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Abstract. In his celebrated paper ‘Generic Projections’, Mather obtained the key result that a
generic projection to an affine subspace of a smooth submanifold in Euclidean space is jet-

transverse to any ‘modular’ submanifold of (multi-) jet space. He also gave an explicit strati-
fication by modular submanifolds, and used it to conclude that the projection, if in the nice
dimensions, is generically (C1-) stable. In this article, we extend the result to the semi-nice

dimensions (where only C0-stability is obtained), using the stratification given in our book.
We first recall the definitions of the nice and semi-nice dimensions, review the main known
results which involve them, and proceed to the statement of our main results. Next we discuss

the condition of modularity, and present a number of methods for establishing modularity of
particular strata. Finally, we show that all the strata needed for the main result are covered by
these methods.
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Introduction

In a celebrated paper [11], Mather showed that if Nn is a (compact) smooth sub-

manifold of a Euclidean space E, and p a generic linear projection of E onto a p-

dimensional subspace Yp such that ðn; pÞ are nice dimensions, then p jN : N ! P is

a (C1-) stable map. The main objective of this paper is to obtain a corresponding

result with ‘nice’ replaced by ‘semi-nice’ and ‘C1-stable’ by ‘C0-stable’. The key to

this extension is the analysis in our book [6] of topological stability.

In the first section, we give the definitions of the nice and semi-nice dimensions and

review the main known results which involve them. We then give the full statement

of Mather’s theorem on generic projections, and recall how it, and the recent exten-

sion by [2], follow from results about transversality and stratifications. We proceed

to the statement of our main result, and reduce this to the problem of constructing

enough modular submanifolds to cover a certain subset of jet space.

In Section 2 we define and discuss the condition of modularity, and present a num-

ber of methods for establishing modularity of particular strata; in particular, we

establish modularity of all unimodal strata. We then show that enough boundary
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strata to give our main result are covered by these methods, treating the cases n > p

in Section 3, and the cases n4p of finite maps in Section 4.

1. Statement of Results

1.1. NICE AND SEMI-NICE DIMENSIONS

We collect here a number of results which are somewhat scattered in the literature.

The following key definition of [5] extends one of Mather [9, x7].

Define in turn Wk
dðn; pÞ as the set of jets in Jkðn; pÞ of Kk-codimension at least d;

mWk
dðn; pÞ as the union of irreducible components of Wk

dðn; pÞ of codimension at most

d�m in Jkðn; pÞ;

mWkðn; pÞ :¼
[
d50

mWk
dðn; pÞ;

mskðn; pÞ as the codimension in Jkðn; pÞ of mWkðn; pÞ; and msðn; pÞ :¼

limk!1
mskðn; pÞ.

This can be rephrased as follows. For given n; p and k, consider the classification

of k-jets in Jkðn; pÞ under the (algebraic) action of the contact group Kk
ðn; pÞ. By gen-

eral theory, there exists a finite partition of Jkðn; pÞ into Kk
ðn; pÞ-invariant submani-

folds Sa on each of which the action has a smooth quotient space Qa. For any m,

write mBkðn; pÞ for the union of those Sa with dimQa5m, and let mskðn; pÞ be the

codimension in Jkðn; pÞ of mBkðn; pÞ. It is easy to see that mskðn; pÞ decreases as k

increases: write msðn; pÞ for its final constant value. Roughly speaking, msðn; pÞ is

the codimension of the set of jets with K-modality 5m.

The value of 1sðn; pÞ was calculated by Mather [10]; the value of 2sðn; pÞ by Wall

(see [12] for n > p and [14] for n4p). The results may be tabulated as follows.

THEOREM 1.1. Let 1t and 2t be given as follows:

Then, in all cases,

n < 1sðn; pÞ , n < 1tðn� pÞ;

n4 2sðn; pÞ , n4 2tðn� pÞ; n < 2sðn; pÞ , n < 2tðn� pÞ:

Indeed, for n54, the functions

1sðn; pÞ ¼ 1tðn� pÞ and 2sðn; pÞ ¼ 2tðn� pÞ

depend only on n� p.

s 4�4 {�3, �2, �1} 0 1 2 {3,4,5,6,7} 57

1tðsÞ 8� 6s 9� 6s 9 9 8 sþ 7 sþ 7
2tðsÞ 7� 7s 16� 4s 13 11 13 2sþ 4 sþ 11
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The importance of these calculations is shown by the following results.

THEOREM 1.2 ([9]). For N compact, C1-stable maps are dense in C1ðNn;PpÞ if and

only if n < 1sðn; pÞ.

THEOREM 1.3 ([6]). If n < 2sðn; pÞ there is an explicitly given stratification Bðn; pÞ of

a subset of Jkðn; pÞ ð for large enough kÞ whose complementXkðn; pÞ is semi-

algebraic and of codimension 2sðn; pÞ, such that a map in C1ðNn;PpÞ ðN compactÞ is

topologically stable if and only if its multijet extensions avoid Xkðn; pÞ and are multi-

transverse to Bðn; pÞ.

THEOREM 1.4 ([4, 5]). Map-germs ðRn; 0Þ ! ðRp; 0Þ are finitely C1-determined in

general if and only if n4 2sðn; pÞ.

A few comments are in order. Mather’s Theorem 1.2 is well known. Pairs ðn; pÞ

satisfying the condition n < 1sðn; pÞ are called nice dimensions. Geometrically the

condition means that a generic map will have no germ whose jet requires any moduli

for K-equivalence.

The topological stability Theorem 1.3 is the main result of [6]. Although it may be

possible to extend the range of dimensions in this result, numerous strata obstruct

the extension of the calculations. Also, the above statement fails to mention one qua-

lification, as follows.

Consider the stratum MFU6 ðxz; xyþ z3; x2 � y2 þ vz3; yz2Þ. On [6, p. 599] we

exhibit a deformation (when the þ sign is chosen) which distinguishes the case

v ¼ 0 from the cases v 6¼ 0. However, this deformation does not fit the criteria

which allow us to prove that the case v ¼ 0—denoted MFU6ð0Þ—is ST-distinct

from the rest, and hence that transversality to MFU6ð0Þ is necessary for topo-

logical stability. (The codimension 7ð p� nÞ þ 12 of MFU6 exceeds 2sðn; pÞ if

p� n52, so unless p� n ¼ 1 a topologically stable map will avoid the whole

of MFU6 anyway). However, taking MFU6ð0Þ as a separate stratum does give

a stratification such that transversality to it is sufficient for topological stability.

This suffices for the needs of this paper, so this case will not appear as excep-

tional below.

It seems natural to call the pairs with n < 2sðn; pÞ the semi-nice dimensions. They

are those where a generic map will have no germ of K-modality 52.

For Theorem 1.4, the original statement was a little more complicated, and

was clarified by the proof in [14] that the values of 2s calculated over R and

C are the same. For finite determinacy it suffices to avoid germs of K-modality

52 in the complement of the origin, so there is a slight relaxation of the dimen-

sion condition. We will refer to pairs with n4 2sðn; pÞ as weakly semi-nice, to

resolve the inconsistency in terminology between [3] and the older references. See

Table 1.
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1.2. GENERIC PROJECTIONS

The next result shows the relevance of nice dimensions to the topic of this paper: our

main result will extend it to the semi-nice dimensions. Before stating the theorem,

we introduce some notation which will be fixed for the rest of this section.

Let Xq and Yp be real vector spaces with q > p; write LðX;YÞ for the set of lin-

ear maps X!Y. Let Nn be a compact smooth manifold, and f : N ! X a smooth

map.

THEOREM 1.5 ([11, Theorem 3]). Suppose f an embedding and ðn; pÞ in the nice

range. Then for almost all ‘ 2 LðX;YÞ, ‘ � f is stable.

Theorem 1.5 is deduced from a more particular result referring to individual strata

in jet space.

THEOREM 1.6 ([11, Theorem 1]). Let f be an embedding and W be a modular

submanifold of some jet space rJ
kðN;YÞ. Then for almost all ‘ 2 LðX;YÞ, ‘ � f is

transverse to W.

Let F : A�N ! Y be a smooth map, W a smooth submanifold of Y. For a 2 A,

write Fa : N ! Y for the map with FaðxÞ ¼ Fða; xÞ. For any smooth f : N ! Y and

x 2 N, set dð f;W; xÞ :¼ dimY� dimðTWfx þ dfðTNxÞÞ if fðxÞ 2 W, and 0 if not.

We will use ‘almost all’ in the sense of Lebesgue measure.

LEMMA 1.7 ([11, Lemma 2]). Suppose that for all ðx; aÞ 2 N� A either

dðFa;W; xÞ ¼ 0 or dðF;W; ðx; aÞÞ < dðFa;W; xÞ. Then Fa is transverse to W for almost

all a 2 A.

Mather uses this lemma, calculation of tangent spaces, and a bootstrap induction

argument to prove Theorem 1.6. In [2, Theorem 3.4] a careful re-presentation of

the proof of Lemma 1.7 is given, leading on to the following generalisations.

THEOREM 1.8 ([2, Theorem 2.2]). Let f be a C1-stable map and W be a modular

submanifold of some jet space rJ
kðN;YÞ. Then for almost all ‘ 2 LðX;YÞ, ‘ � f is

transverse to W.

THEOREM 1.9 ([2, Theorem 2.3]). Suppose f a C1-stable map and ðn; pÞ in the nice

range. Then for almost all ‘ 2 LðX;YÞ, ‘ � f is stable.

The proof of Theorem 1.5 or Theorem 1.9 involves four steps: the transversality

Theorem 1.6 or 1.8, Mather’s characterisation [9] of C1-stability by multi-transvers-

ality to strata in jet space, the existence of a finite stratification Aðn; pÞ of jet space
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such that every stratum which is not a K-orbit has codimension 51sðn; pÞ, and the

proof that all the strata of Aðn; pÞ are modular.

In [11], Mather sketches a proof that this modularity property holds in his case.

More precisely he exhibits, for all nice dimensions ðn; pÞ and large enough k, a col-

lection of modular strata of Jkðn; pÞ, each of codimension 51sðn; pÞ, whose comple-

ment is a finite union of JkK-orbits of K-sufficient jets.

Correspondingly, our main technical result is

THEOREM 1.10 (i) If ðn; pÞ are semi-nice dimensions, the strata of the canonical

stratification Bðn; pÞ are modular.

ðiiÞ The complement Xkðn; pÞ is covered by a finite union of modular submanifolds.

