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1 INTRODUCTION 

Following the 2014 National Science Foundation’s Science of Systems Engineering Workshop (Collopy and 

Mesmer, 2015), the authors have pursued a research agenda to place systems engineering on a more solid 

theoretical basis. The advantages of a theoretical foundation are many, but a key advantage is the ability to 

discriminate among methods, processes and tools so that we can determine that one method is better than 

another, referenced to theory. Evaluation of tools and methods with respect to theory is common in other 

engineering disciplines, as when a computational fluid dynamics model is critiqued because of its 

representation of eddies (Bui, 1999).  

Our investigation reported in this paper is an example of assessing a design method with respect to established 

theories from political science and optimization. This method, the Pugh Method for Controlled Convergence, 

is of interest to our research agenda because it is commonly used in systems design. We are also investigating 

two other popular system design methods, Quality Function Deployment and the Analytic Hierarchy Process, 

and hope to report on these in future papers. 

1.1 Optimization, preferences, and design choice 

We make a basic assumption that a designer, studying two alternative designs, can order them by preference. 

He or she prefers Design A to Design B, prefers Design B to Design A, or is indifferent to the choice between 

A and B. Furthermore, we assume that these preferences are transitive, so that any number of designs can be 

rank ordered by preference. Without these two assumptions, the idea of a better design or an improved design 

is lost, and there is no purpose left to engineering.  

We further assume, along the lines of von Neumann (von Neumann and Morgenstern, 1947), that preference 

with respect to a set of alternative designs can be measured with cardinal, real numbers, such that higher 

numbers correspond to more preferred designs. This measure of preference is the theoretical ideal against 

which we compare the Pugh method. 

Within this paper, we borrow from the Pugh method (and the other design-choice methods we plan to 

investigate), the limitation that preference for a design depends only on a vector of attributes used to describe 

each alternative. Thus, the ideal measure of preference for a design will take the form of a real function of the 

attributes of the design.  

2 THE PUGH METHOD FOR CONTROLLED CONVERGENCE 

The Pugh Method of Controlled Convergence is a common prescriptive approach to concept selection which 

evaluates a design by a vector of key attributes such as reliability, cost, weight, etc. The Pugh Method was 

developed by Stuart Pugh in response to his research conclusions regarding the shortcomings of the so-called 

“weight and rate method” of engineering decision making (Pugh 1991).  

2.1 The pugh procedure 

In the Pugh approach, each alternative solution is ranked relative to a “datum” configuration that is used as a 

benchmark [such as the market leader] (Pugh, 1991). Each attribute of each alternative is given a score of “+”, 

“-”, or “0” for “better than the datum”, “worse than the datum” or “equivalent to the datum”, respectively. The 

scores are determined by a group of subject matter experts through deliberation and discussion. Often, if 

consensus is not reached about an attribute for an alternative, the rating of “0” is used. Some method of 

elimination of alternatives is established to cull the set of alternatives. New alternative solutions are devised, 

often involving hybrid solutions between alternatives, and added to the set of alternatives and scored. The 

procedure is iterated until the team converges to a single preferred solution. The steps to Pugh are: 

1. Gather set of initial concepts 

2. Select evaluation criteria 

3. Select one strong concept as the datum 

4. SMEs rank each criteria for every concept against datum as better (+), worse (-), same (0) 

5. Tally scores  

6. Remove weak concepts 

7. Generate new concepts 

8. Select new datum (typically strongest concept) 

9. Iterate until single concept has emerged as best 
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2.2 Pugh example 

Consider a problem where we are trying to select among a set of alternative automotive designs. Our 

criteria are fuel economy, horsepower, safety and passenger capacity. We are considering the following 

four alternatives: (1) Dodge Dart, (2) Corvette, (3) Jeep and (4) Caravan. The Dart is our current car, so 

we make it the datum and compare the alternatives to the Dart. The matrix is shown in Figure 1. 

