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Resolving dualities and applications
to homological invariants
Hongxing Chen and Jiangsheng Hu
Abstract. Dualities of resolving subcategories of module categories over rings are introduced
and characterized as dualities with respect to Wakamatsu tilting bimodules. By restriction of the
dualities to smaller resolving subcategories, sufficient and necessary conditions for these bimodules
to be tilting are provided. This leads to the Gorenstein version of both the Miyashita’s duality
and Huisgen-Zimmermann’s correspondence. An application of resolving dualities is to show that
higher algebraic K-groups and semi-derived Ringel–Hall algebras of finitely generated Gorenstein-
projective modules over Artin algebras are preserved under tilting.

1 Introduction

In homological algebra and representation theory, equivalences of additive categories
of different types, such as derived equivalences and stable equivalences of Morita
type (see [2, 12, 22, 26, 38]), have been applied successfully to compare homological
invariants or dimensions of relevant algebras and modules. For example, higher
algebraic K-groups and finiteness of global and finitistic dimensions of rings are
preserved under derived equivalences (see [16, 35]). As important subjects in tilting
theory, tilting modules (see [10, 14, 22, 23, 33]) not only provide a class of derived
equivalences of algebras but also have some special properties related to resolving
subcategories of module categories. Classical results include the Brenner–Butler tilting
theorem (see [10]) and a one-to-one correspondence between basic tilting modules
and contravariant finite resolving subcategories of modules with finite projective
dimension (see [4]).

However, in contrast to covariant equivalences, dualities of categories have received
far less attention. A classical result, due to Morita [1, 34], characterizes dualities of
full subcategories of module categories as dualities with respect to some faithfully
balanced bimodules provided only that the categories contain the appropriate regular
modules. Moreover, the bimodule defines a Morita duality if and only if it is an
injective cogenerator as a one-sided module. In the literature, there have been two
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important generalizations of Morita dualities. On the one hand, for classical tilting
modules of finite projective dimension over general rings, Miyashita established duali-
ties of some resolving subcategories of finitely generated modules with finite projective
dimension (see [33]). A converse of this result in the case of Artin algebras has been
recently shown by Huisgen-Zimmermann in [24] (see also [25]): any dualities of
resolving subcategories of finitely generated modules with finite projective dimension
over Artin algebras are always obtained from tilting bimodules provided that the dual-
ities are induced by strictly exact functors. On the other hand, for Wakamatsu tilting
modules, dualities of some resolving subcategories of finitely generated modules with
relative coresolutions of arbitrary lengths were constructed by Wakamatsu in [42] (see
also [21]). In these dualities, (Wakamatsu) tilting modules play the role of relative
Ext-injective cogenerators, similar to injective cogenerators in Morita dualities. Let us
emphasize that Wakamatsu tilting modules are modules of possibly infinite projective
dimension and were one of the many generalizations of tilting modules. They were
first introduced by Wakamatsu in [41] and later developed by Mantese and Reiten
in [31] to establish a close connection between Wakamatsu tilting modules and
resolving subcategories. A close relationship between Wakamatsu tilting modules and
tilting modules is predicted by the Wakamatsu tilting conjecture which predicts that
Wakamatsu tilting modules of finite projective dimension over Artin algebras are
tilting modules (see [9, Chapter IV]). This conjecture is of particular interest due
to its strong connection with several long-standing homological conjectures such
as the finitistic dimension conjecture, the generalized Nakayama conjecture and the
Gorenstein symmetry conjecture (see [19, 31]).

In this article, we introduce the notion of resolving dualities between full sub-
categories of module categories, which unifies the abovementioned examples of
dualities.

Definition 1.1 Let A and B be the categories of modules over associative rings
with identity, and let C and D be full subcategories of A and B, respectively. Two
contravariant additive functors

F ∶ C→D and G ∶D→ C

are called inverse resolving dualities between C and D if the following conditions
hold:

(1) C ⊆ A and D ⊆ B are resolving subcategories, that is, they contain all projective
modules and are closed under isomorphisms, extensions, and kernels of epimor-
phisms.

(2) The compositions G ○ F and F ○ G are naturally isomorphic to the identity
functors.

(3) F and G are exact functors between C and D which are regarded as fully exact
subcategories of A and B, respectively.

Precisely, the functor F satisfies the property: if 0 → X1 → X2 → X3 → 0 is a
short exact sequence in A with X i ∈ C for 1 ⩽ i ⩽ 3, then 0 → F(X3) → F(X2) →
F(X1) → 0 is a short exact sequence in B. The functor G satisfies a similar
property.
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Note that F and G in Definition 1.1(3) were called strictly exact functors by Huisgen-
Zimmermann in [24]. Given that exact structures of resolving subcategories (as
fully exact subcategories, see Section 2.2) of module categories are highlighted in
our discussions, we prefer to use the terminology of exact functors between exact
categories in Definition 1.1(3).

Clearly, Morita duality and Miyachita’s duality are resolving dualities. Now, we
address the following basic questions on resolving dualities.

(1) How to characterize general dualities of resolving subcategories of finitely
generated modules over algebras?

(2) Are there any more resolving dualities between resolving subcategories of
module categories associated with special modules over algebras?

(3) Are there applications of resolving dualities to homological invariants?
This article is devoted to providing partial answers to these questions. To state our

results, we first introduce some notation and definitions.
Throughout the article, all algebras considered are Artin algebras and all modules

are finitely generated left modules. Let A be an algebra. We denote by A-mod the
category of left A-modules and by Aop the opposite algebra of A. Let T be an A-
module. We denote by ⊥(AT) the full subcategory of A-mod consisting of modules
X with Extn

A(X , T) = 0 for all n ⩾ 1, and by W(AT) the full subcategory of ⊥(AT)
consisting of modules X which has an add(T)-coresolution such that it stays exact
after applying the functor HomA(−, T). Then ⊥(AA) and W(AA) are exactly the
categories of semi-Gorenstein-projective and Gorenstein-projective A-modules (see
Definitions 2.2 and 2.3), respectively. Given a natural number n, the full subcategories
of A-mod consisting of modules with projective, Gorenstein-projective and semi-
Gorenstein-projective dimension at most n are denoted by P⩽n(A), GP⩽n(A) and
SGP

⩽n(A), respectively. For simplicity, we write P(A), GP(A), and SGP(A) for
P⩽0(A), GP⩽0(A), and SGP

⩽0(A), respectively. As usual, the category of A-modules
with finite projective dimension is denoted by P<∞(A).

Following [31, 41], T is called a Wakamatsu tilting A-module if both A and T
belong to W(AT). Further, if AT has finite projective dimension and AA has a
finite add(T)-coresolution, then T is called a tilting A-module. Let B be another
algebra and M an A-B-bimodule. We say that M is faithfully balanced if the canonical
algebra homomorphisms B → EndA(M)op and A → EndBo p(M) are isomorphisms.
If, in addition, the module AM is Wakamatsu tilting (respectively, tilting), then M is
called a Wakamatsu tilting (respectively, tilting) A-B-bimodule. It is known that if T
is a Wakamatsu tilting A-module, then it is automatically a Wakamatsu tilting A-B-
bimodule with B ∶= EndA(T)op , the endomorphism algebra of T over A. Similarly, if
T is a tilting A-module, it is a tilting A-B-bimodule.

Our main result conveys that any resolving dualities between full subcategories of
module categories of algebras are always afforded by Wakamatsu tilting bimodules,
which are tilting bimodules when the dualities can be restricted to smaller resolving
subcategories.

Theorem 1.2 Let A and B be Artin algebras, and let C ⊆ A-mod and D ⊆ Bop-mod be
full subcategories. Suppose that F ∶ C→D and G ∶D→ C are inverse resolving dualities.
Then:
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(1) There exists a Wakamatsu tilting bimodule ATB such that:
(a) TB ≅ F(AA) and AT ≅ G(BB);
(b) F ≅ HomA(−, T)∣C and G ≅ HomBo p(−, T)∣D;
(c) C ⊆W(AT) and D ⊆W(TB).

(2) The bimodule AT B is a tilting bimodule if and only if F and G can be restricted to
any one of inverse dualities of the following types:

C ∩P<∞(A) ≃D ∩P<∞(Bop), C ∩P⩽n(A) ≃D ∩P⩽m(Bop),

C ∩ GP
⩽n(A) ≃D ∩ GP

⩽m(Bop), C ∩ SGP
⩽n(A) ≃D ∩ SGP

⩽m(Bop),

where n and m are some natural numbers.

In Theorem 1.2(1), the existence of an (even faithfully balanced) A-B-bimodule T
satisfying (a) and (b) is not new, which follows directly from [1, Theorem 23.5]. The
really new thing in Theorem 1.2(1) is that T is a Wakamatsu tilting A-B-bimodule and
satisfies (c). In order to illustrate the assertion (c) in Theorem 1.2(1), let us recall the
resolving dualities established in [42, Theorem 4.2]: for any Wakamatsu tilting bimod-
ule ATB , the contravariant Hom-functors HomA(−, T) ∶ A-mod → Bop-mod and
HomBo p(−, T) ∶ Bop-mod → A-mod can be restricted to inverse resolving dualities

(♢) W(AT) ≃W(TB).

Thus (c) in Theorem 1.2(1) implies that (♢) are “maximal” resolving dualities between
subcategories of A-mod and Bop-mod which can be restricted to the resolving dual-
ities between C and D. Moreover, Theorem 1.2(2) provides sufficient and necessary
conditions for Wakamatsu tilting bimodules to be tilting from the viewpoint of
resolving dualities (see Corollary 3.7). This might be helpful for understanding the
Wakamatsu tilting conjecture.

Theorem 1.2 generalizes Morita duality, Miyachita’s duality, and Huisgen-
Zimmermann’s correspondence; see Corollary 3.7 and Remark 3.8 for explanation.
Moreover, combining Theorem 1.2 with (♢), we obtain a Gorenstein version of both
Miyachita’s duality (see Theorem 2.5) and Huisgen-Zimmermann’s correspondence
(see Theorem 2.6).

Corollary 1.3 Let A and B be Artin algebras.
(1) If ATB is a tilting bimodule, then the functors HomA(−, T) and HomBo p(−, T)

can be restricted to inverse resolving dualities ⊥(AT) ∩ GP
⩽�(A) ≃ ⊥(TB) ∩ GP

⩽�(Bop),
where � denotes the projective dimension of AT.