THEOREM 1.11. Suppose f an embedding, or indeed any C1-stable map, and ðn; pÞ

in the semi-nice range. Then for almost all ‘ 2 LðX;YÞ, ‘ � f is topologically stable.

Proof. The result follows at once follows from Theorems 1.3, 1.6 (or 1.8) and

1.10. &

There is no need to specify in the statement that ‘ must be surjective, though

(unless p is large) only surjective ‘ can satisfy the conclusion. Since topological sta-

bility (like stability) is an open condition, the set of ‘ for which the conclusion holds

is open, as well as dense.

It would be interesting to decide whether the hypothesis can be weakened to

demand merely topological stability of f, and whether the result can be extended

outside the semi-nice range.

We defer the definition of modularity to Section 2.2. The proof of Theorem 1.10

will be given in Section 3 for the cases n > p and in Section 4 for the cases n4p. It

might be expected that invariance of W under K-equivalence would suffice for

Theorem 1.6. Mather observes that in the nice dimensions, it follows from Theorem

1.5 that it does. We now show that

THEOREM 1.12. Let f be C1-stable, and W be any K-invariant submanifold of jet

space rJ
kðN;YÞ. Suppose ðn; pÞ are semi-nice dimensions. Then for almost all

‘ 2 LðX;YÞ; ‘ � f is transverse to W.

Proof. By the previous results, we may assume that multitransversality already

holds to all strata of Bðn; pÞ. In particular, the only strata of Bðn; pÞ that are

encountered are those of codimension4n. By the very definition of ‘semi-nice’, these

strata are of modality at most 1.

Now the K-invariant manifold W is itself stratified by its intersections with the

strata of Bðn; pÞ, and any map transverse to these intersections is automatically trans-

verse to W. But each such intersection is either itself a stratum of Bðn; pÞ, for which

transversality already holds, or has codimension 1 in a stratum of modality 1, and

hence is a finite union of K-orbits. The proof is then completed by a further applica-

tion of Theorem 1.8. &
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In [11, Theorem 5] a negative result on genericity of projections is obtained under

certain dimensional restrictions. However, it is made explicit in the course of the

proof that what is really required is that finite C1-determinacy does not hold in gen-

eral. Moreover, Mather’s constructions give K-invariant manifolds. We can thus

restate his conclusion as

THEOREM 1.13 ([11]). If the dimensions ðn; pÞ are not weakly semi-nice, there exist a

manifold N, a smooth embedding f : N ! X, a smooth K-invariant immersed manifold

W in JkðN;YÞ, and an open nonvoid set L0 in LðX;YÞ such that, for any ‘ 2 L0, ‘ � f is

not transversal to W.

Mather gives precise details about the embedding f, but makes clear that all that is

needed is for f to be ‘sufficiently twisted’-kth order non-degenerate will suffice. This

result shows that the conclusion of Theorem 1.12 fails outside the weakly semi-nice

dimensions, so just leaves the boundary cases n ¼ 2sðn; pÞ in doubt.

As in [11], the proofs carry over without essential change to the complex case.

2. Modularity

In this section we first introduce notation and some basic results for multi-jets, and

then define modularity. We then obtain general criteria for establishing modularity,

which will be applied later to the particular examples we need.

2.1. MULTI-JETS

Before giving the definition, we recall some facts about multi-jet paces. If Nn and Pp

are smooth manifolds, we have the space JkðN;PÞ of k-jets from N to P, which fibres

over N� P. Denote by NðRÞ the configuration space of R-tuples of distinct points

in N. Then [9, x1], the multi-jet space RJkðN;PÞ is defined to be the preimage of

NðRÞ under the projection ðJkðN;PÞÞR!NR. It will be convenient here to consider

R as a set, with cardinality r.

We also consider the projection to PR. Let z have components fzi j i 2 Rg, and

denote by r the projection JkðN;PÞ ! P. Denote by pðzÞ the partition of R corre-

sponding to the equivalence relation on R given by i � j : if rðziÞ ¼ rðzjÞ. For any

partition p of R, set pJkðN;PÞ :¼ fz 2 r JkðN;PÞ j pðzÞ ¼ pg. The main case of interest

is the partition with a single part.

There is a natural action of A ¼ Diff ðNÞ �Diff ðPÞ on rJ
kðN;PÞ; it preserves the

subspaces pJkðN;PÞ.

Denote the fibre of rJ
kðX;YÞ ! XðRÞ over x by rJ

kðX;YÞx and the fibre of

rJ
kðX;YÞ ! XðRÞ � YR over ðx; yÞ by rJ

kðX;YÞx;y. Then there are natural identifica-

tions of tangent spaces at the multi-jet z of a map f : N ! P:

TðrJ
kðX;YÞxÞz ffi Jkð f �TYÞx and TðrJ

kðX;YÞx;yÞz ffi mxJkð f �TYÞx:

186 A. A. DU PLESSIS AND C. T. C. WALL

https://doi.org/10.1023/A:1021791914076 Published online by Cambridge University Press

https://doi.org/10.1023/A:1021791914076


In each case the right hand side has a natural module structure over the ring JkXx of

k-jets at x of smooth functions on X.

Two multi-jets z and z0 are said to be contact equivalent [9, x4] if zi and z0i are con-

tact equivalent for each i 2 R, and pðzÞ ¼ pðz0Þ. Thus if W is a subset of pJkðN;PÞ

saturated for contact equivalence, then for each i 2 R the jets zi with z 2 W form

a subset Wi � JkðN;PÞ saturated for contact equivalence, and W ¼ Pi2R

Wi \ pJkðN;PÞ. Further, W is a manifold if and only if each Wi is. Indeed, we have

TzWx;y ¼ �i2RTzi
Wi;xi

.

Note that according to [9, 4.5], the tangent space to the contact class containing

the k-jet of the map f at the finite set S is

ðtfðmSyðNÞSÞ þ ofðyðPÞfðSÞÞ þ ð f
�mfðSÞ þmkþ1

S Þyð f ÞSÞ mkþ1
S yð f ÞS

�
If we restrict to the fibre of the contact class over fðSÞ ¼ y 2 P, this simplifies to

ðtfðmSyðNÞSÞ þ ð f
�my þmkþ1

S Þyð f ÞSÞ=m
kþ1
S yð f ÞS

If further S is a single point x and we identify the source with Rn and the target with

Rp using local coordinates at x and y respectively, it simplifies further.

We introduce the notation used for calculations. Write En for the ring of germs of

smooth functions at the origin in Rn; mn for the maximal ideal in it of functions

vanishing at the origin. Denote by E�p
n the free module of rank p over En: we can

identify it with the module yð f Þ of vector fields along the smooth map-germ

f : ðRn; 0Þ ! ðRp; 0Þ, where the coordinate vectors represent the unit vectors Ei paral-

lel to the coordinate axes in the target Rp. The basic vector fields in the source Rn will

be denoted @=@xi, or @i for short. Then

TRð f Þ ¼
Xn

1

mn@if and TCð f Þ ¼
Xp

i;j¼1

EnfiEj;

TKð f Þ is their sum.

Now the tangent space to the contact class of the k-jet of the map f at 0 is

ðtfðm�n
n Þ þ ð f

�mp þmkþ1
n Þ � E�p

n Þ=m
kþ1
n � E�p

n :

2.2. DEFINITION OF MODULARITY

Mather [11] defined a smooth submanifold W of multi-jet space rJ
kðX;YÞ to be mod-

ular if

(i) It is A-invariant, and lies in pJkðX;Y Þ for some partition p, and
(ii) For any x 2 XðrÞ and smooth f : X ! Y with z ¼ r jkfðxÞ 2 W, the subspace

Eð f; x;W Þ of Jkð f �TYÞx corresponding to ðTWx;yÞz is a JkXx-submodule.

As to (i), the condition that W�p JkðX;YÞ for some partition p is automatic in the

examples one wishes to take. The condition of A-invariance is essential to the main

result [11, Theorem 1], as Mather shows in [11, Theorem 4]. In fact the submanifolds
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W arising in the criterion of [6] for topological stability are invariant under contact

equivalence, and this will be important for us.

The main point of the condition, however, and the reason for the name, is condi-

tion (ii). As Mather observes [11, p. 234], it follows from the formula for the tangent

space to a K-orbit ([7, 7.4], or [6, p. 23]) that any K-orbit is modular. Mather also

showed that Thom–Boardman strata are modular, but apart from the first order

cases Sr, this is not of use to us.

Now suppose also that W is invariant under contact equivalence. Then it follows

from the above calculation of tangent spaces that W is determined by submanifolds

Wi of monojet space, and W is modular if and only if each Wi is. Thus in the study of

modularity it suffices to work with monojets.

We re-state condition (ii) for modularity in this case. The tangent space to JkðX;YÞ

at a point z which is the k-jet of f at ðx; yÞ can be identified with yð f Þ=mkþ1
x � yð f Þ or,

in terms of local coordinates, E�p
n =m�p

n ; the tangent space to W is a subspace of this.

Modularity requires that this subspace is a module over JkXx, i.e. Ex=mkþ1
x . Equiva-

lently, we can lift the tangent space of W by forgetting the denominator, and requir-

ing that the resulting subspace of E�p
n is a module over En.

2.3. GROUP ACTIONS

To verify modularity for a particular example we need to be able to calculate tangent

spaces to submanifolds of jet space – and also to prove that our example defines

a submanifold – using data convenient for defining an example, which may take

a form such as: the K-classes of the germs ft ¼ f0 þ ta : ðCn; 0Þ ! ðC
p; 0Þ. If the

K-orbits of the k-jets of the ft all have the same codimension (if n > p this is equiva-

lent to constancy of the Tjurina numbers tð ftÞ) we may use the following easy

lemma, somewhat in the style of [8, 3.1].

LEMMA 2.1. Suppose given a smooth action of a Lie group G on a manifold M and a

smooth submanifold V � M such that

ðaÞ dimG:x is constant for x 2 V, and

ðbÞ for all x 2 V, TxV \ TxðG:xÞ ¼ 0. Then

ðiÞ G:V is a smooth submanifold, and

ðiiÞ we have TxðG:VÞ ¼ TxVþ TxðG:xÞ.

Proof. It suffices to work locally at a point x 2 V. From the group action we have

an exact sequence 0! T1ðGxÞ ! T1G ! TxðG:xÞ ! 0; where Gx denotes the iso-

tropy group of x. Pick a germ H of submanifold at 1 2 G with T1H a complementary

subspace to T1Gx in T1G. By (a), the dimension of T1ðGyÞ is constant for y near x, so

this subspace varies continuously, so T1H is also complementary to T1Gy for y near x.
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Then T1H maps isomorphically to T1ðG:yÞ, so H is locally diffeomorphic to G:y.