 

Figure 1. Automobile selection Pugh Matrix 1 

Based on this evaluation, the Caravan appears to be the superior choice due to its improved safety and 

passenger capacity compared to the Dart. Having evaluated a sports car, a sport utility vehicle and 

minivan, we learned that the minivan has better performance relative to our criteria compared to our 

datum vehicle. We also learned that the sports car is clearly inferior. Looking at alternatives similar to 

the minivan, we generate two new vehicle alternatives that we think would be competitive with the 

Caravan—we include the Outback and the Tahoe. The Outback is a new concept that is essentially a new 

class of automobile. The Tahoe is sort of a hybrid between the Jeep and the Minivan. We remove the 

Corvette from the alternatives. Since the Caravan was superior in the last matrix, we make the Caravan 

the new datum, create the new matrix and evaluate the alternatives. This is shown in Figure 2. 

 

Figure 2. Automobile selection Pugh Matrix 2 

In this iteration, the Outback is superior to the Datum based on our criteria. The Jeep is clearly inferior. 

Based on this information, the Jeep might be eliminated from further evaluation and other alternatives 

added. The process is repeated until we’ve converged on a single concept that is superior.  

2.3 Assumptions behind the Pugh Method 

The Pugh Method is one of several concept selection methods that evaluate each design alternative as a 

vector of attributes and aggregate the attribute evaluations into a choice (Pugh, 1991). Other such 

methods are Quality Function Deployment (Clausing, 1994) and the Analytical Hierarchy Process 

(Saaty, 2008). The Pugh Method ranks each attribute of each alternative as “better than”, “worse than” or 

“indistinguishable from” the corresponding attribute of the datum design alternative. That is, each 

attribute of each design alternative is ordinally ranked against the corresponding attribute of the datum. 

(Ordinal refers to numbers such as first, second, tenth. This contrasts with cardinal numbers, such as 1, 7 

or 9. Arithmetic requires cardinal numbers, it does not work with ordinal numbers.) Therefore, each 

comparison is done in a pairwise fashion against the datum. The primary assumptions made when using 

the Pugh Method are outlined in the following sections.  

2.3.1 Complete ordinal ranking 

In order to ordinally rank the attributes of each design alternative against the attributes of the datum, the 

ranking for each attribute must be complete. This means that, for every pair of design alternatives, A and 

B, each attribute can be described as “A is better than B”, “B is better than A” or “neither A or B is 

better”. Completeness is necessary for the Pugh Method per the procedure in 1.1.  
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2.3.2 Transitive ordinal ranking 

The ordinal rankings of the attributes of each design alternative must also be transitive. Transitivity 

implies that, for any three designs alternatives A, B and C, “A is better than B” and “B is better than C” 

for a given attribute, then “A is better than C” for that same attribute. In the example in 1.2, if the Jeep 

has superior passenger capacity than the Dodge Dart and the Dodge Dart has superior passenger capacity 

to the Corvette, then Jeep has superior passenger capacity than the Corvette.  

2.3.3 Unrestricted ordinal ranking 

The Pugh Method, as well as any other ordinal design method, does not restrict the attribute rankings of 

the design alternatives. That is, any design alternative could be better or worse than any other design 

alternative relative to any particular attribute. 

2.3.4 Deterministic attribute values 

The Pugh Method assumes that the relative attribute values between the design alternatives is 

deterministic. In fact, all attribute values are predictions in the design process because the design has not 

yet been completed. Because the Pugh Method does not have a mechanism to handle the uncertainty 

associated with prediction or estimation, it assumes deterministic attributes or, at least, that the variability 

in the attribute values is negligible relative to the concept selection.  

2.3.5 Equally weighted attributes 

When tallying the attribute score for each design alternative, each attribute is weighted equally. An 

attribute that is better than the datum gets one added to its tally. An attribute worse than the datum gets a 

one subtracted from the tally. Therefore, all attributes have the same ability to impact the final tally and 

therefore, the final recommendation made by the matrix. In the above example, Safety, Fuel Economy 

and Horsepower are equally important to the design choice.  