(2) Let C ⊆ A-mod and D ⊆ Bop-mod be full subcategories. Suppose that there are
inverse resolving dualities between C and D. If GP(A) ⊆ C ⊆ GP

⩽n(A) and GP(Bop) ⊆
D ⊆ GP

⩽m(Bop) for some n, m ∈ N, then there is a tilting bimodule ATB such that:

C = ⊥(AT) ∩ GP
⩽�(A) = ⊥(AT) ∩ GP

<∞(A),

D = ⊥(TB) ∩ GP
⩽�(Bop) = ⊥(TB) ∩ GP

<∞(Bop),

where � denotes the projective dimension of AT.
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It should be pointed out that the resolving dualities in Corollary 1.3(1) are the
same as the dualities (♢). But this new form in Corollary 1.3(1) is based on our
explicit characterization of the categories W(AT) and W(TB) in terms of Gorenstein-
projective modules (see Corollary 3.4 for details), which seems to be new and will be
used in applications. Similar to Theorem 2.6, we hope that GP⩽n(A) and GP

⩽m(Bop)
in Corollary 1.3(2) can be replaced by GP<∞(A) and GP

<∞(Bop), respectively. At this
moment, we have no idea how to reach this goal in general, but there are two inter-
esting cases in which this does hold true: (a) both A and B are CM-finite, that is, up
to isomorphism, there are only finitely many indecomposable Gorenstein-projective
A-modules and B-modules; (b) both A and Bop have finite finitistic dimension (see
Corollary 3.6).

Finally, we apply the resolving dualities in Corollary 1.3 to establish triangle equiv-
alences and homological invariants of algebras linked by tilting bimodules. Similar
applications of Miyachita’s duality to homotopy categories and algebraic K-groups
associated with projective modules are given in Corollary 4.3.

LetE be an exact category in the sense of Quillen. For∗ ∈ {∅,+,−, b}, the∗-derived
category of E, denoted by D∗(E), is defined to be the Verdier quotient of ∗-homotopy
category K ∗(E) of E by the full triangulated subcategory of strictly exact complexes
(see Section 2.2). When E is a small category (that is, the class of isomorphism classes
of objects of E is a set), we denote by Kn(E) the nth algebraic K-group of E for each
n ∈ N (see [37]). In particular, Kn(GP(A)) is called the nth Gorenstein algebraic K-
group of A. When E is a weakly 1-Gorenstein exact category with finite morphism
spaces and finite extension spaces, the semi-derived Ringel–Hall algebra of E, denoted
by SDH(E), was defined in [29] (see also [11, 20, 28] for some cases) and applied to
stimulate further interactions between communities on Hall algebras and on quantum
symmetric pairs. Given any finite-dimensional algebra A over a finite field, GP(A) is a
weakly 1-Gorenstein exact category. If A is 1-Gorenstein, then A-mod is also weakly 1-
Gorenstein. In this case, SDH(A-mod) is called the semi-derived Ringel–Hall algebra
of A and simply denoted by SDH(A).

Now, our applications of resolving dualities to homological invariants are given
in the following result. In particular, an unexpected application is that semi-derived
Ringel–Hall algebras of Gorenstein-projective modules are preserved under tilting.
This generalizes some results on the invariance of semi-derived Ringel–Hall algebras
of Gorenstein algebras recently obtained by Lu and Wang (see [29]).

Corollary 1.4 Let A and B be Artin algebras, and let ATB be a tilting bimodule. Then:
(1) There is a triangle equivalence D(GP(A)) ≃ D(GP(B)) which can be restricted to

an equivalence D∗(GP(A)) ≃ D∗(GP(B)) for any ∗ ∈ {+,−, b}.
(2) Kn(GP(A)) ≃ Kn(GP(B)) for any n ∈ N.
(3) Suppose that A is a finite-dimensional algebra over a finite field and AT has

projective dimension at most 1. Then SDH(GP(A)) ≅ SDH(GP(B)) as algebras.

Corollary 1.4(3) improves [29, Corollary A23] in which both A and B are required
to be 1-Gorenstein algebras. By Corollary 1.4(3) and Proposition 4.10, we can also
provide a new proof of [29, Theorems C(1) and D]. Moreover, our proof is based on
resolving dualities rather than covariant equivalences, and thus completely different
from the proof given in [29]. This will be explained in Corollary 4.12 and Remark 4.13.
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Another crucial idea in our strategy is that a new definition of semi-derived Ringel–
Hall algebras of weakly 1-Gorenstein exact categories is introduced, which behaves
better under resolving dualities (see Proposition 4.8).

2 Preliminaries

In this section, we give some definitions and collect facts which are used in the article.

2.1 Notation and definitions

Let A be an Artin R-algebra, that is, R is a commutative Artin ring and A is an R-algebra
which is finitely generated as an R-module. As usual, Aop stands for the opposite
algebra of A. Denote by A-mod the category of finitely generated left A-modules. The
kernel, image, and cokernel of a homomorphism f in A-mod are denoted by Ker( f ),
Im( f ), and Coker( f ), respectively.

Let T be an A-module. We define
⊥(AT) ∶= {M ∈ A-mod ∣ Exti

A(M , T) = 0 f or al l i ⩾ 1}.

Similarly, (AT)⊥ can be defined. Denote by add(AT) the full subcategory of A-mod
consisting of direct summands of finite direct sums of copies of T. The nth syzygy of
AT is denoted by Ωn

A(T) for each n ∈ N.

2.2 Derived categories of exact categories

An exact category E (in the sense of Quillen) is by definition an additive category
endowed with a class of conflations closed under isomorphism and satisfying certain
axioms (see [26, 37] for details). When the additive category is abelian, the class of
conflations coincides with the class of short exact sequences. An additive functor F ∶
E→ E′ between exact categories E and E′ is said to be exact if it sends the conflations
in E to the ones in E′.

Let E be an exact category and F a full subcategory of E. If F is closed under
extensions in E, then F, endowed with the conflations in E having their terms in F,
is an exact category, and the inclusion F ⊆ E is a fully faithful exact functor. In this
case, F is called a fully exact subcategory of E (see [26, Section 4]). Clearly, resolving
subcategories (see Definition 1.1(1)) of module categories are fully exact subcategories.
Throughout the article, we always regard resolving subcategories of module categories as
exact categories.

Let A be an abelian category, and let E be a fully exact subcategory of A. Denote
by C (E) the category of complexes over E and by K (E) the homotopy category
of complexes over E. A complex X ∈ C (E) is said to be strictly exact if it is an
exact complex over A and all of its boundaries belong to E. Let Kac(E) be the full
subcategory of K (E) consisting of those complexes which are isomorphic to strictly
exact complexes. Then Kac(E) is a full triangulated subcategory of Kac(E) closed
under direct summands. The unbounded derived category of E, denoted by D(E), is
defined to be the Verdier quotient of K (E) by Kac(E). Similarly, the bounded-below,
bounded-above, and bounded derived categories D+(E), D−(E), and D b(E) can be
defined.
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In Section 4, we need the following result (see [26, Section 11] and [36, Proposition
A.5.8]).
Lemma 2.1 Let F and E be fully exact subcategories of A with F ⊆ E. Assume that E
is closed under direct summands in A and the following two conditions hold:
(a) For an exact sequence 0 → X → Y → Z → 0 in A with X ∈ E, if Y , Z ∈ F, then

X ∈ F.
(b) There is a natural number n such that, for each object E ∈ E, there is an exact

sequence in A

0 → Fn
fn→ ⋅ ⋅ ⋅ → F1

f1→ F0
f0→ E → 0

with Fi ∈ F and Im( f i) ∈ E for all 0 ⩽ i ⩽ n.
Then the inclusion F ⊆ E induces a triangle equivalence D(F) → D(E) which can be
restricted to an equivalence D∗(F) → D∗(E) for any ∗ ∈ {+,−, b}.

2.3 (Semi-)Gorenstein-projective modules and X-(co)resolutions

A complete projective resolution over A is by definition an exact complex

P● ∶ ⋅ ⋅ ⋅ → P−1 d−1
P→ P0 d0

P→ P1 → ⋅ ⋅ ⋅ → Pn d n
P→ Pn+1 → . . .

of projective A-modules such that the complex HomA(P●, A), obtained by applying
HomA(−, A) to P●, is again exact.
Definition 2.2 [17, 18] An A-module M is said to be Gorenstein-projective if there is
a complete projective resolution P● over A such that M is isomorphic to the image of
d−1

P ∶ P−1 → P0.
Gorenstein-projective modules were called modules of G-dimension zero in [3] or

totally reflexive modules in [6, Section 2]. A generalization of Gorenstein-projective
modules is the following.
Definition 2.3 [40] An A-module M is said to be semi-Gorenstein-projective pro-
vided that Exti

A(M , A) = 0 for all i ⩾ 1.
Denote by GP(A) and SGP(A) the categories of Gorenstein-projective and semi-

Gorenstein-projective A-modules, respectively. Then GP(A) and SGP(A) are resolv-
ing subcategories of A-mod. Moreover, GP(A) ⊆ SGP(A), but the converse of the
inclusion is not true in general (see [40] for examples).

Let X be a full subcategory of A-mod. An X-resolution of an A-module M is by
definition an exact sequence of A-modules ⋅ ⋅ ⋅ → X2 → X1 → X0 → M → 0 with X i ∈
X for all i. The length of the resolution is defined to be the supremum of i such that
X i ≠ 0. Now, the X-resolution dimension of M, denote by res.dimX(M), is defined to
be the minimal natural number n such that M has an X-resolution of length n, or ∞
if no such n exists. The concept of X-coresolutions and X-coresolution dimension of
M can be defined dually.

The following result is known in the literature.
Lemma 2.4 Let X be a resolving subcategory of A-mod and M an A-module. The
following are equivalent for a natural number n:
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(1) res.dimX(AM) ⩽ n.
(2) Ωn

A(M) ∈ X.
(3) For any X-resolution ⋅ ⋅ ⋅ → X2 → X1 → X0 → M → 0 of M, Ker(Xn−1 →

Xn−2) ∈X.

Associated with X, there are

X⩽n(A) ∶= {M ∈ A-mod ∣ res.dimX(AM) ⩽ n},

X<∞(A) ∶= {M ∈ A-mod ∣ res.dimX(AM) < ∞}.

Clearly, if X is a resolving subcategory of A-mod, then so are X⩽n(A) and X<∞(A).
Denote by P(A) the category of projective A-modules. For simplicity, we set

P⩽n(A) ∶= P(A)⩽n(A), P<∞(A) ∶= P(A)<∞(A),

GP
⩽n(A) ∶= GP(A)⩽n(A), GP

<∞(A) ∶= GP(A)<∞(A),

SGP
⩽n(A) ∶= SGP(A)⩽n(A), SGP

<∞(A) ∶= SGP(A)<∞(A).

2.4 Resolving dualities induced by tilting modules

An A-module T is called an n-tilting module (see [10, 22, 23, 33]) if the following
conditions are satisfied:
(T1) T ∈ P⩽n(A), that is, the projective dimension of AT , denoted by proj.dim(AT),

is at most n.
(T2) Ext j

A(T , T) = 0 for all j ⩾ 1.
(T3) There exists an exact sequence of A-modules 0 → AA → T0 → ⋅ ⋅ ⋅ → Tn → 0

with Ti ∈ add(AT) for all 0 ⩽ i ⩽ n.
A module AT is said to be tilting if it is n-tilting for some natural number n. If, in

addition, P<∞(A) ⊆ ⊥(AT), then AT is said to be strong tilting (see [4]).
Given a tilting module AT with B ∶= EndA(T)op , we see that TB is also a tilting

module and A is isomorphic to EndBo p(T) as algebras. In this case, we will say that
ATB is a tilting bimodule.