Thus H� V locally maps onto G:V.

By (b) the differential of the map H� V!M given by restricting the G-action is

injective at ð1; yÞ for y near x. Thus the map from H� V to M is locally an immer-

sion, with image G:V. Both conclusions now follow. &

However, in many of the examples we wish to include, the hypothesis of constant

dimension is not satisfied. A typical example is with M ¼ Jkðn; 1Þ, V the (linear)

space of jets of functions of weight5d (with respect to some assignment of (positive)

weights wi to the variables xi), and G the group of right equivalences. Here V satisfies

(ii) of the definition of modularity, but is not G-invariant, and G:V is usually not a

manifold. The following covers what we need.

LEMMA 2.2. Suppose given a smooth action of a Lie group G on a manifold M,

a submanifold N � M transverse at each point to the G-orbit through that point,

and a smooth submanifold V � N such that G:V \N ¼ V. Then

ðiÞ G:V is a smooth submanifold, and

ðiiÞ for each x 2 V, TxðG:VÞ ¼ TxVþ TxðG:xÞ.

Proof. At each point x 2 V, the composite T1G ! TxG:x � TxM ! TxM=TxN is

surjective. Thus the dimension of the kernel Kx is independent of x, and Kx depends

smoothly on x. Pick a germ H of submanifold at 1 2 G with T1H a complementary

subspace to Kx in T1G: then for all y near x in V, T1H is complementary to Ky in

T1G. Hence the map H�N ! M induced by the group action is a local diffeo-

morphism at ð1; yÞ for all such y.

Now the image of H� V is a submanifold near x, and is clearly contained in G:V.

The result will thus follow if we can show that the opposite inclusion holds locally.

But Kx is the tangent space to the local stabiliser of N, and hence, by hypothesis, also

stabilises V, so locally G:V is the image of G� V, hence of H� Kx � V, hence of

H� V. &

2.4. LINEARLY ADAPTED COORDINATES

We next describe reduction using linearly adapted coordinates. The coordinates

ðx; yÞ are said to be linearly adapted for the map-germ f if we have

yi � fðxÞ ¼ xi ð14i4rÞ; j1ðyi � f Þ ðxÞ ¼ 0 ðr < i4nÞ:

The concept is introduced by Mather early in [9] and discussed more fully in [9,

xx9, 10]. We recall some of his results, in simplified notation. In particular, we work

in Jk throughout, and suppress the k from the notation.

Define Zrðn; pÞ to be the subset of Jkðn; pÞ of jets of rank r, and write Lrðn; pÞ for

the set of those which are linearly adapted. Also write Z0
r ðn; pÞ for the intermediate
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set consisting of the jets in Zrðn; pÞ of germs f such that f �y1; . . . ; f �yr; xrþ1; . . . ; xn

form local coordinates in the source. Clearly Z0
r ðn; pÞ is a Zariski-open subset of

Zrðn; pÞ meeting all K- (even all L-) orbits. We have, in particular, Z0ðn; pÞ ¼

Z0
0ðn; pÞ ¼ L0ðn; pÞ.

For any z 2 Z0
r ðn; pÞ define coefficients ai;j 2 R for 14i4r; r < j4p by

dðyj � f Þð0Þ ¼
Xr

1

ai;jdðyi � f Þð0Þ;

then define local diffeomorphisms h of Rn, h0 of Rp by

xi � h ¼
yi � f ð14i4rÞ;
xi ði > rÞ;

�
yi � h0 ¼

yi ð14i4rÞ;
yi �

Pr
1 aj;iyj ði > rÞ:

�

Then h0 � f � h�1 is linearly adapted, and we have constructed a local section b of the

group action Ak
� Lrðn; pÞ �!

a
Zrðn; pÞ; indeed, we have a subgroup A0 such that

A0 � Lrðn; pÞ ffi Z0
r ðn; pÞ.

Write I : Rn�r
! Rn for the inclusion, J : Rp

! Rp�r for the projection, and define

lð f Þ :¼ J � f � I. Thus l : Lrðn; pÞ ! Z0ðn� r; p� rÞ. The K-orbits X in Zrðn; pÞ cor-

respond bijectively to K-orbits X0 in Z0ðn� r; p� rÞ: we will say, as in [6], that such

orbits are EK-equivalent. Indeed, we have X0 ¼ lðX \ Lrðn; pÞÞ and X ¼ Kl�1ðX0Þ.

The construction also shows that K-invariant submanifolds W of Zr correspond

bijectively, by the same formulae, to K-invariant submanifolds W0 of Z0, and allows

comparison of tangent spaces.

The next result will allow us to ignore superfluous coordinates in the calculations

to follow.

PROPOSITION 2.3. The K-invariant submanifold W of Zrðn; pÞ is modular if and

only if the corresponding submanifold W0 of Z0ðn� r; p� rÞ is.

Proof. For this proof, we write x ¼ ðx1; . . . ; xn�rÞ for coordinates in Rn�r and

similarly use u for coordinates in Rr and y for coordinates in Rp�r, so that elements

of Lrðn; pÞ have the form ðx; uÞ 7! ðgðx; uÞ; uÞ, and IðxÞ ¼ ðx; uÞ, Jðy; uÞ ¼ y. The map

induced by l on tangent spaces to jet spaces is given (modulo mkþ1) by

Tlðf1ðx; uÞ; . . . ;fpðx; uÞÞ ¼ ðf1ðx; 0Þ; . . . ;fp�rðx; 0ÞÞ:

The tangent space to Lrðn; pÞ is given (modulo mkþ1) by Ep�r
n � 0. It is now

immediate that if z is a point of W \ Lrðn; pÞ such that TzW is an Ex;u-module, so

is the tangent space TzW \ TLrðn; pÞ at z to W \ Lrðn; pÞ. Now applying l means

ignoring the last r components and setting u ¼ 0 in the rest. This gives an Ex-module.

But this is the tangent space at lðwÞ to W0 ¼ lðW \ Lrðn; pÞÞ. Thus W0 is modular

if W is.

Now suppose W0 modular. Let z 2 W \ Lrðn; pÞ let ðf1; . . . ;fpÞ 2 TwW, and let

c 2 Ex;u. We wish to show that c:ðf1; . . . ;fpÞ 2 TwW. Applying l, we see it is
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sufficient to show that cðx; 0Þ:ðf1ðx; 0Þ; . . . ;fp�rðx; 0ÞÞ 2 TlðwÞW
0. But this follows

since W0 is modular and ðf1ðx; 0Þ; . . . ;fp�rðx; 0ÞÞ 2 TlðwÞW
0. Since W is the K-

saturation of W \ Lrðn; pÞ, it follows that W is modular. &

2.5. THE SPLITTING THEOREM

The enumeration of strata is most conveniently accomplished using a number of

techniques for reducing a problem to one previously resolved. In this subsection

we establish modularity for strata obtained by Thom’s splitting theorem. Let us

recall it briefly.

The splitting theorem applies to (finitely determined) function-germs, and states

that any such germ f is (right) equivalent to one of the form

gðx1; . . . ; xrÞ þ
Pn

rþ1�x2
i , where g has zero 2-jet. Moreover, the equivalence class

of f determines that of g. The integer r is called the corank of f. We also say that f

is an ðn� rÞ-fold suspension of g.

LEMMA 2.4. Let W be a modular submanifold of function-germs with zero 2-jets.

Then the K-saturation Ws of the set of function-germs obtained by s-fold suspension is

also a modular submanifold.

Proof. Since suspension (with fixed signs �) is an embedding of the space of

maps, the s-fold suspension of W is a manifold whose tangent space is the image of

that of W under the natural embedding Er ! Erþs.

Let f ¼ gðx1; . . . ; xrÞ þ
Prþs

rþ1�x2
i be an s-fold suspension of g. The tangent space

TKf at f to the K-orbit of f is the ideal in Erþs generated by f and its first order partial

derivatives; in particular, it includes the ideal Is generated by xrþ1; . . . ; xrþs. Now we

can identify Erþs=Is with Er, and the image of TKf in Er is thus just TKg, which is

contained in TgW.

Thus TKfþ TfW has the same codimension as W, thus is independent of the

choice of g 2 W. Hence we have a manifold, whose tangent space is the preimage

of the ideal TgW under the projection Erþs ! Erþs=Is ffi Er, and hence is an ideal

in Erþs. &

By adapting the argument slightly, we see that the converse also holds.

2.6. LOW DEGREES

Consider the question of modularity of a K-invariant submanifold W of Jk. If k ¼ 1,

W is necessarily a finite union of classes Sr, each of which is a J1K-orbit, so modu-

larity is automatic. This proves (i) of

LEMMA 2.5. ðiÞ Any invariant submanifold of J1 is modular.

ðiiÞ If W is a modular submanifold of Jk and K > k, then the preimage W0 of W under

the natural projection JK ! Jk is modular.
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ðiiiÞ An invariant submanifold of Jk which is the K-saturation of a family of maps

with the same ðk� 1Þ-jet is modular.

ðivÞ An invariant submanifold of J2 contained in some Sr is modular.

Proof. The tangent space to W0 is the preimage of that of W under the projection

ðEn=mKþ1Þ
�p
! ðEn=mkþ1Þ

�p, so if the latter is a En=mkþ1-module, the former must

be a En=mKþ1-module.

This proves (ii): now (iii) is a special case of (ii) since a JkK-orbit is modular. As to

(iv), let k ¼ 2 and suppose that W � Sr for some r. Then W is the saturation of a

partial unfolding of some f by terms of degree exactly 2, and if X is the K-orbit of

f, TfW ¼ TfXþ A for some A � m2
n:yðf Þ. Now modularity follows since TfX is a

Ex-module, X being an orbit, and m annihilates A modulo m3
n:yð f Þ. &

We will make frequent use of this, and recall the notation introduced by Mather

[10, p. 237]. Suppose x1; . . . ; xr are indeterminates, f1; . . . ; fq a set of power series

(in practice, always polynomials) in x1; . . . ; xr. Define

Qðx; f Þ ¼ Qðx1; . . . ; xr; f1; . . . ; fqÞ :¼ R½½x1; . . . ; xr��=hf1; . . . ; fqi

and, if k is a positive integer or 1,

Qkðx; f Þ :¼ R½½x1; . . . :xr��=ðhf1; . . . ; fqi þmkþ1
r Þ:

If z is the k-jet of the map f with components the fi, QðzÞ is defined to be Qkðx; f Þ.