2.3.6 Linear attributes 

The contribution of each attribute to the overall system utility is assumed to be linearly related to the 

attribute value. An improvement over the datum contributes one unit to the overall tally. Moreover, all 

improvements over the datum are assumed to be equally related to system value. A ten percent 

improvement in horsepower over the datum results in incrementing the tally by one unit, as does a 200% 

improvement in horsepower. Therefore, the differences in attributes values between design alternatives 

must be relatively “small,” that is, not having a substantially different impact to overall system value.  

2.3.7 Preferential independence of attributes 

The Pugh method assumes that the attributes are preferentially independent. Preferential independence 

means that, improvement or degradation in one attribute for a particular design alternative does not 

imply an improvement or degradation in another attribute value for that design alternative, and does not 

impact the contribution of any other attributes to the overall system value (Thurston, 2006). An example 

of preferentially dependent attributes might be Mean Time Between Failures (MTBF) and Mean Time to 

Repair (MTTR). If the MTBF is extremely large, then the MTTR is less important. Conversely, if the 

MTTR is extremely low, then the MTBF is less important. The Pugh Method has no mechanism to deal 

with preferential interactions among attributes. Preferential independence is a consequence of linearity, 

but is significant enough that it bears pointing out separately. 

3 SOCIAL CHOICE THEORY 

Social Choice theory is concerned with making a decision involving a group of individuals. Each 

individual in the group has preferences. These individual preferences must somehow be aggregated into 

a preference ordering used by the group. The most familiar instance of Social Choice Theory is voting in 

elections. Each individual in the group provides a statement of preference--a vote--and these votes are 

aggregated to make a selection that represents the preference of the group. Social Choice Theory has 

been studied for decades and has a substantial body of associated research.  
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3.1 Generalization of social choice 

Social Choice Theory has been shown to apply to a much broader set of problems than originally 

envisioned. Don Saari has demonstrated that the application to Social Choice is a special case of the 

“Reductionist Approach,” a class of problems that involves the following steps:  

 Decomposition of a system into parts  

 Analysis of the individual parts 

 Aggregation of the analysis results to make inferences about the system  

In the context of Social Choice, the society is decomposed into individuals. Each individual’s 

preferences are analyzed and the analysis results are aggregated using a Social Choice Function in order 

to select the winner of the election. The Social Choice Function is intended to reflect the preferences of 

the Society. One such aggregation approach is to sum each individual’s most preferred choice and select 

the candidate that is the preferred choice for the most voters--the so-called Plurality Vote (Saari, 2001). 

However, there are other methods such as Borda Count (de Borda, 1784) and Condorcet (1785). The 

Social Choice problem is graphically depicted in Figure 3. 

 

Figure 3. Graphical depiction of social choice problem 

In this problem, each voter has preferences. The preferences are an ordinal ranking of candidates. For 

example, Voter 1 in Figure 3 has the following ordinal preference ranking: 

Candidate 1 > Candidate 2 > Candidate 3 > Candidate 4  

The “>” symbol is read as “is preferred to.” These preferences are analyzed in some way and aggregated 

using some Social Choice Function (Plurality, Borda, Condorcet, etc.) into a Social Choice intended to 

reflect the “will of the voters”. However, this problem is more generic than voting in an election. Social 

Choice Theory has been shown to apply to nonparametric statistical hypothesis testing (Haunsperger and 

Saari 1992) and engineering design (Saari 2010, Hazelrigg 1996).  