The following theorem is readily deduced from [33, Theorem 3.5].

Theorem 2.5 (Miyashita’s duality) For a tilting bimodule ATB , let

C ∶= �(AT) ∩P<∞(A) and D ∶= �(TB) ∩P<∞(Bop).

Then the restricted Hom-functors HomA(−, T)∣C ∶ C→D and HomBo p(−, T)∣D ∶D→
C are inverse resolving dualities. Further, if ATB is strong tilting, then there are inverse
resolving dualities P<∞(A) ≃ P<∞(Bop).

Recently, Huisgen-Zimmermann has supplemented Miyashita’s duality by showing
that resolving dualities between subcategories of P<∞(A) and P<∞(Bop) are always
afforded by tilting bimodules (see [24, Theorem 1]).

Theorem 2.6 (Huisgen-Zimmermann’s correspondence) Let C ⊆ P<∞(A) and
D ⊆ P<∞(Bop) be resolving subcategories of A-mod and Bop-mod, respectively. If
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F ∶ C→D and G ∶D→ C are inverse resolving dualities, then there exists a tilting
bimodule ATB such that:
(a) F ≅ HomA(−, T)∣C and G ≅ HomBo p(−, T)∣D,
(b) C = �(AT) ∩P<∞(A) and D = �(TB) ∩P<∞(Bop), and
(c) C consists of those modules M which have finite add(AT)-coresolutions and D

consists of those modules N which have finite add(TB)-coresolutions.

By Theorem 2.6(c), we have
�(AT) ∩P<∞(A) = �(AT) ∩P⩽�(A) and ⊥(TB) ∩P<∞(Bop) = ⊥(TB) ∩P⩽�(Bop),

where � denotes the projective dimension of AT .

3 Correspondence between Wakamatsu tilting modules and
resolving dualities

In this section, we discuss resolving subcategories of module categories related
to Wakamatsu tilting modules and establish relationships between resolving dual-
ities and Wakamatsu tilting modules. In case, these dualities can be restricted to
resolving subcategories of modules with finite projective, Gorenstein-projective or
semi-Gorenstein-projective dimension, the associated Wakamatsu tilting modules are
shown to be tilting. In particular, we show Theorem 1.2 and Corollary 1.3.

3.1 Basic facts on Wakamatsu tilting modules

Let T be an A-module. We denote by cogen∗(AT) the full subcategory of A-mod
consisting of modules M which admits an exact sequence of A-modules 0 → M →
T0 → T1 → T2 → ⋅ ⋅ ⋅ with Ti ∈ add(AT) for all i ⩾ 0 such that applying the functor
HomA(−, T) to the sequence still yields an exact sequence. Equivalent characteriza-
tions of cogen∗(AT) are given in the following result (for example, see [30, Lemmas 2.2
and 2.4]).

Lemma 3.1 Let B = EndA(T)op. For an A-module M, the following statements are
equivalent.
(1) M ∈ cogen∗(AT).
(2) The map σM ∶ M → HomBo p(HomA(M , T), T), m ↦ [ f ↦ f (m)] for m ∈ M and

f ∈ HomA(M , T) is an isomorphism and HomA(M , T) ∈ ⊥(TB).
(3) The canonical maps

Exti
A(N , M) → Exti

Bo p(HomA(M , T), HomA(N , T))

induced by the functor HomA(−, T) are isomorphisms for all N ∈ ⊥(AT) and i ⩾ 0.

In the introduction, we have defined

W(AT) ∶= ⊥(AT) ∩ cogen∗(AT).

Clearly, T ∈W(AT) if and only if Exti
A(T , T) = 0 for all i ⩾ 1. It follows from

Lemma 3.1(3) that the functor HomA(−, T) ∶ A-mod → Bop-mod can be restricted
to a fully faithful functor W(AT) → Bop-mod which preserves extension groups of
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modules. However, in general, W(AT) is not a resolving subcategory of A-mod since
it may not contain projective A-modules. Following [41], an A-module T is said to
be Wakamatsu tilting if T ∈W(AT) and AA ∈W(AT). This is also equivalent to the
following two conditions:

(1) EndBo p(T) ≅ A, where B = EndA(T)op ;
(2) Exti

A(T , T) = 0 = Exti
Bo p(T , T) for all i ⩾ 1.

By these conditions, if AT is Wakamatsu tilting, then TB is also Wakamatsu tilting.
So T is a Wakamatsu tilting A-B-bimodule.

Now, we collect some basic properties of Wakamatsu tilting modules.

Lemma 3.2 [31, Proposition 2.11] Let T be a Wakamatsu tilting A-module. Then:
(1) W(AT) is a resolving subcategory of A-mod.
(2) W(AT) ∩W(AT)⊥ = add(AT) and ⊥(W(AT)⊥) =W(AT).
(3) T is an injective cogenerator for W(AT), that is, for any X ∈W(AT), there

is an exact sequence 0 → X → I0 → X1 → 0 in A-mod such that I0 ∈ add(AT) and
X1 ∈W(AT).

For simplicity, sometimes we write (X , Y) for HomA(X , Y) in our proofs for
A-modules X and Y.

Lemma 3.3 Let AT be a Wakamatsu tilting module. Then:
(1) ⊥(AT) ∩P⩽n(A) =W(AT) ∩P⩽n(A) for any n ⩾ 0.
(2) AT ∈ P<∞(A) if and only if AT ∈ GP<∞(A) and GP(A) ⊆W(AT).
(3) If AT ∈ P<∞(A), then W(AT) ∩ GP

⩽n(A) = ⊥(AT) ∩ GP
⩽n(A) for any n ⩾ 0.

(4) If AT is a tilting module of projective dimension �, then W(AT) ⊆ GP
⩽�(A).

Proof (1) It suffices to prove ⊥(AT) ∩P⩽n(A) ⊆ cogen∗(AT). Let M ∈ ⊥(AT) ∩
P⩽n(A). Then there exists an exact sequence in A-mod

0 → Pn → ⋅ ⋅ ⋅ → P1 → P0 → M → 0,

where Pi is projective for all 0 ⩽ i ⩽ n. This yields the following exact sequence in
Bop-mod:

0 → HomA(M , T) → HomA(P0 , T) → HomA(P1 , T) → ⋅ ⋅ ⋅ → HomA(Pn , T) → 0.

Since HomA(Pi , T) ∈ add(TB) ⊆ ⊥(TB) for all 0 ⩽ i ⩽ n and since ⊥(TB) is a resolving
subcategory of Bop-mod, we have HomA(M , T) ∈ ⊥(TB). It follows that there is a
commutative diagram with exact rows in A-mod:

0 �� Pn

σPn

��

�� ⋅ ⋅ ⋅ �� P0 ��

σP0

��

M ��

σM

��

0

0 �� ((Pn , T), T) �� ⋅ ⋅ ⋅ �� ((P0 , T), T) �� ((M , T), T) �� 0.

Since σPi is an isomorphism for all 0 ⩽ i ⩽ n, so is σM . Thus M ∈ cogen∗(AT) by
Lemma 3.1.

(2) Assume that AT ∈ GP<∞(A) and GP(A) ⊆W(AT). Since AT ∈ GP<∞(A), we
see from [15, Lemma 2.17] that there is an exact sequence 0 → T → H → G → 0 in A-
mod, where H ∈ P<∞(A) and G ∈ GP(A). As GP(A) ⊆W(AT), the exact sequence
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0 → T → H → G → 0 splits. Thus AT is isomorphic to a direct summand of H, which
forces T ∈ P<∞(A).

Conversely, assume AT ∈ P<∞(A). Then GP(A) ⊆ ⊥(AT). Let M be an A-module
inGP(A). It is enough to prove that M is inW(AT). There exists a complete projective
resolution over A

P● ∶ ⋅ ⋅ ⋅ → P−1 d−1

→ P0 d0

→ P1 d 1

→ . . .

such that M ≅ Im(d−1). Set K i ∶= Im(d i) for all i ∈ Z. Then K i ∈ GP(A). As GP(A) ⊆
⊥(AT), the complex HomA(P●, T) is again exact. Hence we have the following
commutative diagrams:

0 �� M

σM

��

�� P0

≅

��

�� K 1 ��

σK1

��

0

0 �� ((M , T), T) �� ((P0 , T), T) �� (((K 1 , T), T)

and

0 �� K 1

σK1

��

�� P1

≅

��

�� K2 ��

σK2

��

0

0 �� ((K 1 , T), T) �� ((P1 , T), T) �� ((K2 , T), T).

This implies that both σK1 and σM are injective, and therefore σM is an isomorphism
by the snake lemma. Similarly, we can show that σK i ∶ K i → ((K i , T), T) is an iso-
morphism for any i ∈ Z. Thus Exti

B(HomA(M , T), T) = 0 for all i ⩾ 1. By Lemma 3.1,
M ∈ cogen∗(AT). Since M ∈ ⊥(AT), we have M ∈W(AT).

(3) It suffices to show ⊥(AT) ∩ GP
⩽n(A) ⊆W(AT). Let M ∈ ⊥(AT) ∩ GP

⩽n(A).
By [15, Lemma 2.17], there exists an exact sequence 0 → M → H → G → 0 in A-mod
with proj.dim(AH) ⩽ n and G ∈ GP(A). As AT ∈ P<∞(A), we have G ∈ ⊥(AT). This
implies H ∈ ⊥(AT). Hence H ∈W(AT) by (1). Since G ∈W(AT) by (2), M ∈W(AT)
by Lemma 3.2.

(4) Let M ∈W(AT). There exists an exact sequence 0 → M → X0 → X1 → . . .
in A-mod with X i ∈ add(AT) for all i ⩾ 0 such that it stays exact after applying
HomA(−, T). Since proj.dim(AT) = �, we see from the horseshoe lemma that there
exists an exact sequence in A-mod

0 → Ω�
A(M) → Q0 → Q1 → . . . ,

where Q i is projective for each i ⩾ 0. Recall that there exists an exact sequence
of A-modules 0 → AA → T0 → ⋅ ⋅ ⋅ → T� → 0 with Ti ∈ add(AT) for all 0 ⩽ i ⩽ �.
Since M ∈ ⊥(AT), there are isomorphisms Exti

A(Ω�
A(M), A) ≅ Ext�+i

A (M , A) ≅
Exti

A(M , T�) = 0 for all i ⩾ 1. This implies M ∈ GP⩽�(A). ∎

The following corollary is an immediate consequence of Lemma 3.3.
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Corollary 3.4 Let AT be a Wakamatsu tilting module. Then:
(1) ⊥(AT) ∩P<∞(A) =W(AT) ∩P<∞(A).
(2) If AT ∈ P<∞(A), then W(AT) ∩ GP

<∞(A) = ⊥(AT) ∩ GP
<∞(A).

(3) If AT is a tilting module of projective dimension �, then

W(AT) = ⊥(AT) ∩ GP
⩽�(A) = ⊥(AT) ∩ GP

<∞(A),

W(TB) = ⊥(TB) ∩ GP
⩽�(Bop) = ⊥(TB) ∩ GP

<∞(Bop).