Now define

Vkðx1; . . . ; xr; f1; . . . ; fqÞn;p :¼ fz 2 Jk jQðzÞ ffi Qkðx1; . . . ; xr; f1; . . . ; fqÞg:

In practice, we abbreviate this notation: n and p will be omitted if clear from the con-

text, and the list of variables will be omitted if it coincides with the list of all variables

occurring in any of f1; . . . ; fq. We thus write simply Vkð f1; . . . ; fqÞ for the Kk-orbit

just defined, or for its preimage in JK with K > k. By the lemma, these varieties

are all modular.

2.7. CANONICAL STRATA

For the proof of Theorem 1.5, Mather had to establish modularity of the ‘boundary

strata’ ad hoc, but the rest are modular in virtue of being single K-orbits. In this sec-

tion we deal with the canonical strata for the present problem. This argument was

indeed the genesis of the whole paper.

To explain the idea, consider a 1-parameter family ft :¼ f0ðxÞ þ tfðxÞ, with the

understanding that we seek the union W of the K- (or rather EK-) orbits of members

of the family. As noted above, the value tð ftÞ may be independent of t or may jump

at certain values of t, which may or may not be included in the stratum.

LEMMA 2.6. Suppose f does not belong to the tangent space M to the K-orbit of f0
ðwhere M ¼ tf0ðmnynÞ þ f �0mpyf0Þ. Then the stratum is modular if and only if

mxf � M.
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Proof. It follows from Lemma 2.2 that the tangent space to W at f0 is MþRf.
Then W is modular if and only if this is a Ex-module. We already know that M

is a Ex-module, so the condition is that Exf � MþRf, or equivalently, that

mxf � MþRf. Suppose for some g 2 mx that gf ¼ mþ cf with m 2 M and c 6¼ 0.

Then c� g is a unit in Ex, so f ¼ �ðc� gÞ�1m belongs to the Ex-module M, contrary

to hypothesis. Thus mxf � M. Conversely, this condition certainly implies modu-

larity. &

EXAMPLE Take f0ðx; yÞ ¼ x3 þ y9. Then we can take M to have basis consisting of

all monomials except fyi; xyi j 04i47g, x2 and y8. If we set f ¼ xy7, the condition is

satisfied, and we obtain a modular stratum E3
0ð0Þ. If, however, f ¼ xy6, then f and

yf are independent modulo M, and the union E3
0ðwhÞ of K-orbits of weighted

homogeneous germs in E3
0 is not modular.

We now consider the ‘canonical strata’ of [6] in general. A crucial requirement for

a stratum to be admitted to the list was that it be civilised. We recall that in all cases

where a stratum (not consisting of just a single K-orbit) was shown to be civilised,

the proof was obtained by reduction to [6, Theorem 9.6.6]. The statement of this

result is complicated, and we do not need to recall all of it. However, the hypotheses

did include the following:

Let F : M�U ! N�U be homogeneous, U-level-preserving, with weights which

are positive on M and N and nonpositive on U, and U ¼ V� V0 with all weights on

V strictly greater than those on V0. Let X be an open subset of V0 such that

(i) the germ of F at each point of 0� X is C1-stable;

(ii) there is a neighbourhood W of 0� X in M�U such that, for any x 2 X, the local

algebra Qx of Fx at 0 is presented in W only at points of 0� X.

The stratum T is defined to be the K-saturation of the set of k-jets of the sections

Fu (where Fðm; uÞ ¼ ðFuðmÞ; uÞ) at points of X.

PROPOSITION 2.7. In the above situation, the stratum T is smooth and modular.

Thus ðiÞ of Theorem 1:10 holds.

Proof. We may suppose without loss of generality that F is a miniversal unfolding

of the germ of Fu at a point x ¼ ðm; uÞ of X. Since F is level preserving, we may define

a restricted jet map Jk
1F which takes each point ðm; uÞ 2 M�U to the k-jet at m of

the map Fu. Since F is stable, the image by TJk
1F of the tangent space to U at x is

transverse at x to the JkK-orbit of Jk
1Fx; since F is ministable, the tangent space to U

maps isomorphically to a complement of the tangent to the orbit.

We now apply Lemma 2.2, taking the group action to be that of JkK on JkðM;NÞ,

and the smooth submanifold to be the (germ of the) image of U. We have just esta-

blished the transversality hypothesis of the lemma, and the other hypothesis is given

by (ii) above. Hence the lemma applies, and tells us that T is indeed smooth, and its
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tangent space is the sum of the image V00 of the tangent space V0 of X with the tan-

gent space KO to the K-orbit.

The quotient of the tangent space to JkðM;NÞ by the tangent space to the orbit of

JkK is the image of U, and acquires a natural C
�-action. Since weights are positive

on M, multiplying by any element of mm will strictly increase the weight. By hypoth-

esis, all weights in V are strictly greater than those in V0, so the weights of the unfold-

ing monomials in V0 are strictly greater than those in V. But the tangent space to T is

the span of these monomials, so is invariant under multiplication by mm. The result

now follows by the argument of Lemma 2.6. &

The hypothesis of the proposition is much weaker than that of [6, Theorem 9.6.6],

and is easy to verify for a wide range of strata.

3. The Case n > p

We now begin the construction of the stratifications required for (ii) of Theorem 1.10.

Recall that we need to show, for ðn; pÞ semi-nice dimensions and k large enough, that

Xkðn; pÞ is covered by a finite union of modular submanifolds. The explicit definition

of Xkðn; pÞ when n > p is given in [6, Theorem 12.3.1], though this refers to the clo-

sures of strata and makes no reference to the integer k; thus some extra care is neces-

sary below.

The required classifications of strata were given in [6, Chapter 7] amplifying (and

in some cases correcting) the treatment in [12]. Here we retain the same pattern. We

will construct the manifolds explicitly in turn, so write Lk ¼ Lkðn; pÞ for the list of

them. The discussion of each subcase will then conclude by assigning certain explicit

modular submanifolds to Lk (we fix a sufficiently large k and keep it throughout).

Using linear reduction, and Proposition 2.3, it suffices to consider germs with zero

1-jet. If p53 or if p ¼ 2; n55 there are no unimodal germs: in these cases it suffices

to add the modular stratum V1ð0Þn;p to Lk.

In the hypersurface case p ¼ 1 we next reduce using Thom’s splitting theorem and

Lemma 2.4 to the case when the 2-jet is 0. If also n54 there are no unimodals, and

we add V2ð0Þn;1 to Lk.

We consider in turn the remaining cases, when ðn; pÞ takes the respective values

(2,1), (3,1), (4,2) and (3,2).

3.1. PLANE CURVE SINGULARITIES

First suppose n ¼ 2 and p ¼ 1. We have reduced to the case of zero 2-jet, so first

consider the 3-jet. This is equivalent to one of x3 � xy2, x2y, x3 and 0. The 3-jets

x3 � xy2 are sufficient, each giving a single K-orbit.

A function with 3-jet x2y is either K-equivalent to x2y� yr for some r or has1-jet

equivalent to x2y. Each K-orbit is modular, and Vkðx
2yÞ has codimension tending to

1with k and, hence,52sðn; pÞ for k large enough.We thus add Vkðx
2yÞ to the list Lk.
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We will use a similar argument in numerous cases where we have an infinite collection

of modular canonical strata which exhaust the space of1-jets with a given 2-jet up to

a subset of infinite codimension.

Similarly if the 3-jet is x3, only one modulus appears, so it suffices to add a suitable

Vkðx
3Þ to Lk. Of these strata, the E-series, all are single K-orbits save those labelled

E
p
0 (which includes, e.g., x3 þ y3p). Although Proposition 2.7 applies to all of these,

only for p43 were they explicitly covered by the calculations of [6, Chapter 11].

We must thus assign the (finitely many) E-strata in Xkðn; pÞ meeting the complement

of Vkðx
3Þ to Lk. (There is also a more efficient argument, assigning weights ð4; 1Þ

to ðx; yÞ and dealing with all functions of weight 512 and nonzero coefficient of

x3, similar to Proposition 3.1.)

If the 3-jet is 0 and the 4-jet not a fourth power, we have at most one modulus, and

add Vkðx
4 � x2y2Þ, Vkðx

2 � y2Þ2 and Vkðx
3yÞ to Lk. Here again the Xkðn; pÞ of [6]

contains further strata in the Z-series, and we argue as with the E-series above.

We put the whole modular stratum V4ð0Þ in Lk, so may from now suppose the

4-jet non-zero, and equal to y4.

This gives Arnold’s W-series. The nonunimodal strata are all contained in the set

SW of germs such that all terms have degree at least 8 with respect to the assignment

of weights 1; 2 to the variables x; y. This case will be typical of numerous ones to fol-

low, and we discuss it in some detail as a model.

We first show how to reduce any germ with 4-jet f0 :¼ y4 to a ‘pre-normal’ form

(using a ‘complete transversal’ in the terminology of [1]). The Jacobian ideal of f0
itself is generated by y3. This ideal contains all monomials of a given degree k

except xk; xk�1y and xk�2y2. Thus if f 2 SW is formed from f0 by adding higher

terms, each monomial other than those listed is the sum of an element of Jf and

higher degree terms. Now if b is homogeneous of degree d the substitution

x0 ¼ x; y0 ¼ yþ b will replace f by f� b@f=@y added to terms of degree at least

dþ 3. We may thus proceed inductively to remove terms other than xk; xk�1y

and xk�2y2 from f. We do not need to discuss the convergence of this procedure,

since we are effectively working in jet space, so will simply define the pre-normal

form of such functions f to be y4 þ y2aðxÞ þ ybðxÞ þ cðxÞ: Now write S0
W for the

subset of SW of germs with 4-jet y4, and PW for the subset of those in pre-normal

form.

PROPOSITION 3.1. ðiÞ For any f 2 S0
W and any k, jkf is equivalent to the k-jet of an

element of PW.

ðiiÞ For any f 2 PW we have

TKð f Þ þ TPW ¼ SW þCfxfyg: ð1Þ

ðiiiÞ The saturation K:PW of PW is a smooth submanifold of jet space containing S0
W.

ðivÞ K:PW is modular.

Proof. (i) This was proved in the discussion preceding the proposition.
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(ii) First we show that the left hand side of (1) is contained in the right. Clearly

TPW � SW, and the only basis element of TKð f Þ of degree 8 is x@f=@y, which we

write as xfy for short.