3.2 Application to engineering design 

Recently, the mathematics and theory of Social Choice has been applied to engineering design (Saari 

2010, Saari and Seiberg 2001, Franssen 2005, Hazelrigg 1996, etc.). Much of Social Choice Theory 

involves the aggregation of the complete, transitive and ordinal preference rankings of individuals into a 

complete, transitive and ordinal preference ranking of the society. This aggregation has been shown to 

lead to inconsistencies that result in an inferior choice to be selected by the group (Arrow 1951, Sen 

1970). Franssen (2005) showed that the Pugh Matrix is analogous to a Social Choice problem where the 

attributes act as voters and the design alternatives act as candidates.  

3.3 Assumptions behind social choice theory 

Much of Social Choice Theory involves attempting to capture the “Will of the People” through 

aggregating their preferences using a Social Choice Function. The desired outcome is a result that is 
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considered “fair”. To this end, the Social Choice Theory relevant to this discussion requires that the 

preference profiles of each individual have the following attributes (Arrow, 1951): 

 Complete Preferences 

 Transitive Preferences 

 Unrestricted Preferences 

In Social Choice Theory, the preferences of each individual must be complete and transitive. That is, for 

any candidate A and B, either the individual prefers A to B, prefers B to A or is indifferent between A 

and B. These preferences must also be transitive, meaning that if the individual prefers A to B and 

prefers B to C, then the individual must also prefer A to C. These axioms used in Social Choice Theory 

are equivalent to the assumptions made by the Pugh Method. In Social Choice Theory, the preferences of 

the individual must be unrestricted. This means that the preference ordering of the candidates cannot be 

limited by the Social Choice Function. The Social Choice Function cannot reject the preferences of 

individuals who prefer one candidate to another. Similarly, engineering concept selection methods 

cannot assume certain attribute performance profiles cannot exist or remove attributes from selection 

method that have certain design rankings. 

The assumptions made by the Pugh Method encompass the assumptions made by Social Choice Theory 

regarding the preference profiles of individuals. Therefore, the inconsistencies described in the following 

sections are relevant to both the Social Choice problem as well as the Pugh Method. One might notice 

that there are more assumption made by the Pugh Method than Social Choice Theory. These additional 

assumptions made by the Pugh Method are the assumptions about the attributes and design alternatives 

that are required to correctly transform cardinal attributes into ordinal attribute performance profiles that 

can be evaluated independently. Once the attributes have been reduced to ordinal profiles, the 

mathematics are equivalent between Social Choice Theory and the Pugh Method. If any of the 

assumptions is rejected, then the mathematics of Social Choice Theory no longer apply. We have 

explored the impact of relaxing the assumption Equally Weighted Attributes, and will report this in a 

later paper. The remaining assumptions of the Pugh Method are sufficient to subject it to the 

inconsistencies and paradoxes identified in Social Choice Theory.  

3.4 Relevant inconsistencies in social choice 

In Social Choice Theory, paradoxes and inconsistencies have been identified and proven in the literature 

(Arrow, 1951, Sen 1970, Condorcet, 1785, Saari 2001). Many of the paradoxes involve aggregation of 

the individual preferences into a result considered “unfair.” For example, if all individuals unanimously 

agree that A is preferred to B, it would be unfair for the Social Choice Function to select B. Social 

Choice Functions which guarantee that this unfair outcome will not occur are called Pareto Efficient 

(Pareto 1927). Various Social Choice Functions can violate Pareto Efficiency (Arrow 1951).  

3.4.1 Transitive societal preferences 

Social Choice Theory requires that the preferences of each individual are transitive. If an individual 

does not have transitive preferences, they are described as “irrational” and are subject to the “Money 

Pump” argument (Peterson 2017). The Money Pump argument uses an individual with intransitive 

preferences–say she prefers Coke to Pepsi, prefers RC Cola to Coke and prefers Pepsi to RC Cola. An 

opportunistic individual could exploit this preference ordering by using the following procedure: 