3.2 Proofs of Theorem 1.2 and Corollary 1.3

We begin this subsection with a proof of Theorem 1.2(1).

Proof of Theorem 1.2(1) Recall from [1, Theorem 23.5] that, given inverse (not nec-
essarily resolving) dualities F ∶ C→D and G ∶D→ C with AA ∈ C and BB ∈D, there
exists a faithfully balanced bimodule ATB with TB ≅ F(AA) ∈D and AT ≅ G(BB) ∈ C
such that F ≅ HomA(−, T)∣C and G ≅ HomBo p(−, T)∣D. Now, assume that F and G
are resolving dualities. They are exact functors between exact categories C and D.
Let δ ∶ 0 → T → X → M → 0 be an exact sequence in A-mod with M ∈ C. Since C is
closed under extensions in A-mod, X belongs to C. As F is exact, the sequence F(δ) ∶
0 → F(M) → F(X) → F(T) → 0 is exact. It follows from F(T) ≅ FG(BB) ≅ BB that
F(δ) splits in Bop-mod. Note that GF is naturally isomorphic to the identity functor
of C. Thus δ splits in A-mod. This implies that Ext1

A(M , T) = 0 for all M ∈ C. Since
C ⊆ A-mod is a resolving subcategory, Ω i

A(M) ∈ C for all M ∈ C and i ⩾ 1. Conse-
quently, Exti

A(M , T) ≅ Ext1
A(Ω i−1

A (M), T) = 0. This yields C ⊆ ⊥(AT). In particular,
AT ∈ ⊥(AT). Similarly, one can proveD ⊆ ⊥(TB), which gives rise to TB ∈ ⊥(TB). Since
AT B is faithfully balanced, it is Wakamatsu tilting.

To prove (c), it suffices to show the inclusion C ⊆W(AT), while the inclusion
D ⊆W(TB) can be shown dually.

In fact, as C ⊆ ⊥(AT), we only need to show C ⊆ cogen∗(AT). For each X ∈ C, let

⋅ ⋅ ⋅ → Q1
g1→ Q0

g0→ F(X) → 0

be a projective resolution of F(X) in Bop-mod. Clearly, F(X) ∈D and Q i ∈D for all
i ⩾ 0. Since D is a resolving subcategory of Bop-mod, Ker(g i) ∈D for all i ⩾ 0. By
the exactness of G, we obtain an exact sequence of A-modules 0 → X → G(Q0) →
G(Q1) → . . . in which G(Q i) ∈ add(G(BB)) = add(AT) for all i ⩾ 0. Thus the exact-
ness of F implies X ∈ cogen∗(AT). This finishes the proof of Theorem 1.2(1). ∎

To show Theorem 1.2(2), we first show the following result.

Lemma 3.5 Let ATB be the Wakamatsu tilting bimodule associated with inverse resolv-
ing dualities F ∶ C→D and G ∶D→ C in Theorem 1.2(1). Suppose that U ⊆ A-mod and
V ⊆ Bop-mod are resolving subcategories. Let m and n be natural numbers. Then:

(1) F and G restrict to inverse dualities C ∩U⩽n(A) ≃D ∩V⩽m(Bop) if and only if
the following condition holds:

(∗) F(C ∩U) ⊆D ∩V⩽m(Bop) and G(D ∩V) ⊆ C ∩U⩽n(A).
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(2) Assume that the condition (∗) holds. The following statements are true.
(a) C ∩U<∞(A) = C ∩U⩽n(A). If U ⊆ C, then C ∩U<∞(A) = ⊥(AT) ∩

U<∞(A).
(b) D ∩V<∞(Bop) =D ∩V⩽m(Bop). IfV ⊆D, thenD ∩V<∞(Bop) = ⊥(TB) ∩

V<∞(Bop).
(c) If U ⊆ SGP(A) and V ⊆ SGP(Bop), then ATB is a tilting bimodule.

Proof (1) The necessity of (1) is clear since U ⊆ U⩽n(A) and V ⊆ V⩽m(Bop). It
suffices to show the sufficiency of (1). Assume that the condition (∗) holds. Let
M ∈ C ∩ U⩽n(A). We need to show F(M) ∈D ∩V⩽m(Bop).

Let ⋅ ⋅ ⋅ → P1 → P0 → M → 0 be a projective resolution of AM and let s ∶=
max{m, n}. Since C and U are resolving subcategories of A-mod, Ωs

A(M) ∈
C ∩U by Lemma 2.4. It follows from F(C ∩U) ⊆D ∩V⩽m(Bop) that F(Ωs

A(M)) ∈
D ∩V⩽m(Bop). Since M ∈ C ⊆ ⊥(AT) by Theorem 1.2(1), there is an exact sequence in
Bop-mod:

0 → F(M) → F(P0) → F(P1) → ⋅ ⋅ ⋅ → F(Ps−1) → F(Ωs
A(M)) → 0.

Observe that both D and V⩽m(Bop) are resolving subcategories of Bop-mod, and so
is their intersection D ∩V⩽m(Bop). Since F(Pi) ∈ F(add(AA)) ⊆ F(C ∩U) for all 0 ⩽
i ⩽ s − 1, we have F(M) ∈D ∩V⩽m(Bop).

(2) It is enough to prove (a) and (c) since (b) is dual to (a).
(a) To prove C ∩U<∞(A) = C ∩U⩽n(A), it suffices to prove C ∩U<∞(A) ⊆ C ∩

U⩽n(A). Let X ∈ C ∩U<∞(A). Then there is a natural number t such that Ωt
A(X) ∈

C ∩U by Lemma 2.4. It follows from the proof of the sufficiency of (1) that F(X) ∈
D ∩V⩽m(Bop). Since X ≅ GF(X), we have X ∈ C ∩U⩽n(A).

Suppose U ⊆ C. By Theorem 1.2(1), we only need to check ⊥(AT) ∩U<∞(A) ⊆
C ∩U<∞(A). Let Y ∈ ⊥(AT) ∩U<∞(A). Then there exists an exact sequence in
A-mod:

0 → Ut → Ut−1 → ⋅ ⋅ ⋅ → U1 → U0 → Y → 0,

where U i ∈ U for all 0 ⩽ i ⩽ t ∈ N. Note that C ⊆W(AT) ⊆ ⊥(AT) by Theorem 1.2(1).
Since Y ∈ ⊥(AT) and U ⊆ C, applying F ∶= HomA(−, T) to the above exact sequence
yields an exact sequence in Bop-mod:

0 → F(Y) → F(U0) → F(U1) → ⋅ ⋅ ⋅ → F(Ut−1) → F(Ut) → 0.

As U ⊆ C, we see from the condition (∗) that F(U i) ∈ F(U) ⊆D ∩V⩽m(Bop) for
all 0 ⩽ i ⩽ t. Note that D ∩V⩽m(Bop) is a resolving subcategory of Bop-mod. Thus
F(Y) ∈D ∩V⩽m(Bop). By the exactness of G, the following sequence

0 → GF(Ut) → GF(Ut−1) → ⋅ ⋅ ⋅ → GF(U1) → GF(U0) → GF(Y) → 0

is exact in A-mod. Recall that GF is naturally isomorphic to the identity functor of C.
Since U i ∈ U ⊆ C for all 0 ⩽ i ⩽ t, we have Y ≅ GF(Y) ∈ G(D) ⊆ C.

(c) Since AT ≅ G(BB) by Theorem 1.2(1), we obtain AT ∈ C ∩U⩽s(A). As C and U

are resolving subcategories of A-mod, it follows from Lemma 2.4 that Ω i
A(T) ∈ C ∩U

for all i ⩾ s. In particular, Ωs+1
A (T) ∈ C ∩U. By (∗), F(Ωs+1

A (T)) ∈D ∩V⩽s(Bop).
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Moreover, from the minimal projective resolution ⋅ ⋅ ⋅ → P2 → P1 → P0 → AT → 0 of
the module AT , we obtain an exact sequence in Bop-mod

0 → B → F(P0) → F(P1) → F(P2) → . . . ,

where F(Pi) ≅ HomA(Pi , T) ∈ add(TB) for all i ⩾ 0. Since D ⊆ ⊥(TB) by Theorem
1.2(1)(c) and F(Ωs+1

A (T)) ∈D, it is clear that Ext j
Bo p(F(Ωs+1

A (T)), F(Pi)) = 0 for all
j ⩾ 1 and i ⩾ 0. Consequently, there are isomorphisms

Ext1
Bo p(F(Ωs+1

A (T)), F(Ωs
A(T))) ≅ Exts+1

Bo p(F(Ωs+1
A (T)), B)

≅ Ext1
Bo p(Ωs

Bo p(F(Ωs+1
A (T))), B).

By Lemma 2.4, Ωs
Bo p(F(Ωs+1

A (T))) ∈ V. Since V ⊆ SGP(Bop) = ⊥(BB) by assump-
tion, we have Ext1

Bo p(Ωs
Bo p(F(Ωs+1

A (T))), B) = 0, and hence Ext1
Bo p(F(Ωs+1

A (T)),
F(Ωs

A(T))) = 0. This implies that the sequence

0 → F(Ωs
A(T)) → F(Ps) → F(Ωs+1

A (T)) → 0

splits. Thus F(Ωs
A(T)) is a direct summand of F(Ps), and belongs to add(TB).

Since Ωs
A(T) ∈ C, we have Ωs

A(T) ≅ GF(Ωs
A(T)) ∈ add(AA). This forces

proj.dim(AT) ⩽ s. Similarly, we can show proj.dim(TB) ⩽ s. Thus AT B is tilting. ∎

Proof of Theorem 1.2(2) The sufficiency of (2) is a direct consequence of Lemma
3.5. Now, assume that ATB is a tilting bimodule with � = proj.dim(AT). By Theorem
1.2(1) and Corollary 3.4(3), C ⊆W(AT) ⊆ GP

⩽�(A) and D ⊆W(TB) ⊆ GP
⩽�(Bop). It

follows that C ∩ GP
⩽�(A) = C and D ∩ GP

⩽�(Bop) =D. Since GP⩽�(A) ⊆ SGP
⩽�(A),

we also have C ∩ SGP
⩽�(A) = C and D ∩ SGP

⩽�(Bop) =D. Thus the assertions on
(semi-)Gorenstein-projective modules in the necessity of (2) automatically hold.

Now, we apply Lemma 3.5 to show the assertion on projective modules in the
necessity of (2).

Let U ∶= add(AA) and V ∶= add(BB). Since C ⊆ A-mod and D ⊆ Bop-mod are
resolving subcategories, U = U ∩ C and V = V ∩D. Clearly, we have F(M) =
HomA(M , T) ∈ add(TB) for any M ∈ U. Since TB = F(A) ∈D ∩V⩽�(Bop), it is clear
that F(M) ∈D ∩V⩽�(Bop). Dually, G(N) ∈ C ∩U⩽�(A) for any N ∈ V. By Lemma
3.5(1), F and G can be restricted to inverse resolving dualities C ∩P⩽�(A) ≃D ∩
P⩽�(Bop). Further, by Lemma 3.5(2), we have C ∩P<∞(A) = C ∩P⩽�(A) and D ∩
P⩽�(Bop) =D ∩P<∞(Bop). This finishes the proof of (2). ∎

Proof of Corollary 1.3 (1) follows from Corollary 3.4(3) and the resolving dualities
W(AT) ≃W(TB) by [42, Theorem 4.2].

