompted appropriately.
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