1. Give the irrational individual a Pepsi 

2. Offer to sell her a Coke for 1¢ (she will since she prefers Coke to Pepsi) 

3. Offer to sell her RC Cola for 1¢ (she will since she prefers RC Cola to Coke) 

4. Offer to sell her Pepsi for 1¢ (she will since she prefers Pepsi to RC Cola) 

5. Return to Step 2 or until she has no more money  

Similarly, it is desirable for the preference ranking generated by the Social Choice Function to be 

transitive. If society preferred Bush to Nader, preferred Nader to Gore and preferred Gore 

to Bush, it is impossible to select the presidential candidate that society prefers because, no matter who 

is selected, there is a candidate society prefers more–no best candidate exists under intransitive 

societal preferences. 
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3.4.2 Condorcet paradox 

The Condorcet voting method involves performing a pairwise comparison between each pair of 

candidates and aggregating the pairwise results into a candidate selection. The Condorcet Winner is 

defined as the candidate who is preferred by a majority of voters to every other candidate in a pairwise 

vote. For example, consider the three voter profiles shown below: 

 Voter 1: Candidate 1 > Candidate 2 > Candidate 3 

 Voter 2: Candidate 2 > Candidate 1 > Candidate 3 

 Voter 3: Candidate 1 > Candidate 3 > Candidate 2 

Performing the Condorcet method shows that the majority of voters (2/3) prefer Candidate 1 to 

Candidate 2 and a majority of voters (all of them) prefer Candidate 1 to Candidate 3. Therefore, the 

Condorcet winner would be Candidate 1. However, consider the three voter profiles below: 

 Voter 1: Candidate 1 > Candidate 2 > Candidate 3 

 Voter 2: Candidate 3 > Candidate 1 > Candidate 2 

 Voter 3: Candidate 2 > Candidate 3 > Candidate 1 

Using this profile, a majority of voters (2/3) prefer Candidate 1 to Candidate 2, a majority (2/3) of voters 

prefer Candidate 2 to Candidate 3 and a majority of voters (2/3) prefer Candidate 3 to Candidate 1. A 

Condorcet Winner does not exist. Moreover, a winner does not exist because the resulting preferences of 

the group are intransitive. Clearly, this Social Choice Function does not guarantee that the resulting 

Societal Preference Profile is transitive. Saari and Sieberg (2001) show that this outcome occurs 

alarmingly often when performing a decision procedure involving paired comparisons. 

4 THEORETICAL EVALUATION OF PUGH METHOD 

We have evaluated the Pugh Method in a two-step process. In the first step, reported here, we assume 

that all the assumptions made by the Pugh Method are valid for engineering design. That is, the concept 

selection problem can be cast as an ordinal ranking of attributes performance profiles that are complete 

and transitive. In this context, the Pugh Method is subject to the paradoxical outcomes of Social Choice 

Theory. The second evaluation step, in which Pugh will be compared to a direct measure of preference 

as a function of attributes, cannot be reported in the space here, but will be shown in a later paper.  

Making all of the assumptions made by the Pugh Method, we will analyze the potential paradoxical 

outcomes generated by aggregating the ordinal performance profiles using the Pugh Method. The Pugh 

Method is a pairwise aggregation procedure because the attributes of each design alternative are 

compared to the datum and aggregated. Therefore, the Condorcet Paradox is expected to apply.  

4.1 Transitive design alternative ordering 

Similar to the Social Choice requirement for Transitive Societal preferences, engineering Concept 

Selection methods require transitive design alternative rankings. As in the Social Choice context, a best 

candidate cannot be selected from intransitive rankings because a best candidate does not exist.  

4.2 Condorcet triples in pugh method 

Consider the three microwave designs and three attributes shown in Figure 4. 

In this example, more power is preferred, lower cost is preferred, and more volume is preferred. In order 

to evaluate these designs using the Pugh Method, a datum must be selected. Selecting Design A as the 

datum and evaluating the matrix yields the Pugh Matrix shown in Figure 5 with the aggregated scores 

included at the bottom of the matrix. 