Now we must show that the right hand side of (1) is contained in the left. This is

clear for the second term. As to the first, the argument establishing the pre-normal

form showed that any homogeneous element of SW is congruent modulo TRf to the

sum of an element of higher degree and a linear combination of monomials of the

form xk; xk�1y and xk�2y2 which belong, by definition, to TPW.

(iii) In view of our calculation of tangent spaces, it will suffice to show that the

right hand side of (1) determines a subspace of constant dimension in jet space as

f varies. But xfy contains the monomial xy3 of weight 7 which does not appear else-

where.

(iv) This follows since the right hand side of (1) is visibly a Ex;y-module. &

We now add K:PW to Lk.

The essential features of this modularity argument are as follows. We define

weights Wj for the variables xj and let Sg be the subspace of k-jets (for k large) with

fi of weight at least di for each i. We will say ‘the weights are ðW1; . . . ;Wn=

d1; . . . ; dpÞ’. If D is the least order of any term in Sg (in our later examples, D is 3

or 2), the set of D-jets of elements of Sg contains an open orbit. Write S0
g for the sub-

set of Sg with D-jet in this orbit, and f0 for a polynomial of degree D representing the

orbit.

Let G be the group of K-equivalences preserving the weight, Gþ the subgroup act-

ing trivially on each term of the associated filtered group. Choose a linear subspace

Pg of Sg such that LGþ:f0 þ Pg ¼ Sg and Pg is a direct sum of homogeneous sub-

spaces, and all elements of Pg have zero D-jet.

Then an easy induction on weight shows that Gþ:ð f0 þ PgÞ contains all elements of

Sg with the same D-jet as f0, so G:ð f0 þ PgÞ ¼ S0
g: our ‘pre-normal form’ is f0 þ p with

p 2 Pg. An induction on weight with a subsidiary induction on degree shows that for

any f 2 ð f0 þ PgÞ, LGþ:fþ Pg ¼ LGþ:f0 þ Pg ¼ Sg.

Now LG has finite codimension in the tangent space to K, and we can choose as

basis of the complement the ‘tangent vectors of negative weight’ viz. the mi@=@xj with

mi a non-constant monomial in the xj of weight < Wj and the mi fjEk with degmi > 0,

wtðmiÞ þ dj < dk. We apply each of these to any f ¼ f0 þ p with p 2 Pg, and evaluate

them modulo Sg. We find, in each case in this section, that the resulting vectors are

linearly independent—again, it suffices to calculate the terms arising from f0 as these

are just those of least degree, and they are already independent. We conclude, as

above, that K:S0
g is a modular submanifold.

3.2. SURFACES IN R3

If n ¼ 3 we must distinguish cases according to the 3-jet, which corresponds to a

cubic curve in P2. For curves with (at worst) nodes, no moduli appear, and it suffices

196 A. A. DU PLESSIS AND C. T. C. WALL

https://doi.org/10.1023/A:1021791914076 Published online by Cambridge University Press

https://doi.org/10.1023/A:1021791914076


to cut off at a high enough jet: add Vkðx
r þ ys þ xyzÞ for all 34r4s4k to Lk. For a

cuspidal cubic, all strata are 1-modal; add Vkðx
3 þ yz2Þ, but again there are further

strata in Xkðn; pÞ and we argue as for the E-series.

For a conic and tangent (S-series) the non-unimodal strata are all contained in

the set SS of germs with weights ð1; 2; 3=7Þ. This case is very similar to the W ser-

ies. We can reduce the 3-jet to f0 :¼ xz2 � y2z. The Jacobian ideal of f0 is generated

by z2; yz and 2xz� y2, and so contains all monomials of degree k except

xk; xk�1y; xk�1z and xk�2y2—and the latter two may be reduced to each other mod-

ulo this ideal. Now define PS to consist of the germs y2aðxÞ þ ybðxÞ þ cðxÞ in SS.

All the above conditions hold here, and the tangent vectors of negative weight pro-

duce the subspace Cfxfy; x2fy; xfz; yfzg (modulo SS); these four terms include the

respective monomials xz2; xz3; y3; xyz, and in each case the monomial listed has

weight 46 and does not occur in any subsequent one of the 4 listed elements. So

the space has constant dimension 4 and K:S0
S is a modular submanifold. We thus

add K:PS to Lk.

The case of 3 concurrent lines (U-series) is very similar. The non-unimodal strata

are all contained in the set SU of germs with weights ð1; 2; 2=6Þ. We can take

f0 ¼ y2z� z3 and PU as the set of functions in SU of the form y2aðxÞ þ ybðxÞ þ

zcðxÞ þ dðxÞ. Again all the conditions hold; the tangent vectors of negative weight

give Cfxfy; xfzg, and we see by considering the coefficients of xy2 and xyz that these

span a 2 dimensional space modulo SU. Thus K:S0
U is the union of 2 modular sub-

manifolds. We now add K:PU to Lk.

The remaining cases contain no unimodals, so it suffices to add the modular strata

V3ðx
2yÞ, V3ðx

3Þ and V3ð0Þ to Lk.

3.3. SURFACES IN R4

We next consider the cases when n ¼ 4 and p ¼ 2. These behave similarly to the

above. We consider the possible 2-jets of the map f. We may consider these as defin-

ing pencils of quadrics in projective space P4. It is convenient to classify them in

terms of the geometry of the base locus G (over C) of the pencil into four types: G
is smooth (of degree 4), or nodal, or has isolated singularity only, or is either non-

reduced or of higher dimension. (A fuller discussion of the geometry is given in

the complex case in [13]; the real case is also discussed in [6].)

When G is smooth we have the open stratum ~D5, which is 2-determined, and hence

modular by Lemma 2.5. Outside this we have a finite union of J2K-orbits.

Those of the fourth type (over C there are 16 cases) contain no functions of mod-

ality less than 2, so we add the corresponding modular submanifolds V2ð f1; f2Þ to Lk.

For the cases when G has nodes as its only singularities, no moduli arise in the

classification of germs with this 2-jet. This classification was given in [15]: the normal

forms are

ð2x2y2 � xa1
1 � yb1

1 ; 2x1y1 � xa2
2 � yb2

2 Þ;
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ðx2
2 þ y22 þ <ðx1 þ iy1Þ

a1 ; x2
1 þ y21 þ<ðx2 þ iy2Þ

a2 Þ;

ðx2
2 þ y22 � xa1

1 � yb1
1 ; 2x1y1 þ <ðx2 þ iy2Þ

a2Þ;

ð<ðgÞ;=ðgÞÞ; where g ¼ ðx1 þ iy1Þ
a1 þ ðx2 þ iy2Þ

a2 þ 2ðx1 � iy1Þðx2 � iy2Þ;

where the parameters a1; b1; a2; b2 run from 2 to 1.

We thus add to Lk the corresponding submanifolds Vk where the parameters run

from 2 to kþ 1 and at least one is kþ 1.

The remaining pencils are those of the types labelled I, J0, K0, L and M in [12].

The situation for the J0-series is the same as for the E-series, and we add

Vkðwz� x2; xz� y2Þ and a finite list of further modular strata to Lk. In each of

the other series, the stratum to be excluded consists of all functions with the given

2-jet and all terms of weight above a certain value, with respect to given weights

for the variables, as in the table below, where the variables ðw; x; y; zÞ are arranged

in order of increasing weight. In Table II, the pre-normal form is listed as ‘þf’: this
signifies f0 þ f.

where a; b; c; d and e depend only on w.

In fact in the I case we need 3 distinct normal forms f0 corresponding to generic

pencils of plane conics with 4, 2 or 0 real base points (one could e.g. take

ðy2 � xz; yðx� zÞÞ and ðy2 � xz; ðxþ zÞð2xþ zÞÞ: the details will be a little more com-

plicated. In all these cases we can apply the technique given after Proposition 3.1 to

show that the stratum is modular. We obtain modular strataK:ð f0 þ PcÞ to add to Lk.

3.4. CURVES IN R3

Finally we treat the cases with n ¼ 3 and p ¼ 2. The 2-jet here defines a pencil of

plane conics except in the degenerate cases where the two components are depen-

dent. The degenerate cases contain no unimodal strata, so we add

V2ðx
2 þ y2 � z2Þ, V2ðx

2 � y2Þ, V2ðx
2Þ and V2ð0Þ to Lk.

Otherwise, in each case when the pencil contains a smooth conic there is a com-

plete list of strata, all unimodal. It thus suffices to add Vkðxy; xj � z2Þ (for all j with

24k4kþ 1), Vkðxz� y2; xyÞ and Vkðxz� y2; x2Þ to Lk.

This leaves three cases, denoted F, G and H in [12]. We treat them in turn.

Table II.

Series 2� jet Weights Degree Pre-normal form

I ðxðy� zÞ; yðx� zÞÞ 1,2,2,2 4,4 þð0; xyaþ xbþ ycþ zdþ eÞ
K0 ðwz� x2; y2 � z2Þ 1,2,3,3 4,6 þð0; x2aþ xbþ cÞ
L ðwzþ xy; y2 þ xzÞ 1,2,3,4 5,6 þð0; x2aþ xbþ cÞ

M ð2wzþ x2 � y2; 2xzÞ 1,2,2,3 4,5 þð0; x2aþ xbþ ycþ dÞ
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For the F series, the 2-jet may be taken as ðxy; xzÞ. Here we find the pre-normal

form ðxyþ aðzÞ; xzþ bðy; zÞÞ. The K-classification corresponds to that of the func-

tion ybðy; zÞ � zaðzÞ. The relevant part of Xkðn; pÞ consists of the union of the clo-

sures of the strata FN16, FW1;0 and FZ1;0. Define weights and degrees as follows:

We use the same argument as for Proposition 3.1 to establish modularity in each case

of the K-closure of the set of maps of the above type with each term of a; b having at

least the specified degree. For the FN16 stratum, the basis elements of TKf of lower

weight are fy; z; y2; yz; z2g multiplied by @xf; these are independent modulo terms of

weight 4. For the FW1;0 stratum we may require the coefficient of y3 in cðx; yÞ to be 1

(cases where this coefficient vanishes lie already in the FN16 stratum). Then the basis

elements of lower weight are fy; z; y2; yz; z2; z3g:@xf, z@yf and f2E1. These are indepen-
dent modulo terms of the specified weight: the key point to check turns out to be

independence of the coefficients of xzE1, y3E1 and y2zE2 in y2@xf, z@yf and f2E1. Simi-

larly for the FZ1;0 stratum we require the coefficient of y2z in cðx; yÞ to be 1 and then

the argument works. We add these three strata to Lk.