(2) Suppose C ⊆ GP
⩽n(A) and D ⊆ GP

⩽m(Bop) for some n, m ∈ N. Then we have

C ∩ GP
⩽n(A) = C and D ∩ GP

⩽m(Bop) =D.

It follows from Theorem 1.2(2) that ATB is a tilting bimodule. In Lemma 3.5, we
set U ∶= GP(A) and V ∶= GP(Bop), and then the condition (∗) is satisfied. Further,
assume GP(A) ⊆ C and GP(Bop) ⊆D. Then we have C = ⊥(AT) ∩ GP

<∞(A) and
D = ⊥(AT) ∩ GP

<∞(Bop) by Lemma 3.5(2). Since T is tilting, we have C = ⊥(AT) ∩
GP
⩽�(A) and D = ⊥(TB) ∩ GP

⩽�(Bop) by Corollary 3.4(3). ∎
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Inspired by Theorem 2.6, we are going to provide two sufficient conditions
for replacing GP

⩽n(A) and GP
⩽m(Bop) in Corollary 1.3(2) with GP

<∞(A) and
GP
<∞(Bop), respectively.
Recall from [8] that an algebra A is said to be of finite Cohen–Macaulay type, or

simply, CM-finite, if there are only finitely many isomorphism classes of indecompos-
able finitely generated Gorenstein-projective modules. Clearly, A is CM-finite if A is of
finite representation type. More examples of CM-finite algebras can be found in [39].

The (little) finitistic dimension of A, denoted by findim(A), is defined to be the
supremum of projective dimensions of all finitely generated A-modules of finite
projective dimension. Related to finitistic dimension, there is a famous conjecture
in the representation theory of algebras, called the finitistic dimension conjecture,
which says that findim(A) < ∞ for any Artin algebra A (for example, see Bass [7] and
[5, Conjectures]).

Corollary 3.6 Let A and B be algebras, and let C ⊆ A-mod and D ⊆ Bop-mod be full
subcategories. Suppose that there are inverse resolving dualities between C and D such
that

GP(A) ⊆ C ⊆ GP
<∞(A) and GP(Bop) ⊆D ⊆ GP

<∞(Bop).

Then there is a tilting bimodule ATB such that

C = ⊥(AT) ∩ GP
<∞(A) and D = ⊥(TB) ∩ GP

<∞(Bop)

under either of the following conditions:
(a) both A and B are CM-finite;
(b) findim(A) < ∞ and findim(Bop) < ∞.

Proof Assume that (a) holds. Let X be the direct sum of all non-isomorphic,
indecomposable, finitely generated Gorenstein-projective A-modules. Since A is
CM-finite, X is a finite direct sum and add(AX) = GP(A). As GP(A) ⊆ C and
D ⊆ GP

<∞(Bop), we have F(X) ∈ GP<∞(Bop). This implies that there exists a natural
number m such that F(X) ∈ GP⩽m(Bop), and thus F(C ∩ GP(A)) = F(GP(A)) ⊆
D ∩ GP

⩽m(Bop). Since HomB(−, B) ∶ GP(B) → GP(Bop) is a duality of exact cate-
gories and B is CM-finite, Bop is also CM-finite. In a similar way, we can show that
G(D ∩ GP(Bop)) = G(GP(Bop)) ⊆ C ∩ GP

⩽n(A) for some natural number n. Now,
Corollary 3.6 follows from Lemma 3.5.

Assume that (b) holds. Thanks to [43, Lemma 4.4], we have

GP
<∞(A) = GP

⩽s(A) and GP
<∞(Bop) = GP

⩽t(Bop),

where s = findim(A) and t = findim(Bop). Thus Corollary 3.6 follows from Corol-
lary 1.3(2). ∎

Finally, we provide several equivalent characterizations for Wakamatsu tilting
bimodules to be tilting. This may be helpful for understanding the Wakamatsu tilting
conjecture from the viewpoint of resolving dualities.

Corollary 3.7 A Wakamatsu tilting bimodule ATB is tilting if and only if the functors
HomA(−, T) and HomBo p(−, T) can be restricted to any one of inverse resolving
dualities of the following types:
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(1) W(AT) ∩P<∞(A) ≃W(TB) ∩P<∞(Bop);
(2) ⊥(AT) ∩P<∞(A) ≃ ⊥(TB) ∩P<∞(Bop);
(3) W(AT) ∩ GP

⩽n(A) ≃W(TB) ∩ GP
⩽m(Bop) for some n, m ∈ N;

(4) ⊥(AT) ∩ GP
⩽n(A) ≃ ⊥(TB) ∩ GP

⩽m(Bop) for some n, m ∈ N;
(5) W(AT) ∩ SGP

⩽n(A) ≃W(TB) ∩ SGP
⩽m(Bop) for some n, m ∈ N.

Proof Recall that the functors F ∶= HomA(−, T) and G ∶= HomBo p(−, T) between
A-mod and Bop-mod can be restricted to inverse resolving dualitiesW(AT) ≃W(TB)
by [42, Theorem 4.2]. So, the necessity of Corollary 3.7 follows from Theorem 1.2(2)
and Lemma 3.3(1)(3). As to the sufficiency of Corollary 3.7, all the cases except
(4) are direct consequences of Theorem 1.2(2) and Lemma 3.3(1). It remains to
show the case (4). Suppose that F and G are restricted to the inverse resolving
dualities ⊥(AT) ∩ GP

⩽n(A) ≃ ⊥(TB) ∩ GP
⩽m(Bop) for some n, m ∈ N. By Theorem

1.2(1), ⊥(AT) ∩ GP
⩽n(A) ⊆W(AT) and ⊥(TB) ∩ GP

⩽m(Bop) ⊆W(TB). This implies
that ⊥(AT) ∩ GP

⩽n(A) =W(AT) ∩ GP
⩽n(A) and ⊥(TB) ∩ GP

⩽n(Bop) =W(TB) ∩
GP
⩽n(Bop), and then we return to the case (3). ∎

Remark 3.8 In Theorem 1.2, if C = A-mod and D = Bop-mod, then AT and TB are
injective cogenerators since A-mod =W(AT) and Bop-mod =W(TB). By Corollary
3.7(2), we obtain Miyachita’s duality (see Theorem 2.5). Further, if F ∶ C→D is a
resolving duality with C ⊆ P<∞(A) and D ⊆ P<∞(Bop), then the conditions (a) and
(b) in Huisgen-Zimmermann’s correspondence (see Theorem 2.6) also follow from
Theorem 1.2 and Lemma 3.5.

4 Applications to establish homological invariances under tilting

In this section, we apply the resolving dualities established in the former section to
homological invariants of algebras. On the one hand, we employ Corollary 1.3 to con-
struct triangle equivalences of derived categories of Gorenstein-projective modules
and to show that higher algebraic K-groups of Gorenstein-projective modules are
invariant under tilting. On the other hand, we show that semi-derived Ringel–Hall
algebras of Gorenstein-projective modules over algebras are preserved under tilting
(see Theorem 4.9), which generalizes some results in [29, Proposition A5].

4.1 Derived equivalences and algebraic K-groups of Gorenstein-projective
modules

Throughout this subsection, for a small exact category E, we denote by K(E) the
K-theory space ofE in the sense of Quillen (see [37]), and by Kn(E) the nth homotopy
group of K(E) (called the nth algebraic K-group of E).

Let us recall two classical results on algebraic K-theory of exact categories. One is
usually called the “resolution theorem” (see, for example, [37, Section 4]); the other
conveys that algebraic K-groups of exact categories are invariant under dualities.

Lemma 4.1 Let E′ be a full subcategory of a small exact category E. Assume that the
following two conditions hold:
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Resolving dualities and applications to homological invariants 17

(a) If X ↣ Y ↠ Z is a conflation in E with Z ∈ E′, then Y ∈ E′ if and only if X ∈ E′.
(b) For any object M ∈ E, there is an exact sequence in E:

0 → Mn → Mn−1 → ⋅ ⋅ ⋅ → M1 → M0 → M → 0

such that M i ∈ E′ for all 0 ⩽ i ⩽ n.

Then the inclusionE′ ⊆ E of exact categories induces a homotopy equivalence of K-theory
space K(E′) ≃�→ K(E). In particular, Kn(E′) ≃ Kn(E) for all n ∈ N.

Lemma 4.2 If F ∶ A1 → A2 is a duality of small exact categories, then Kn(A1) ≃
Kn(A2) for all n ∈ N.

Proof Since F induces an equivalence A1
≃�→ A2

op of small exact categories, it
follows that Kn(A1) ≃ Kn(A2

op) for each n ∈ N. Lemma 4.2 follows from Kn(A2) ≃
Kn(A2

op) (see [37, Section 2]). ∎

Proof of Corollary 1.4(1)(2) (1) Let � ∶= proj.dim(AT). Set A1 ∶= ⊥(AT) ∩ GP
⩽�(A)

and A2 ∶= ⊥(TB) ∩ GP
⩽�(Bop). By Corollary 1.3(1), F ∶= HomA(−, T) ∶ A1 → A2 is a

duality of small exact categories. Let G ∶= HomBo p(−, B) ∶ GP(Bop) → GP(B). Then
G is also a duality of small exact categories. Since GP(A) ⊆ A1 and GP(Bop) ⊆ A2,
there is a diagram of exact categories:

GP(A) ⊆ �� A1

F

��
GP(B) GP(Bop)G

≃
�� ⊆ �� A2 .

(4.1)

Clearly, A1 ⊆ A-mod and A2 ⊆ Bop-mod are resolving subcategories. Now, we apply
Lemma 2.1 to the inclusions of exact categories in (4.1), and then obtain the following
diagram of triangle equivalences of unbounded derived categories of exact categories:

D(GP(A)) ≃ �� D(A1)

≃

��
D(GP(B)) D(GP(Bop))op≃�� ≃ �� D(A2)op .

This implies a triangle equivalence D(GP(A)) ≃ D(GP(B)), which can be restricted
to an equivalence D∗(GP(A)) ≃ D∗(GP(B)) for any ∗ ∈ {+,−, b} by Lemma 2.1.

(2) By Lemma 4.1, Kn(GP(A)) ≃ Kn(A1) and Kn(GP(Bop)) ≃ Kn(A2).
By Lemma 4.2, Kn(A1) ≃ Kn(A2) and Kn(GP(B)) ≃ Kn(GP(Bop)). Thus
Kn(GP(A)) ≃ Kn(GP(B)). ∎

By use of resolving dualities, we can show the following result, of which all the
assertions except the equivalence K (P(A)) ≃ K (P(B)) are known (for example,
see [16, 22, 38]).
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Corollary 4.3 Let A and B be algebras and ATB a tilting bimodule. Then:
(1) There is a triangle equivalence K (P(A)) ≃ K (P(B)) which can be restricted to

an equivalence K ∗(P(A)) ≃ K ∗(P(B)) for any ∗ ∈ {+,−, b}.
(2) Kn(P(A)) ≃ Kn(P(B)) for any n ∈ N.