  

Figure 4. Microwave design selection problem 
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Figure 5. Microwave selection using Pugh, A as datum 

Using the Pugh Method, Design B would emerge as the best design alternative. However, selecting 

Design B as the datum yields the matrix shown in Figure 6. 

  

Figure 6. Microwave selection using Pugh, B as datum 

With Design B as the datum, Design C emerges as the preferred design alternative. Finally, selecting 

Design C as the datum yields the matrix shown in Figure 7. 

 

Figure 7. Microwave selection using Pugh, C as datum 

With Design C as the datum, Design A emerges as the best design. The selected design is purely a 

function of which design alternative was selected as the datum. No matter which design is selected, a 

better design can be found by selecting a different datum. This is an intransitive outcome and is a 

function of the Condorcet Paradox. The attribute performance profiles are shown below: 

 Power: Design B > Design A > Design C 

 Cost: Design A > Design C > Design B 

 Volume: Design C > Design B > Design A 

4.3 Other Pugh Method inconsistencies 

Saari and Seiberg (2001) conclude that the Condorcet Paradox is a result of “lost information” from 

only looking at each pair in isolation. Though the Pugh Method is subject to the Condorcet Paradox, it 

has additional paradoxical outcomes due to not evaluating all the pairs. The Pugh Method only 

evaluates each design alternative to the datum--it does not compare the design alternatives to each 

other. In the Microwave example above, when Design A is the datum, Design A is compared to 

Design B and Design A is compared to design C. Design B and Design C are not compared. This leads 

to the differences between Design B and Design C being neglected if they are both better than the 

datum or both worse that the datum. Consider the microwave design problem with the following 

preference profile: 

 Power: Design A > Design B > Design C 

 Cost: Design A > Design B > Design C 

 Volume: Design B > Design C > Design A 

1252

https://doi.org/10.1017/dsi.2019.130 Published online by Cambridge University Press

https://doi.org/10.1017/dsi.2019.130


ICED19  

Design A is the Condorcet Winner in this example. Design A is better than Design B and Design C for 

both Power and Cost. However, when Design C is the datum, the differences between Design A and 

Design B are neglected for Cost and Power. The Pugh Matrix for this problem is shown in Figure 8. 

 

Figure 8. Pugh Method paradoxical outcome 

Despite Design A being the Condorcet Winner in this example, the Pugh Method recommends Design B 

as the best design alternative.  

 

Figure 9. Probability of correct ordering of alternatives in Pugh Method 

4.4 Frequency of occurrence  

To determine how frequently paradoxical outcomes occur in the Pugh Method, we performed the Pugh 

Method procedure on every permutation of preference orderings for various numbers of design 

alternative and attributes. This brute force approach quickly becomes unwieldy. As the number of design 

alternatives and attributes increases beyond five the number of permutations reaches the billions. The 

results of this analysis is shown in Figure 9. 

Figure 9 shows, for example, that the frequency of a paradoxical outcome (an intransitive preference 

loop or an incorrect choice due to incomplete comparisons) from the Pugh Method is 38% for a concept 

selection problem of four alternatives and five attributes.  

5 CONCLUSION 

Debate between the Pugh method and decision-based design has focused on creativity and iteration (Frey 

et al., 2009). Here we concentrate simply on the step in which Pugh ranks design alternatives. The +, -, 0 

paired comparisons which Pugh regards as a virtue of simplicity, we find as an unnecessary sacrifice of 

information that may be essential to a rational choice. Pugh lacks the ability to express degrees of 

difference in attributes, nonlinearity of attributes, uncertainty or preference-dependent interaction of 

attributes, all of which may be known to designers, but which they must put aside to use Pugh. We seek 

instead an even simpler evaluation in which designers bring what they know about each alternative along 

with their preferences, and express that information and those preferences with basic mathematics. Good 

designers enjoy and thrive on math, they do not hide from numbers. 
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