For the G series we have 2-jet ðx2; y2Þ, with a variant form over R called G� with

2-jet ðxy; x2 � y2Þ. For G we have the pre-normal form ðx2 þ ybðzÞ þ aðzÞ; y2þ

xcðzÞ þ dðzÞÞ. If a or d has order 3 we either have a germ K-equivalent to a normal

form Gs for some s or an element of Vkðx
2 þ z3; y2Þ. For G� we have the pre-normal

form ðxyþ aðzÞ; x2 � y2 þ xbðzÞ þ ycðzÞ þ dðzÞÞ. If a or d has order 3, we have the

simple germ G�
9 (the discussion in [6, pp 234–5] is incomplete on this point).

In both cases, if each of a; d has order 54 we have the stratum with weights

ð2; 2; 1=4; 4Þ. As usual, this is a modular stratum, and we add both variants to Lk.

3.5. THE H SERIES

The H series is defined by the 2-jet ðx2; xyÞ. Here matters are more complicated. We

gave in [13] the pre-normal form fðx; y; zÞ ¼ ðx2 þ 2xbðzÞ þ cðy; zÞ; xyþ aðzÞÞ, and

observed that eliminating x gives Fðy; zÞ ¼ aðzÞ2 � 2yaðzÞbðzÞ þ y2cðy; zÞ. Although

the relation between the classifications of germs f and germs F is less close in this

case, we have [13, Lemma 5.7] mðFÞ ¼ mð f Þ þ 2ord a, so that a m-constant stratum
of germs f will uniquely determine a m-constant stratum of F.

According to [6, 7.6.8], if the coefficients of z3 in both aðzÞ and cðy; zÞ vanish, the

modality is at least 2. Indeed, if we assign weights 2,2,1 to x; y; z respectively, each

component has weight 54. This is in the closure of the modular stratum just discus-

sed, and is itself modular, by essentially the same argument (there are slight differ-

ences, as here the orbit of f0 is not open in the set of 2-jets of the given weight, so

Stratum FN16 FW1;0 FZ1;0

Weights of ðx; y; zÞ 3,1,1 7,3,2 4,2,1

Degrees of ða; bÞ 4,4 10,9 6,5
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we need to require that the coefficient of y2 in cðy; zÞ vanishes, but this does not affect

the main argument). Otherwise [6, p. 236] we may reduce to have aðzÞ ¼ z3, and then

reduce further to have bðzÞ " 0, so that fðx; y; zÞ ¼ ðx2 þ cðy; zÞ; xyþ z3Þ and

Fðy; zÞ ¼ z6 þ y2cðy; zÞ.

First suppose z3 does not appear in cðy; zÞ. Then cases depend on the highest

power of y dividing the 3-jet c3 of c as follows.

In the table, the column NPðFÞ lists the monomials defining the Newton polygon of

F; the last column names the stratum in the terminology of [16].

Each of the cases HB12þr ð04r <1Þ, HD13, HD14 is a single K-orbit; we just add

Vkðx
2 þ yz2; xyþ z3Þ to Lk. The boundary stratum HE19 requires several moduli;

here we assign weights ð2; 1; 1=4; 3Þ. As usual, this defines a modular stratum, and

we add it to Lk.

Now suppose the coefficient of z3 in c nonzero. Here we have cases as follows.

Each case except the last is a single K-orbit; we must add Vkðx
2 þ z3 þ yz2; xyþ z3Þ

to Lk. The final case is more troublesome: we have found it as given by requiring all

terms in c to have weight 56 when y; z have weights 1, 2 respectively. We again

adopt our usual argument, but since here things are not weighted homogeneous

we give some details.

LEMMA 3.2. Define the weights of x; y; z to be 3; 1; 2 respectively; write SH for the

space of pairs ðg1; g2Þ where all terms in either component have weight 56. Let PH

denote the set of pre-normal forms ðx2 þ cðy; zÞ; xyþ z3Þ with c of weight 56 and the

coefficient of z3 in c nonzero. Then

Name c3 NP(F ) Name of F

HB12þr yz2 in c z6; y3z2; y5þr NBr
ð�1Þ

HD13 y2z in c z6; y4z NC19

HD14 y3 in c z6; y5 NF20

HE19 j3c ¼ 0 z6; y6

Name c3 NP(F) Name of F

HA11 distinct roots z6; y2z3; y5 NA1;0

HA11þr repeated root z6; y2z3; y3z2; y5þr NA1;r

HC13 z3 z6; y2z3; y6 NB1
ð�1Þ

HC14 z3 z6; y2z3; y5z NB1
ð0Þ

HC15 z3 z6; y2z3; y7 NB1
ð1Þ

HE17 z3 z6; y2z3; y4z2; y6z; y8
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ðiÞ For any f 2 PH we have

TKð f Þ þ TPH ¼ SH þCfð2xy; y2Þ; ð0; y3Þ; ð2xz; yzÞ; ð0; y4Þ; ð0; y2zÞ; ð0; xyÞ;

ð2xy2; 0Þ; ðy@c=@z; 0Þ; ð0; y5Þ; ð0; y3zÞ; ð0; yz2Þ; ð0; xy2Þ; ð0; xzÞg:

ðiiÞ The saturation K:PH is a smooth submanifold of jet space and is modular.

Proof. (i) The only term in the pre-normal form itself of weight <6 is the xy in the

second component. Thus the terms in TKð f Þ þ TPH not in SH are

ðyðxyþ z3Þ; 0Þ; ð0; yðxyþ z3ÞÞ;

fy; y2; z; y3; yz; x; y4; y2z; xy; z2g@f=@x; fy; y2; xg@f=@y and y@f=@z:

Expanding these, and removing any terms of weight 56, gives

ðxy2; 0Þ; ð0; xy2Þ; ð2xy; y2Þ; ð2xy2; y3Þ; ð2xz; yzÞ; ð0; y4Þ; ð0; y2zÞ; ð0; xyÞ; ð0; y5Þ;

ð0; y3zÞ; ð0; xy2Þ; ð0; yz2Þ; ð0; xyÞ; ð0; xy2Þ; ð0; xzÞ; ðy@c6=@z; 3yz2Þ;

where c6 denotes the sum of terms of weight 6 in c. These are independent except as

follows: the term ð0; xyÞ appears twice, and ð0; xy2Þ appears thrice (note that as z3

appears in c, yz2 appears in y@c6=@z).

We now show that SH is contained in TKð f Þ þ TPH. As to the second component,

TRðxyþ z3Þ ¼ hx; y; zihx; y; z2i indeed contains all monomials of weight56. For the

first component, by the preparation theorem, any g may be written as

ðx2 þ cðy; zÞÞQðx; y; zÞ þ xR1ðy; zÞ þ R2ðy; zÞ, and if g has weight at least 6, so have

xR1 and R2. Reducing further modulo xyþ z3 we may suppose R1 independent

of y. Now 3z2@f=@x� y@f=@z ¼ ð6xz2 � y@c=@z; 0Þ; subtracting a suitable multiple of

this will reduce R1 to zero: it may introduce a term ðy@c=@z; 0Þ of weight 5, but we have

just seen that this belongs to the left hand side. Since R2 2 TPH, we are done.

(ii) It follows as usual from (i) that K:PH is a smooth submanifold of jet space,

with tangent space given by the lemma. Modularity follows by simply checking that

multiplying any of our list of elements by a monomial produces another in the list, or

something of weight at least 6. &

We conclude by adding K � PH to Lk.

4. The Case n4p

For this section, by [6, Theorem 12.4.1], Xkðn; pÞ is the union of the closures of the

strata listed in [6, Table 12.1] if n ¼ p, and in [6, Table 12.2] if n < p (the list is not

quite complete, and is corrected below). Detailed listing of strata is given in [6, Chap-

ter 8], following the less complete treatment in [14].

We will write e for p� n. As in Section 3, it suffices in view of Proposition 2.3 to

consider maps with zero 1-jet. Note that in this paper by ‘codimension’ we mean

codimension in the jet space, or equivalently, in the source of a stable map. The tar-

get codimensions used in [6] are obtained from these by adding e.
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The second intrinsic derivative of f is a symmetric bilinear map Rn
�Rn

! Rp,

inducing a homomorphism D :#2ðRn
Þ ! Rp, where#2ðRn

Þ is the symmetric square

of Rn. Following Mather [10], we say that f belongs to SnðaÞ if a is the dimension of

the kernel of D: computationally, J2f has n
2

� �
� a independent components.

Each SnðaÞ is a smooth submanifold of Sn � J2; by (ii) of Lemma 2.5, these subma-

nifolds are all modular. It follows from the calculations in [14, x1] that the codimen-

sions of the non-empty SnðaÞ are no less than the codimension 2sðn; pÞ except in the

cases when ðn; aÞ is one of the following:

ð1; aÞ; ðn; 0Þ; ðn; 1Þ; ð2; 2Þ; ð2; 3Þ; ð3; 2Þ; ð3; 3Þ; ð4; 2Þ:

We assign all the other SnðaÞ to Lk, and treat the listed cases in turn.

4.1. THE CASE n¼ 1

The set of k-jets in S1 decomposes as the union of the strata Aj which are the K-

orbits corresponding to the local algebras C½x�=hxji for 24 j4 k and the set

Vkðx; 0Þ. We add Vkð0Þ to Lk.

4.2. THE CASES a41

For a ¼ 0 we have Snð0Þ which consists of a single K-orbit. Next, it was shown by

Damon [3] that Snð1Þ consists of a countable union of K-orbits Xðn; ‘; kÞ (the list is

repeated on [6, p. 292]) and a subset of infinite codimension.

Consider Vkðx1; . . . ; xn; f1; . . . ; fqÞ, where the ft are the monomials xixj for all

14i4j4n except i ¼ j ¼ 1. Its codimension tends to infinity with k, and its comple-

ment is a finite union of K-orbits, so we add it to Lk.

4.3. THE CASE n ¼ a ¼ 2

We next consider S2: here we may also partition into the Boardman strata S2;0, S2;1

and S2;2 ¼ S2ð3Þ. As was shown by Mather [10], S2;0 is the union of countably many

K-orbits and the subset V1ðxyÞ [ V1ðx
2 þ y2Þ of infinite codimension, so we add

VkðxyÞ [ Vkðx
2 þ y2Þ to Lk.

We saw in [14] that S2;1 is also the union of countably many 1-modal strata and a

subset of infinite codimension. Moreover, Proposition 2.7 applies to show that all

these strata are modular. We could now conclude as for the E-series, but will give

a more detailed treatment which serves as a model later on.