Proof Recall that a strictly exact complex X ∈ C (P(A)) is exact in C (A-mod) with
all of its boundaries in P(A). Then X is contractible and thus zero in K (P(A)). By
the construction of derived categories in Section 2.2, K ∗(P(A)) = D∗(P(A)) for
any ∗ ∈ {∅,+,−, b}. Set

� ∶= proj.dim(AT), B1 ∶= ⊥(AT) ∩P⩽�(A), B2 ∶= ⊥(TB) ∩P⩽�(Bop).

Then B1 = ⊥(AT) ∩P<∞(A) and B2 = ⊥(TB) ∩P<∞(Bop) by Theorem 2.6(c), and
F ∶ B1 → B2 is a duality of small exact categories by Theorem 2.6 (see also Corollary
3.7(2)). Now, in the proof of Corollary 1.4(1)(2), we replace A1, A2, GP(A) and
GP(Bop) with B1 and B2, P(A) and P(Bop), respectively, and then show Corollary
4.3 similarly. ∎

4.2 Semi-derived Ringel–Hall algebras of weakly 1-Gorenstein exact categories

In this subsection, we first recall the definition of semi-derived Ringel–Hall algebras of
weakly 1-Gorenstein exact categories from [29], and then introduce a new definition
for these algebras (up to isomorphism) which behaves better under resolving dualities
(see Proposition 4.8).

Let k ∶= Fq be a finite field and A a small exact category linear over k. For each
X ∈ A, we define

Ext-proj.dimX ∶= min{i ∈ N ∣ HomD(A)(X , Y[ j]) = 0 for all Y ∈ A and all j > i},
Ext-inj.dimX ∶= min{i ∈ N ∣ HomD(A)(Y , X[ j]) = 0 for all Y ∈ A and all j > i}.

The following four subcategories of A are defined in the appendix of [29].

P⩽i(A) = {X ∈ A ∣ Ext-proj.dimX ⩽ i},
I⩽i(A) = {X ∈ A ∣ Ext-inj.dimX ⩽ i},

P<∞(A) = {X ∈ A ∣ Ext-proj.dimX < ∞},
I<∞(A) = {X ∈ A ∣ Ext-inj.dimX < ∞}.

The category A is said to be weakly Gorenstein if P<∞(A) = I<∞(A); weakly d-
Gorenstein if it is weakly Gorenstein and P<∞(A) = P⩽d(A) = I⩽d(A).

We consider an exact category A satisfying the following conditions:
(E-a) A is a small exact category with finite morphism spaces and finite extension

spaces, i.e.,

∣HomA(M , N)∣ < ∞, ∣Ext1
A(M , N)∣ < ∞;

(E-b) A is linear over k = Fq ;
(E-c) A is weakly 1-Gorenstein;
(E-d) for any object X ∈ A, there exists a deflation PX → X with PX ∈ P<∞(A).
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Clearly, if A is a finite-dimensional algebra over k, then the Frobenius category
GP(A) satisfies (E-a)–(E-d). If, in addition, A is 1-Gorenstein (that is, both AA
and AA have injective dimension at most 1), then the abelian category A-mod also
satisfies (E-a)–(E-d). The following result supplies a class of weakly 1-Gorenstein exact
categories which may be neither Frobenius nor abelian categories in general.

Lemma 4.4 Let A be a finite-dimensional algebra over the field k and ATB a tilting
bimodule with proj.dim(AT) ⩽ 1. Define A ∶= ⊥(AT) ∩ GP

⩽1(A). Then A is weakly
1-Gorenstein satisfying (E-a)–(E-d) and P<∞(A) = ⊥(AT) ∩P⩽1(A).

Proof By Corollary 3.4(3), A =W(AT). Since A is a resolving subcategory of
A-mod by Lemma 3.2(1), it is a small exact category of which the projective
objects are exactly projective A-modules. By Lemma 3.2(3), add(AT) equals the
full subcategory of A consisting of injective objects. So, A as an exact category has
enough projective objects and injective objects. Clearly, P<∞(A) = A ∩P<∞(A) =
�(AT) ∩P⩽1(A). Further, since proj.dim(AT) ⩽ 1, it follows from Theorem 2.6(c) that
�(AT) ∩P⩽1(A) = �(AT) ∩P<∞(A)which consists of those A-modules having finite
add(AT)-coresolutions. Thus P<∞(A) = I<∞(A), that is, A is weakly Gorenstein.
Since P<∞(A) ⊆ P⩽1(A), we have P<∞(A) = P⩽1(A). Moreover, by the resolving
duality HomA(−, T) ∶ �(AT) ∩P⩽1(A) → �(TB) ∩P⩽1(Bop) in Theorem 2.5, each
object of �(AT) ∩P⩽1(A) has an add(AT)-coresolution of length at most 1. This
implies I<∞(A) = I⩽1(A), and therefore A is weakly 1-Gorenstein. Since A ⊆ A-mod
is a resolving subcategory and k is a finite field, it can be checked that A satisfies
(E-a)–(E-d). ∎

Now, let A be an exact category which satisfies (E-a)–(E-d). Denote by Iso(A) the
set of isomorphism classes of objects in A and by K0(A) the Grothendieck group of
A. Let H(A) be the Ringel–Hall algebra of A, that is, H(A) = ⊕[M]∈Iso(A)Q[M] as
Q-vector spaces with the multiplication given by

[M] ◇ [N] ∶= ∑
[L]∈Iso(A)

∣Ext1
A(M , N)L ∣

∣HomA(M , N)∣
[L],

where Ext1
A(M , N)L stands for the subset of Ext1

A(M , N) parameterizing all exten-
sions in which the middle term is isomorphic to L. Then H(A) is a K0(A)-graded
algebra. For M ∈ A and K ∈ P⩽1(A), define

⟨K , M⟩ = dimkHomA(K , M) − dimkExt1
A(K , M),

⟨M , K⟩ = dimkHomA(M , K) − dimkExt1
A(M , K).

These formulas descend bilinear forms (called Euler forms), again denoted by ⟨⋅, ⋅⟩, on
the Grothendieck groups K0(P⩽1(A)) and K0(A).

To introduce semi-derived Ringel–Hall algebras of weakly 1-Gorenstein exact
categories, we first recall the definition of (left or right) denominator subsets of rings
and their relations with Ore localizations. For more details, we refer to [27, Chapter 4]
and [32, Chapter 2].
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Let R be a ring with identity, and let S be a subset of R closed under multiplications
with 1 ∈ S. Following [27, Definition 10.5], S is called a left denominator subset of R if
the following conditions hold:
(i) For any a ∈ R and s ∈ S, the intersection Sa ∩ Rs is not empty.

(ii) For any r ∈ R, if rt = 0 for some t ∈ S, there exists some t′ ∈ S such that t′r = 0.
If S satisfies only the condition (i), then S is called a left Ore subset of R. Similarly, we
can define right denominator sets and right Ore sets. Now, Ore’s localization theorem
(for example, see [27, Theorem 10.6]) states that:
(1) the left Ore localization [S−1]R exists if and only if S is a left denominator subset

of R;
(2) the right Ore localization R[S−1] exists if and only if S is a right denominator

subset of R.
If S is a left and right denominator subset of R, then [S−1]R is called the Ore localization
of R at S. In this case, up to isomorphism of rings, [S−1]R, R[S−1] and the universal
localization RS of R at S are the same (for example, see [27, Corollary 10.14] or
[13, Section 2.2]).

Let I(A) be the two-sided ideal of H(A) generated by

{[L] − [K ⊕ M] ∣ ∃ an exact sequence 0 → K → L → M → 0 with K ∈ P⩽1(A)}.

We consider the following multiplicatively closed subset of the quotient H(A)/I(A)
of H(A) by I(A):

SA ∶= {a[K] ∈H(A)/I(A) ∣ a ∈ Q×, K ∈ P⩽1(A)}.

Lemma 4.5 [29, Proposition A5] SA is a right denominator subset of H(A)/I(A).
Equivalently, the right Ore localization (H(A)/I(A))[S−1

A ] ofH(A)/I(A)with respect
to SA exists.

Following [29] (also cf. [11, 20, 28]), the algebra (H(A)/I(A))[S−1
A ] is called the

semi-derived Ringel–Hall algebra of A and denoted by SDH(A). Since the opposite
categoryAop ofA is also a weakly 1-Gorenstein exact category, the algebraSDH(Aop)
is well defined. However, at the present time, it is not clear whether SDH(A) ≅
(SDH(Aop))op as algebras because the definition of SDH(A) seems not to be left–
right symmetric. To solve this problem, we will introduce a new definition ofSDH(A)
up to isomorphism of algebras.

Let J(A) be the two-sided ideal of H(A) generated by

{[L] − [K ⊕ M] ∣ ∃ exact sequence 0 → M → L → K → 0 with K ∈ I⩽1(A)}.

Then I(Aop) ≅ J(A) and there is an isomorphism of algebras: H(A)/J(A) ≅
(H(Aop)/I(Aop))op . Similarly, we consider the multiplicatively closed subset RA of
H(A)/J(A):

RA ∶= {a[K] ∈H(A)/J(A) ∣ a ∈ Q×, K ∈ I⩽1(A)}.

The following result is the dual of Lemma 4.5.
Lemma 4.6 RA is a left denominator subset of H(A)/J(A). Equivalently, the left Ore
localization [R−1

A ](H(A)/J(A)) of H(A)/J(A) with respect to RA exists. Moreover,
there is an isomorphism [R−1

A ](H(A)/J(A)) ≅ (SDH(Aop))op of algebras.
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Now, we consider the quotient H(A)/(I(A) + J(A)) of H(A) by the ideal
I(A) + J(A) and its multiplicatively closed subset

ΦA ∶= {a[K] ∈H(A)/(I(A) + J(A)) ∣ a ∈ Q× , K ∈ P⩽1(A)}.

Lemma 4.7 (1) ΦA is a left and right denominator subset of the algebra
H(A)/(I(A) + J(A)).

(2) There are isomorphisms of algebras:

SDH(A) ≅ (H(A)/(I(A) + J(A)))[Φ−1
A ]

≅ [Φ−1
A ](H(A)/(I(A) + J(A)))

≅ [R−1
A ](H(A)/J(A))

≅ (SDH(Aop))op .

Proof (1) Let H ∶=H(A), I ∶= I(A) and J ∶= J(A). For any K ∈ P⩽1(A) and M ∈ A,
it follows from [29, Lemma A4] that [M] ◇ [K] = q−⟨M ,K⟩[M ⊕ K] in H/I. Dually,
[K] ◇ [M] = q−⟨K ,M⟩[M ⊕ K] in H/J. Thus q⟨M ,K⟩[M] ◇ [K] = q⟨K ,M⟩[K] ◇ [M] in
H/(I + J). This implies that ΦA is a left and right Ore subset of the algebra H/(I + J).
By a similar argument as in the proof of [29, Proposition A5], one can further show
that ΦA is a left and right denominator subset of H/(I + J).

(2) By (1), there is an isomorphism of algebras (H/(I + J))[Φ−1
A ] ≅

[Φ−1
A ](H/(I + J)). By Lemma 4.6, it is enough to show the algebra isomorphism

SDH(A) ≅ (H/(I + J))[Φ−1
A ].

The algebra isomorphism [Φ−1
A ](H/(I + J)) ≅ [R−1

A ](H/J) can be proved dually.
Let λ1 ∶ H/I → SDH(A) and λ ∶ H/(I + J) → (H/(I + J))[Φ−1

A ] be the localiza-
tions and let π1 ∶ H/I → H/(I + J) be the canonical surjection. Since π1(SA) = ΦA,
there is a unique homomorphism of algebras

σ ∶ SDH(A) → (H/(I + J))[Φ−1
A ]

such that σλ1 = λπ1. By the statements following [29, Lemma A8], we have λ1(J) = 0
in SDH(A). Then there exists a unique homomorphism of algebras

λ̃1 ∶ (H/(I + J))[Φ−1
A ] → SDH(A)

such that λ1 = λ̃1π1, and hence λ̃1([K]) is invertible in SDH(A) for any [K] ∈ ΦA.
This implies that λ induces a unique homomorphism of algebras

ρ ∶ (H/(I + J))[Φ−1
A ] → SDH(A)

such that ρλ = λ̃1. So we have following commutative diagram:

H/I

π1

��

λ1 �� SDH(A)

σ

��
H/(I + J)

λ̃1

��

λ
�� (H/(I + J))[Φ−1

A ].

ρ

��
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Since ρσλ1 = ρλπ1 = λ̃1π1 = λ1, it follows from the universal property of λ1 that ρσ =
Id. On the other hand, σρλπ1 = σ λ̃1π1 = σλ1 = λπ1. Since π1 is surjective, σρλ = λ.
By the universal property of λ, we have σρ = Id. Thus σ and ρ are isomorphisms of
algebras. ∎

Thanks to Lemma 4.7, up to isomorphism of algebras, we can define the semi-
derived Ringel–Hall algebra ofA to be the algebra (H(A)/(I(A) + J(A)))[Φ−1

A ]. This
definition is left–right symmetric and applied to show the following result.

Proposition 4.8 Let F ∶ A1 → A2 be a resolving duality of weakly 1-Gorenstein exact
categories. Then there exists an isomorphism of algebras

ΥF ∶ SDH(A1)
≃�→ (SDH(A2))op

[M] ↦ [F(M)].

Proof Note that F induces an equivalenceA1
≃�→ A2

op of weakly 1-Gorenstein exact
categories. Then F induces an isomorphism of algebras: SDH(A1)

≃�→ SDH(A2
op).

By Lemma 4.7(2), SDH(A2
op) ≃ (SDH(A2))op . Thus Proposition 4.8 holds. ∎

4.3 Invariance of semi-derived Ringel–Hall algebras under tilting

In this subsection, our main result is the following theorem which contains Corollary
1.4(3) in the introduction.

Theorem 4.9 Let A be a finite-dimensional algebra over k and ATB a tilting bimodule
with proj.dim(AT) ⩽ 1. Then there exists an isomorphism of algebras:

Ξ ∶ SDH(GP(A)) ≃�→ SDH(GP(B))

[G] ↦ q−⟨L ,G⟩[HomA(T , L)]−1 ◇ [HomA(T , Z)],

where f ∶ G → Z is a minimal left (AT)⊥-approximation of G and L = Coker( f ).

When both A and B are 1-Gorenstein algebras, Theorem 4.9 is exactly [29, Corollary
A23]. To show Theorem 4.9 for general algebras, we establish a crucial result as follows.

Proposition 4.10 Let A be a finite-dimensional algebra over k, and let ATB be
a tilting bimodule with proj.dim(AT) ⩽ 1. Set A ∶= ⊥(AT) ∩ GP

⩽1(A) and B ∶=
GP(A). Then the embedding ϕ ∶H(B) →H(A) induces an algebra isomorphism
ϕ̃ ∶ SDH(B) → SDH(A). Furthermore, the inverse of ϕ̃ is given by ψ̃ ∶ [M] ↦
q−⟨M ,HM⟩[GM] ◇ [HM]−1, where M ∈ A, GM ∈ B and HM ∈ add(AA) such that they
fit into an exact sequence 0 → HM → GM → M → 0 of A-modules.

Proof Clearly, B is weakly 1-Gorenstein satisfying (E-a)–(E-d). By Lemma 4.4
and its proof, A is also weakly 1-Gorenstein satisfying (E-a)–(E-d) and P⩽1(A) =
�(AT) ∩P⩽1(A). This means that SDH(B) and SDH(A) are well defined. Moreover,
since each object M ∈ A has Gorenstein dimension at most 1, the exact sequence in
Proposition 4.10 always exists. By a similar proof of [29, Theorem C(1)], one can check
that ϕ̃ is a surjective homomorphism of algebras and the map
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ψ ∶H(A) → SDH(B), [M] ↦ q−⟨M ,HM⟩[GM] ◇ [HM]−1

is well defined. Next, we claim that ψ is a homomorphism of algebras. It suffices to
show

ψ([M] ◇ [N]) = ψ([M]) ◇ ψ([N])(4.2)

for all M , N ∈ A.
For this aim, we fix two exact sequences in A-mod:

0 → H1 → G1 → M → 0,(4.3)

0 → H2 → G2 → N → 0,(4.4)

where H1 , H2 ∈ add(AA) and G1 , G2 ∈ B. Applying HomA(−, N) and HomA(G1 ,−)
to the sequences (4.3) and (4.4), respectively, we obtain the following diagram:

Ext1
A(M , N)

����
���

���
���

Θ �� Ext1
A(G1 , G2)

≅

��

�� 0

Ext1
A(G1 , N).

(4.5)

Now, let 0 → N → L → M → 0 be an exact sequence in A. By (4.5), there is a commu-
tative diagram with exact rows and columns:

0

��

0

��

0

��
0 �� H2 ��

��

HL

��

�� H1

��

�� 0

0 �� G2 ��

��

GL

��

�� G1

��

�� 0

0 �� N ��

��

L

��

�� M

��

�� 0

0 0 0.

(4.6)

Note that ⟨L, HL⟩ = ⟨M + N , H1 + H2⟩ = ⟨M , H1⟩ + ⟨M , H2⟩ + ⟨N , H1⟩ + ⟨N , H2⟩.
Since A and B are fully exact subcategories of A-mod, there are equalities

∣Ext1
A(X1 , X2)∣ = ∣Ext1

A(X1 , X2)∣, ∣HomA(X1 , X2)∣ = ∣HomA(X1 , X2)∣,
∣Ext1

B(Y1 , Y2)∣ = ∣Ext1
A(Y1 , Y2)∣, ∣HomB(Y1 , Y2)∣ = ∣HomA(Y1 , Y2)∣,
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for all X1 , X2 ∈ A and Y1 , Y2 ∈ B. Thus

ψ([M] ◇ [N]) = ψ( ∑
[L]∈Iso(A)

∣Ext1
A(M , N)L ∣

∣HomA(M , N)∣
[L])

= ∑
[L]∈Iso(A)

∣Ext1
A(M , N)L ∣

∣HomA(M , N)∣
q−⟨L ,HL⟩[GL] ◇ [HL]−1

= ( ∑
[L]∈Iso(A)

∣Ext1
A(M , N)L ∣

∣HomA(M , N)∣
q−⟨L ,HL⟩[GL]) ◇ [H1 ⊕ H2]−1

= ( ∑
[L]∈Iso(A)

∣Ext1
A(M , N)L ∣

∣HomA(M , N)∣
q−⟨M ,H1⟩−⟨M ,H2⟩−⟨N ,H1⟩−⟨N ,H2⟩[GL])

◇ [H1 ⊕ H2]−1 .

Since q⟨H1 ,G2⟩[H1] ◇ [G2] = [H1 ⊕G2] = q⟨G2 ,H1⟩[G2] ◇ [H1], it follows that

ψ([M]) ◇ ψ([N]) = q−⟨M ,H1⟩−⟨N ,H2⟩[G1] ◇ [H1]−1 ◇ [G2] ◇ [H2]−1

= q−⟨M ,H1⟩−⟨N ,H2⟩+⟨H1 ,G2⟩−⟨G2 ,H1⟩[G1] ◇ [G2] ◇ [H1]−1 ◇ [H2]−1

= q−⟨M ,H1⟩−⟨N ,H2⟩+⟨H1 ,G2⟩−⟨G2 ,H1⟩[G1] ◇ [G2] ◇ ([H2] ◇ [H1])−1

= q−⟨M ,H1⟩−⟨N ,H2⟩+⟨H1 ,G2⟩−⟨G2 ,H1⟩+⟨H2 ,H1⟩[G1]◇[G2]◇[H2 ⊕H1]−1 .

Consequently, to prove (4.2), we only need to check

q−⟨M ,H2⟩−⟨N ,H1⟩ ∑
[L]∈Iso(A)

∣Ext1
A(M , N)L ∣

∣HomA(M , N)∣
[GL] = q⟨H1 ,G2⟩−⟨G2 ,H1⟩+⟨H2 ,H1⟩[G1] ◇ [G2].

(4.7)

Now, we set K ∶= Ker(Θ) in the diagram (4.5). Then there exists an exact sequence

0 → HomA(M , N) → HomA(G1 , N) → HomA(H1 , N) → K → 0.

Thus

∣K∣ = qdimk HomA(H1 ,N)−dimk HomA(G1 ,N)+dimk HomA(M ,N).(4.8)

For any δ′ ∶ 0 → G2 → W → G1 → 0 in the set Ext1
A(G1 , G2)W , one can show

∣{δ ∈ Ext1
A(M , N) ∣ Θ(δ) = δ′}∣ = ∣K∣.

This leads to

∣{δ ∈ Ext1
A(M , N) ∣ Θ(δ) ∈ Ext1

A(G1 , G2)W}∣ = ∣K∣∣Ext1
A(G1 , G2)W ∣

and therefore

∑
[L]∈Iso(A)

∣Ext1
A(M , N)L ∣[GL] = ∣K∣ ∑

[W]∈Iso(A)
∣Ext1

A(G1 , G2)W ∣[W].(4.9)

Since G1 ∈ B and H2 ∈ add(AA), the equality Ext1
A(G1 , H2) = 0 holds. This implies

that the sequence 0 → HomA(G1 , H2) → HomA(G1 , G2) → HomA(G1 , N) → 0 is
exact. Consequently,
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dimk HomA(H1 , N) − dimkHomA(G1 , N) = ⟨H1 , N⟩ + dimkHomA(G1 , H2)(4.10)
− dimkHomA(G1 , G2).