We use the notation of [6, Chapter 8]. We can write maps in the pre-normal form

fðx; yÞ ¼ ðx2 þ aðyÞ; xbiðyÞ þ ciðyÞÞ, where i runs from 2 to eþ 2. Then the invariant k
is defined by kð f Þ :¼ minðord a; 2ord bi; ord ciÞ. We next show that the set of maps

in S2;1 with kð f Þ5k is a modular submanifold. To simplify notation, we present the

details for the case e ¼ 1.

Assign weights wtðxÞ ¼ k=2; wtðyÞ ¼ 1 for some k53. Let Sk denote the set of all

maps f : R2
! R3 such that each term in the Taylor expansion of each component
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has weight 5k; and let S0
k be the subset where x2 appears with nonzero coefficient in

at least one component, so that S0
k � S2;1. Write P for the set of all maps f in the

‘prenormalform’fðx; yÞ ¼ ðx2 þ aðyÞ; xb1ðyÞ þ c1ðyÞ; xb2ðyÞ þ c2ðyÞÞ.LetPk :¼ P \ Sk.

LEMMA 4.1. (i) For all f 2 Pk, TKð f Þ þ TPk ¼ Sk þ fy; y2; . . . ; ylg@xf, where

l :¼ ½ðk� 1Þ=2�.

(ii) For f 2 Pk, the image of TKð f Þ þ TPk in TJk has dimension independent of f.

Hence the saturation K:Pk is a manifold Lk. Moreover, Lk is modular.

Proof. Since each term in f has weight5k, so has any element of f �mp, and hence

TCf � Sk. Also each term of x@xf; x@yf; y@yf and yr@xf for r5k=2 has weight 5k, so

these all belong to Sk, while yr@xf for 14r < k=2 belongs explicitly to the right hand

side. Thus TRf is contained in the right-hand side, so the inclusion � holds.

For the converse inclusion, the terms fy; y2; . . . ; ylg@xf are clearly in TRf.

Now TKf contains ðEn:f
�mpÞ

�3, and in particular ðx2 þ aðyÞ; 0; 0Þ, ð0; x2 þ aðyÞ; 0Þ

and ð0; 0; x2 þ aðyÞÞ. By the preparation theorem, any element of Ex;y can be written

in the form Qðx; yÞðx2 þ aðyÞÞ þ xR1ðyÞ þ R2ðyÞ, so it suffices to consider elements of

Sk with each component linear in x.

Any such element with first component not involving x is already in TPk. And

TRf contains any RðyÞ@xf ¼ RðyÞð2x; b1ðyÞ; b2ðyÞÞ with Rð0Þ ¼ 0. Hence the right

hand side is contained in the left, proving (i).

The first assertion of (ii) holds since the terms yr@xf with 14r4l are always inde-

pendent modulo Sk, as we see by considering the coefficients of the terms ðxyr; 0; 0Þ.

The second claim follows, using the group action of JkK on k-jet space.

Finally we need to show that the tangent space Sk þ fy; y2; . . . ; ylg@xf to the mani-

fold is an Ex;y-module. Now Sk is certainly a module, so it suffices to show that if the

remaining terms are multiplied by elements of mx;y they remain in the tangent space.

It suffices to check for multiplication by x and by y. But the terms x:yr@xf are in Sk;

and y:yr@xf is already in the list if r < l, while for r ¼ l it lies in Sk. &

COROLLARY 4.1.1. The codimension of Lk in the space of jets with fixed target is

ðkþ ½ðk� 1Þ=2�Þðeþ 2Þ � ½ðk� 1Þ=2�.

For the monomials of weight strictly between 0 and k are fyij14i < kg;

fxyij04i < k=2g, so are kþ ½ðk� 1Þ=2� in number. There are ðeþ 2Þ target coordi-

nates, and we see from the lemma that we must subtract a further ½ðk� 1Þ=2� to

get the codimension of Lk.

The maps with kð f Þ ¼ 3 fall into a countable set of K-equivalence classes, together

with V1ðx
2 þ y3Þ, so add Vkðx

2 þ y3Þ to Lk.

For the maps with kð f Þ ¼ 4, the above corollary gives 6eþ 9 as the codimension

of L4. We have [6, p.279] a countable list of K-orbits, V1ðx
2 þ y4Þ, V1ðx

2 � y4Þ, and

the strata given by the saturations of the normal forms

D‘;‘þ2 : ðx
2�y4;xy‘þcy‘þ2;0; . . .;0Þ; �D‘;‘þ2 : ðx

2�y4;xy‘þcy‘þ2;y‘þ3;0; . . .;0Þ:
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Moreover [6, p. 529] at least for 34‘49 these are canonical strata: they are modular

by Proposition 2.7. The rest have high enough codimension to ignore. More pre-

cisely, if n ¼ p (e ¼ 0) we add to Lk the closure of D4;6, which is defined by having

4-jet ðx2 � y4; 0Þ and no terms of weight less than (4,6) where x; y have weights 2,1

respectively: as usual, this is modular. If e51, add to Lk the stratum defined by

weights at least ð4; 5; 6; . . . ; 6Þ and 4-jet ðx2 � y4; axy3; 0 . . . ; 0Þ or, more simply,

we can just add V4ðx
2 � y4Þ.

Next, L5 has codimension 8eþ 12. This exceeds tð�eÞ if e52, but is 1 below it for

e ¼ 0; 1. For e52, we add L5 to Lk. In general we can add V4ðx
2Þ to Lk, as it has

codimension 11eþ 16; there are only finitely many K-orbits in L5 not contained in

this—they are those with a term xy3 and, hence, have normal form

ðx2 þ y5; xy3 þ ym; ynÞ with m ¼ 5; 6 and (if e ¼ 1) n ¼ m;mþ 1 or mþ 2.

Now L6 has codimension 9eþ 14, so we can add this, and also L7 to Lk; higher

levels are already included in V4ðx
2Þ.

4.4. THE CASE n ¼ 2; a ¼ 3

We turn to S2;2. The 3-jet gives a symmetric trilinear map, inducing a homomorph-

ism D :#3ðR2
Þ ! Rp; say that f 2 S2;2’ðaÞ if a ¼ dimKerD.

The case a ¼ 0 gives a single K-orbit; for a ¼ 1 we have a countable union of

orbits and a set of infinite codimension; it suffices to add Vkðx
3; x2y; xy2Þ to Lk.

If a ¼ 2 we have a pencil of binary cubics. The space of such pencils has an open

subset (where the discriminant of the pencil has 4 distinct roots) which requires a

modulus for classification. Over R this gives 4 strata. Each of these lifts to 2 strata

in jet space, which are modular by Proposition 2.7, as are the modular strata which

are unions FA3 [ FC0 and FA3 [ FC0 (see [6, 8.5.2]).

The remaining pencils fall into finitely many isomorphism types. Of these

ðx3; x2y� y3Þ and ðx3; y3Þ each give only 2 K-orbits; ðx3 � xy2; x2yÞ, ðx3; xy2Þ,

ðx2y; xy2Þ, ðx3 þ xy2; x2yþ y3Þ and ðx3; xy2Þ give countably many, so we add

Vkðx
3 þ xy2; x2yþ y3Þ, Vkðx

3; xy2Þ and, for k5q53, Vkðx
2y; xy2; xqÞ,

Vkðx
2y; xy2 � xqÞ and Vkðx

2y; xy2 � xq; xqþ1Þ to Lk.

Since V3ðx
3; x2yÞ is modular, and has codimension greater than 2sðn; pÞ, we add it

to Lk; similarly the cases a53: add V3ðx
3 � y3Þ, V3ðx

2yÞ, V3ðx
3Þ and V3ð0Þ. However

if n ¼ p, Xkðn; pÞ excludes the stratum FeC1. We thus replace V3ðx
3; x2yÞ by the

K-closure of the set of germs ðx3 þ aðx; yÞ; x2yþ bðx; yÞÞ, where a; b have weights

at least 9,8 with respect to wtðx; yÞ ¼ ð3; 2Þ. We obtain a prenormal form by restrict-

ing a and b to be linear in x. The only elements of TKf of lower weight are y@xf and

f2E1, and the usual proof of modularity goes through.

4.5. THE CASE n ¼ 3; a ¼ 2

The case S3ð2Þ is the one which caused Mather the most difficulty. We can re-phrase

the preliminary reductions as follows. For any r, the 2-jet of a Srð2Þ singularity is
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given by a linear system of quadrics whose apolar system is a pencil. If the (complex-

ified) pencil does not contain a perfect square, the 2-jet is sufficient, so defines a mod-

ular stratum. The cases when the pencil does contain a square are as : ðy
2
1;
Ps

2�y2j Þ,

cs : ðy
2
1; 2y1y2 þ

Ps
3�y2j Þ (24s4r), and a variant form a�2 : ðy

2
1 � y22; 2y1y2Þ of a2.

When r ¼ 3, each of the cases other than c2 is the union of countably many K-

orbits. For any k, we thus have (see [6, p. 312] as well as [10]) the union of finitely

many orbits with (a3 case) Vkðx
2; y2; xz; yzÞ, (c3 case) Vkðx

2 þ yz; xy; xz; y2Þ, (a�2 case)

Vkðx
2 þ y2; xz; yz; z2Þ, and (a2 case) the union of Vkðxy; xz; yz; z2Þ and

[
34m<k

ðVkðxy; xz; yz; z2 � xmÞ [ Vkðxy; xzþ ym; yz; z2Þ [ Vkðxy; xz; yz; z2; xmÞ;

so we add all these to Lk.

In the remaining (c2) case, the 2-jet is equivalent to ðx
2; xz; yz; z2Þ, and we put the

germ in pre-normal form: write PD for the set of germs of the form

ðx2 þ aðyÞ; xzþ xbðyÞ þ cðyÞ; yz; z2 þ xdðyÞ þ eðyÞ; xfiðyÞ þ giðyÞÞ:

Following [6, pp. 311–313], we define strata as follows. For the ‘Damon stratum’ Dd,

let x; y; z have weights 2; 1; 2 and let Sd be the set of maps f with all components of

weight 54, and those after the fourth of weight 55. Then by [14] the stratum con-

taining Pd :¼ PD \ ðSd þ yzE3Þ is bimodal.