So we have

q−⟨M ,H2⟩−⟨N ,H1⟩ ∑
[L]∈Iso(A)

∣Ext1
A(M , N)L ∣

∣HomA(M , N)∣
[GL]

= q−⟨M ,H2⟩−⟨N ,H1⟩+dimk HomA(H1 ,N)−dimk HomA(G1 ,N)

× ∑
[W]∈Iso(B)

∣Ext1
A(G1 , G2)W ∣[W] (by (4.8), (4.9))

= q−⟨M ,H2⟩−⟨N ,H1⟩+⟨H1 ,N⟩+dimk Hom(G1 ,H2) ∑
[W]∈Iso(B)

∣Ext1
A(G1 , G2)W ∣

HomA(G1 , G2)
[W] (by (4.10))

= q−⟨M ,H2⟩−⟨N ,H1⟩+⟨H1 ,G2⟩−⟨H1 ,H2⟩+dimk HomA(G1 ,H2)[G1] ◇ [G2] (since ⟨H1 , G2⟩

= ⟨H1 , H2 + N⟩)

= q⟨H1 ,G2⟩−⟨N ,H1⟩q−(⟨M ,H2⟩+⟨H1 ,H2⟩−dimk HomA(G1 ,H2))[G1] ◇ [G2]

= q⟨H1 ,G2⟩−⟨N ,H1⟩[G1] ◇ [G2] (since ⟨G1 , H2⟩ = ⟨M +H1 , H2⟩)

= q⟨H1 ,G2⟩−⟨G2 ,H1⟩+⟨H2 ,H1⟩[G1] ◇ [G2] (since ⟨G2 , H1⟩ = ⟨H2 + N , H1⟩).

This shows that (4.7) is true, and thus (4.2) is also true. So, ψ is a homomorphism of
algebras.

Finally, we show that ψ factorizes through the canonical surjection H(A) →
H(A)/I(A).

Suppose N ∈ P⩽1(A). Since H2 ∈ add(AA), we have G2 ∈ P⩽1(A) (see the first col-
umn in the diagram (4.6)). As G2 lies in B, it is projective. This implies GL ≅ G1 ⊕G2,
and therefore

ψ([L]) = q−⟨L ,HL⟩[GL] ◇ [HL]
−1 = q−⟨M⊕N ,H1⊕H2⟩[G1 ⊕G2] ◇ [H1 ⊕H2]

−1 = ψ([N ⊕M]).

Consequently, ψ induces a homomorphism of algebras ψ′ ∶H(A)/I(A) → SDH(B).
Since ψ([K]) is invertible in SDH(B) for any K ∈ P⩽1(A), ψ′ induces a unique
homomorphism of algebras ψ̃ ∶ SDH(A) → SDH(B). Clearly, ψ̃ϕ̃ = Id, which
means that ϕ̃ is injective. Since ϕ̃ is surjective, it is an isomorphism of algebras. ∎

A consequence of Proposition 4.10 is the following.
Corollary 4.11 Let A be a finite-dimensional algebra over k, and let AT be a
strong tilting module with proj.dim(AT) ⩽ 1. Then there is an algebra isomorphism
SDH(GP(A)) ≅ SDH(GP⩽1(A)).
Proof By Proposition 4.10, it suffices to show ⊥(AT) ∩ GP

⩽1(A) = GP
⩽1(A). Let

M ∈ GP⩽1(A). By [15, Lemma 2.17], there exists an exact sequence 0 → M → H → G →
0 in A-mod with proj.dim(AH) ⩽ 1 and G ∈ GP(A). It follows from Lemma 3.3(2)
that G ∈W(AT). Since AT is a strong tiling module with proj.dim(AT) ⩽ 1, we have
H ∈ ⊥(AT). Hence M ∈ ⊥(AT). This implies GP⩽1(A) ⊆ ⊥(AT). ∎

Proof of Theorem 4.9 LetA1 ∶= ⊥(AT) ∩ GP
⩽1(A) andA2 ∶= ⊥(TB) ∩ GP

⩽1(Bop). It
follows from Corollary 1.3(1) that F ∶= HomA(−, T) ∶ A1 → A2 is a duality of weakly
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1-Gorenstein exact categories. Moreover, G ∶= HomBo p(−, B) ∶ GP(Bop) → GP(B) is
also a duality of weakly 1-Gorenstein exact categories. By Propositions 4.10 and 4.8,
we obtain the following diagram of isomorphisms of algebras:

SDH(GP(A))
ϕ̃A �� SDH(A1)

ΥF

��
(SDH(A2))op

(ψ̃Bo p )
o p

��
SDH(GP(B)) (SDH(GP(Bop))op(ΥG)

o p
��

Define

Ξ ∶= (ΥG)op(ψ̃Bo p)opΥF ϕ̃A ∶ SDH(GP(A)) → SDH(GP(B)).

Then Ξ is an isomorphism of algebras. It remains to show that, for any G ∈ GP(A),

Ξ([G]) = q−⟨L ,G⟩[F(L)]−1 ◇ [F(Z)],

where L and Z are given in Theorem 4.9.
In fact, since G ∈ GP(A), there is an exact sequence 0 → K → P → G → 0 in A-

mod such that P ∈ add(AA) and K ∈ GP(A). As AT is 1-tilting, there is an exact
sequence 0 → P → T0 → T1 → 0 in A-mod with T0 , T1 ∈ add(AT). Consider the fol-
lowing pushout diagram (♯):

0

��

0

��
0 �� K �� P ��

��

G ��

��

0

0 �� K �� T0

��

�� X ��

��

0

T1

��

T1

��
0 0.

Since T is a 1-tilting module, (AT)⊥ = Gen(AT), the smallest full subcategory of
A-mod containing AT and being closed under direct sums and quotients. This
forces X ∈ (AT)⊥. Since T1 ∈ add(AT) ⊆ (AT)⊥, the third column in the diagram
(♯) implies that the map G → X is a left (AT)⊥-approximation of G. Now, let
f ∶ G → Z be a minimal left (AT)⊥-approximation with L ∶= Coker( f ). Then f is
injective; Z and L are isomorphic to direct summands of X and T1, respectively. In
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particular, Z ∈ Gen(AT) and L ∈ add(AT). Since GP(A) ∪ add(AT) ⊆ A1 and A1 is
closed under extensions in A-mod, we have Z ∈ A1. As Z ∈ Gen(AT), there exists
an exact sequence 0 → N → H → Z → 0 of A-modules with H ∈ add(AT). Since A1 ⊆
A-mod is a resolving subcategory, N ∈ A1. So, the sequence is exact in A1. Applying F
to the sequence yields an exact sequence 0 → F(Z) → F(H) → F(N) → 0 inA2. Since
F(H) ∈ add(BB) and F(N) ∈ GP⩽1(Bop), it follows that F(Z) ∈ GP(Bop). Hence, we
have an exact sequence in A2

0 �→ F(L) �→ F(Z) �→ F(G) �→ 0(4.11)

such that F(Z) is Gorenstein projective and F(L) is projective. Moreover, there are
equalities

⟨F(G), F(L)⟩ = dimkHomBo p(F(G), F(L)) − dimkExt1
B(F(G), F(L))

= dimkHomA(L, G) − dimkExt1
B(L, G) (by Lemma 3.1)

= ⟨L, G⟩.
(4.12)

Thus
Ξ([G]) = ((ΥG)op(ψ̃Bo p)opΥF ϕ̃A)([G])

= (ΥG)op(ψ̃Bo p)op([F(G)])

= (ΥG)op(q−⟨F(G),F(L)⟩[F(L)]−1 ◇ [F(Z)]) (by (4.11))

= q−⟨F(G),F(L)⟩[GF(L)]−1 ◇ [GF(Z)]

= q−⟨F(G),F(L)⟩[HomA(T , L)]−1 ◇ [HomA(T , Z)] (by Lemma 3.1)

= q−⟨L ,G⟩[HomA(T , L)]−1 ◇ [HomA(T , Z)] (by (4.12)).

This finishes the proof of Theorem 4.9. ∎

Corollary 4.12 Let A be a finite-dimensional algebra over k.
(1) [29, Theorem C(1)] If A is 1-Gorenstein, then there exists an isomorphism of algebras:

SDH(A) ≅ SDH(GP(A)).
(2) [29, Theorem D] If ATB is a tilting bimodule over finite-dimensional 1-Gorenstein

algebras A and B, then there exists an isomorphism of algebras: SDH(A) ≅
SDH(B).

Proof Let A be a finite-dimensional 1-Gorenstein k-algebra. Then A-mod is a weakly
1-Gorenstein algebra satisfying (E-a)–(E-d). Recall that SDH(A) ∶= SDH(A-mod)
is the semi-derived Ringel–Hall algebra of A. Set AT ∶= Homk(A, k), the ordinary
injective cogenerator for A-mod. Then AT is strong tilting and proj.dim(AT) ⩽ 1.
Moreover, A-mod = GP

⩽1(A) = ⊥(AT) ∩ GP
⩽1(A). Now, (1) is a direct consequence

of Corollary 4.11 and (2) follows from (1) and Theorem 4.9. ∎

Remark 4.13 We point out that our proof of Corollary 4.12 is different from the proof
given in [29].

(a) In the proof of [29, Theorem C(1)], under the assumption that A is 1-
Gorenstein, the map ψ ∶H(A) → SDH(GP(A)) (see the proof of Proposition 4.10
for T ∶= Homk(A, k)) was shown to induce a unique morphism of T(A)-bimodules
ψ̃ ∶ SDH(A) → SDH(GP(A)) by using an explicit description of SDH(A) as
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a T(A)-bimodule (see [29, Proposition A13]), where A = A-mod and T(A) ∶=
SDH(P⩽1(A)) is a subalgebra ofSDH(A). In our proof, for a general 1-tilting module
AT , we prove that ψ ∶H(A) → SDH(GP(A)) is an algebra homomorphism and
automatically induces an algebra homomorphism ψ̃ ∶ SDH(A) → SDH(GP(A))
which is the inverse of ϕ̃ (see the proof of Proposition 4.10).

(b) In the proof of [29, Theorem D], when both A and B are 1-Gorenstein, the
following algebra isomorphisms were established:

SDH(A) ≅ SDH(X) ≅ SDH(Y) ≅ SDH(B),

where X ∶= {X ∈ A-mod ∣ Ext1
A(T , X) = 0} and Y ∶= {Y ∈ B-mod ∣ TorB

1 (T , Y) = 0}
are weakly 1-Gorenstein exact categories, and the second isomorphism follows from
the additive equivalence X ≃ Y by the Brenner–Butler tilting theorem. However, for
a general algebra A, the category X may not be weakly 1-Gorenstein, and therefore
SDH(X) is not well defined. In our proof of Corollary 4.12(2), we use the resolving
dualities in Corollary 1.3(1) and establish a series of algebra isomorphisms:

SDH(A) ≅ SDH(GP(A)) ≅ SDH(GP(B)) ≅ SDH(B).
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