Next assign weights ð1; 1; 2Þ to x; y; z and let SE be the set of maps with all com-

ponents of weight 54; then if f 2 PE :¼ PD \ ðSE þ x2E1 þ xzE2 þ yzE3Þ, the deforma-

tion fþ tzE1 is equivalent to the stabilisation of a 2-variable germ with 3-jet ðx3; x2yÞ,

so again f is bimodal. The stratum DE corresponding to PE was omitted in error from

[6, Table 12.2].

We claim that in each of these cases the stratum is modular.

LEMMA 4.2. (i) For all f 2 Pd, we have

TKfþ TðPdÞ ¼ Sd þ yz:fErg þ fy@x f; y@z fg:

ðiiÞ For f 2 Pd, the image of TKð f Þ þ TðPdÞ in TJk has dimension independent of f.

Hence the saturation K:Pd is a manifold. Moreover, this manifold is modular.

Proof. (i) First we show �. Clearly TðPdÞ � Sd. The only basis elements of TRf

with weight less than that of f are y@xf and y@zf, so TRf is contained in the right hand

side. As to TCf, the only basis element of f �mp of weight <4 is the third component

yz of f, and we have specifically allowed for that.

Now we show %. The 7 final terms clearly belong to the left hand side. By the pre-

paration theorem, we can write any (C1-) function of x; y and z of weight is at least 3

as the sum of a linear combination of ðx2 þ aðyÞ, xzþ xbðyÞ þ cðyÞ, z2 þ xdðyÞ þ eðyÞ

and an expression of the form xaðyÞ þ bðyÞ. It thus suffices to show that an expres-

sion xaðyÞ þ bðyÞ of weight 54, appearing in any coordinate position, belongs to the
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left hand side. Now those in the second, fourth or later positions belong to TðPdÞ. We

reduce the other cases to these. For the third place, we use y@zf ¼ ð0; xy; y2; 2yz; 0Þ

(since the terms we need to deal with are divisible by y2). Finally for the first position

bðyÞ is in TðPdÞ and we have y2@xf ¼ ð2xy2; y2ðzþ bÞ; 0; y2d; y2f Þ, which reduces to

ð2xy2; 0; 0; 0; 0Þ modulo terms already dealt with.

(ii) The first assertion holds since the 7 final terms are always independent modulo

S, as we see by considering the coefficients of the terms yz in all 5 positions and xy

in the first two. The second claim follows, using the group action of JkK on k-jet

space.

Finally we show that the tangent space to the manifold is an Ex;y;z-module. Now S is

certainly amodule. Thus it suffices to show that if the remaining terms aremultiplied by

an element of mx;y;z they remain in the tangent space. Indeed, it suffices to check for

multiplication by x; y and z. But all the terms this gives have weight 54. &

LEMMA 4.3. (i) For all f 2 PE, we have TKfþ TðPEÞ ¼ SE þC:F, where F is the

following list:

fx2; x3; x2y; xz; yzg:fErg; xyE1; xy2E1; xyE2 þ y2E3; xy2E2 þ y3E3; xyE3; xy2E3:

ðiiÞ For f 2 PE, the image of TKð f Þ þ TðPEÞ in TJk has dimension independent of f.

Hence K:PE is a manifold; this manifold is modular.

Proof. (i) First we show �. Clearly TðPEÞ � SE. The basis elements of f �mp of

weight < 4 are the first 3 components. Thus any element of f �mp:En is congruent

modulo elements of weight 54 to a linear combination of fx2; x3; x2y; xz; yzg. Thus

TCf is contained in the right hand side. Now since @xf and @zf each contain a term of

weight 1, and the lowest term of @yf has weight 2, the only basis elements of TRf

with weight less than 4 are fx; yg@yf; fx; y; x2; xy; y2; zg:f@xf; @zfg. Expanding these

terms, and cancelling out any element of weight54, and also any linear combination

of the terms fx2; x3; x2y; xz; yzgEr previously listed, all vanish save for six, which

reduce to xyE1; xy2E1; xyE2 þ y2E3; xy2E2 þ y3E3; xyE3; xy2E3:
Now we show %. The above argument shows that it is sufficient to prove that SE is

contained in the left hand side. As before we see, using the preparation theorem, that

it suffices to show that an expression xaðyÞ þ bðyÞ of weight 54, appearing in any

coordinate position, belongs to the left-hand side. Those not in the first position

already belong to TðPEÞ, as does bðyÞE1. Now subtracting 1
2 aðyÞ@xf removes this term,

and replaces it by others of the types just discussed.

The proof of (ii) is essentially the same as in the preceding case. &

The complement in the manifold of jets of ðc2Þ type of K:Pd [K:PE consists of the

countable family of good K-orbits listed on [6, p. 312] and the germs with 1-jet

b� : ðx
2; xz; yz; z2; xy2Þ. It thus suffices to add to Lk the modular strata K:Pd, K:PE

and Vkðx
2; xz; yz; z2; xy2Þ.

This completes the discussion of S3ð2Þ.
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4.6. THE CASE n ¼ a ¼ 3

We next turn to S3ð3Þ. The 2-jets here correspond to nets of conics. We gave the clas-

sification of these in [14] and [6, x 8.7], and retain the notation of those references.

In the cases (labelled A;B;D;E) where the net has no base points, the 2-jet is suffi-

cient and we have a canonical stratum which is modular in the A cases by Proposi-

tion 2.7 and in the rest since it is a K-orbit. In the cases labelled B�;C;D�;E �;F �, the

net has simple base points, and we have the union of a countable family of K-orbits

and a set of infinite codimension. To deal with cases B�;C it suffices [6, p. 315] to add

Vkð2xzþ y2; 2yz; x2 þ 2ZxzÞ, for Z ¼ �1; 0;þ1, to Lk.

The cases D� and E � with more than one base point are rather more complicated,

but using the tables on [6, p. 316] we see that it suffices to add to Lk the modular

strata Vkðyz; zx; xy; xp; yqÞ, Vkðyz; zx; xy; xp � yqÞ, Vkðyz� xp�1; zx; xy; yqÞ and

Vkðyz� xp�1; zx� yq�1; xyÞ for 34p; q4k.

The strata with 2-jet of type F;F �;G;G� are called the MF-, LF-, MG- and LG-

series respectively. All strata in the LF-series are enumerated; by Proposition 2.7,

are all modular. We conclude as for the E-series: add Vkðx
2; xðyþ zÞ; yz; zqÞ,

Vkðx
2 � zq; xðyþ zÞ; yzÞ, Vkðx

2 � zq; xðyþ zÞ; yz; zqþ1Þ (34q4k), Vkðx
2; xy; y2 þ z2Þ

and finitely many other strata to Lk.

For the MF- and MG-series we defined respective prenormal forms

fðx; y; zÞ ¼ ðx2 � y2 þ aðzÞ; xyþ xbðzÞ þ cðzÞ; yz; xbiðzÞ þ ciðzÞÞ;

fðx; y; zÞ ¼ ðx2 þ aðzÞ; y2 þ xbðzÞ þ cðzÞ; yz; xbiðzÞ þ ciðzÞÞ;

setting y ¼ 0 in either case yields a map Af in the prenormal form for singularities of

type S2;1, and the level kð f Þ is defined to be kðAf Þ. Thus the subcases where k54 are

of codimension eþ 2 greater than the strata as a whole and, hence, 52sðn; pÞ. These

subcases also form modular strata, by the same argument as for the S2;1 case—here

we take weights (2,2,1/4,4,3,4) and define the subspace S to consist of maps of admis-

sible weights with each component of order 52—and we add them to Lk.

The strata of level 3 have all been enumerated and it follows from Proposition 2.7

that all are modular. It thus suffices to add to Lk the modular strata

Vkðx
2 � y2 � z3; xy; yzÞ, Vkðx

2 � z3; y2; yzÞ, and a finite list of further strata. The case

MFU6 is the one causing difficulties in [6] and discussed above.

We proceed differently for the remaining cases. Consider a 2-jet Z with zero 1-jet.

Write IZ for the (homogeneous) ideal in Er generated by the components of Z, and

pZ : S3 ! Q3 for the projection of the space S3 of homogeneous functions of degree

3 in x1; . . . ; xr to its quotient S3=ðS3 \ IZÞ. Then if, as we may suppose, the first t

components of Z are linearly independent and the rest vanish, then if j2f ¼ Z, the

dimension of the local algebra ð f �mp:Er þm4
r Þ=m

4
r is determined by the dimension

of the span of pð ftþ1Þ; . . . ; pð frÞ.

The set of 3-jets for which this dimension takes a given value form a K-invar-

iant, algebraic set. We may choose a K-invariant stratification; then since by (iii)
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of Lemma 2.5, an invariant submanifold of J3 which is the K-saturation of a

family of maps with the same 2-jet is modular, these strata are modular. If the

local algebra has dimension 7, we have a single K-orbit. We have just found

modular strata covering its complement: these we must add to Lk. This comple-

ment has codimension 7eþ g, where g ¼ 12; 11; 12; 14; 13 for 2-jet of type

G;G�;H; I; I� respectively. This is at least as large as 2sðn; pÞ except in the cases

e ¼ 1 for G;G�.

It remains to consider maps with e ¼ 1 and 2-jet of type G�, viz. ðx2; xy; yz; 0Þ.

Here we have a prenormal form ðx2 þ aðyÞ; xyþ bðzÞ; yz; cðyÞ þ xdðzÞ þ eðzÞÞ. If a; c

and e have nonzero 3-jets, it is not difficult to reduce to ðx2 þ y3; xy; yz; y3 þ z3Þ,

which is thus 3-determined, and gives a K-orbit. The complement of this in the set

of 3-jets over jets equivalent to ðx2; xy; yz; 0Þ is a proper algebraic subvariety of codi-

mension 2sðn; pÞ; it now suffices to choose a K-invariant stratification, and apply

Lemma 2.5 to prove modularity.

4.7. THE CASE n ¼ 4; a ¼ 2

The final case is S4ð2Þ. The 2-jet is given by a linear system (of rank 8) of quadratics in

4 variables. The apolar system has rank 2, so is a pencil, which is more convenient

to describe. The generic pencil involves a modulus; the others fall into finitely many

isomorphism classes, so each defines a modular submanifold. For the cases when the

pencil does not include a perfect square, the 2-jet is again sufficient and we have a

modular stratum.

For each of the others, we observed in [14] that there is a single K-class of germs f

with f �mp:En & m3
n. This is again equivalent to requiring the dimension d of the alge-

bra to be minimal. The complement of this class is an algebraic subset of J3, of codi-

mension 52sðn; pÞ. Arguing as in the S3ð3Þ case, we see that this complement is a

union of modular submanifolds.
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