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Rheology of dilute bubble suspensions
in unsteady shear flows
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The viscoelasticity of a dilute bubble suspension is theoretically derived from the
constitutive equation originally for a dilute emulsion proposed by Frankel & Acrivos
(J. Fluid Mech., vol. 44, issue 1, 1970, pp. 65–78). Non-dimensionalization of the original
tensor equation indicates that the viscoelasticity is systematized for a given void fraction
by the capillary number Ca and dynamic capillary number Cd, representing the bubble
deformability and unsteadiness of bubble deformation. Comprehensive evaluation of the
viscoelasticity according to the volume fraction, Ca and Cd reveals that whether the
viscosity increases or decreases depends on whether Ca or Cd exceeds a common critical
value. In addition, it is indicated that the bubble suspension has the most prominent
viscoelasticity when the time scale of the shear deformation is the same as the relaxation
time of the suspended bubble and when the bubbles keep a spherical shape, that is,
Ca � 1 and Cd = 1. The applicability of this theory in flow prediction was examined
in a Taylor–Couette system, and experimentally good agreement was confirmed.

Key words: suspensions, bubble dynamics, viscoelasticity

1. Introduction

Bubbly flows are ubiquitous in both industry and nature. Addition of a small amount
of bubbles changes the original rheological properties of the dispersion medium, and it
changes not only the flow behaviour of food and chemical products, but also the eruption
pattern of volcanoes in nature (Llewellin & Manga 2005). Bubble suspension rheology
is therefore important to understanding and predicting these flow structures, and it has a
century-long history originating with the well-known Einstein equation (Einstein 1906)

η = 1 + bφ, (1.1)

where η is the relative viscosity and φ is the volume fraction. For a dilute suspension
of solid spherical particles in steady shear flow, b = 5/2 (Einstein 1906), and b = 1 for
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spherical bubbles in steady shear flow (Taylor 1932). In the case of emulsion, which
is a suspension of immiscible droplets, constitutive equations taking into account the
deformation of the dispersion and its unsteadiness have been proposed for dilute (Frankel
& Acrivos 1970) and non-dilute (Choi & Schowalter 1975) conditions. Han & King (1980)
applied these constitutive equations to steady simple shear flow, and obtained a formula
for evaluating the effective viscosity of the emulsion. Rust & Manga (2002) modified this
formula for bubble suspensions and systematized in dilute conditions η as a function of φ

and the capillary number Ca

η = 1 + 1 − (12/5)Ca2

1 + [
(6/5)Ca

]2 φ, (1.2)

where Ca = λrγ̇0, relaxation time of the suspended bubble λr and the bulk shear rate
applied to the suspension is γ̇0. The relaxation time is defined as λr = μ0a/σ , where a
and σ are the bubble radius and surface tension of the dispersion medium with a viscosity
coefficient of μ0. The validity of this equation has been confirmed by recent advanced
experiments (Morini et al. 2019; Mitrou et al. 2023). Llewellin, Mader & Wilson (2002)
further investigated the viscoelastic properties under small-amplitude oscillatory shear and
proposed a constitutive equation in the form of the Jeffery model

S + 6
5
λr

dS

dt
= μ0 (1 + φ) γ̇ + μ0

6
5
λr

(
1 − 5

3
φ

)
dγ̇

dt
, (1.3)

where S and γ̇ are the deviatoric stress tensor and strain-rate tensor defined by γ̇ =
2d with the rate of deformation tensor d = [∇u + (∇u)T]/2 and the velocity of the
suspension u. The velocity gradient tensor ∇u is defined as (∇u)ij = ∂ui/∂xj. (In
the previous description (Llewellin et al. 2002; Pal 2003), the transported matrix of
this was defined as the velocity gradient tensor. A different definition is used here
so that the notation for the Jaumann derivative described later conforms the general
notation, although this does not affect the derived formulae and conclusion at all.)
Mitrias et al. (2017) performed direct numerical simulation and obtained consistent results
with experiments in the dilute regime. Summarizing the progress in bubble suspension
rheology, the steady shear viscosity is generalized by (1.2), and the viscoelastic properties
for Ca � 1 are given by the Jeffery model (1.3). Both equations were originally derived
from a constitutive tensor equation for a dilute emulsion theoretically obtained by Frankel
& Acrivos (1970). Strictly, the applicable range of the original equation is restricted for
small bubble deformation and weakly time-dependent flow. However, experimental and
numerical simulation results indicate that this restriction allows for highly deformable
bubbles and unsteady shear flows.

In this research, § 2 is devoted to providing the last piece of the puzzle, namely,
the viscoelasticity under conditions involving bubble deformation is elucidated based
on the Frankel & Acrivos (1970) equation including both time derivative terms and
nonlinear terms related to the bubble deformation. This comprehensive approach was
first carried out by Mader, Llewellin & Mueller (2013), and it was shown that the
relative viscosity can be systematized by Ca and the dynamic capillary number Cd, which
represents the unsteadiness of the bubble deformation. This research goes further and
elucidates viscoelasticity, that is, the phase difference between time variations of shear
stress and strain. Section 3 shows experimental verification of the above theoretical work,
where a dilute bubble suspension examined by recently developed velocity-profiling-based
rheometry is introduced. In addition, comparison of the wall shear stress predicted
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Rheology of dilute bubble suspensions

from the theoretically derived rheological properties and axial torque experimentally
measured under unsteady shear flow in a Taylor–Couette system is demonstrated. The good
agreement between the results intensifies the validity of the theoretical work and indicates
that the shear flows of bubble suspensions are predictable for the diverse applications
mentioned above. Concluding remarks are finally given in § 4.

2. Theoretical approach

Frankel & Acrivos (1970) theoretically derived a constitutive equation for dilute emulsions
by considering the deformations, assumed infinitesimal, of a small droplet freely
suspended in a time-dependent shearing flow. Assuming the viscosity of the dispersion is
negligible against that of the dispersion medium, the original tensor equation is modified
to

S + 6
5
λr
DS

Dt
= −pI + 2μ0 (1 + φ)

(
d + 6

5
λr
Dd

Dt

)

+
(

μ2
0a
σ

)
φ

[
−32

5
Dd

Dt
+ 48

35
Sd(d · d)

]
, (2.1)

where S and d are the deviatoric stress and rate of deformation tensors. The operations
D/Dt and Sd denote the Jaumann derivative and the symmetric traceless part of the tensor
to which it applies

DS

Dt
= ∂S

∂t
+ u · ∇S − ω · S + S · ω, (2.2)

Sd (d · d) = 1
2

[
d2 + (dT)2 − 2

3 tr(d2)I
]

= d2 − 1
3 tr(d2)I. (2.3)

In the above equations, ω is the vorticity tensor defined by ω = [∇u − (∇u)T]/2 and I
is an identity matrix. Here, we assume that unsteady simple shear, d12 = d21 = γ̇ (t), is
applied to the suspension, and the following two equations are derived from (2.1):

NI + 6
5
λr

(
dNI

dt
− 2γ̇ τ12

)
= −12

5
μ0λr

(
1 − 5

3
φ

)
γ̇ 2, (2.4)

τ12 + 6
5
λr

(
dτ12

dt
+ 1

2
γ̇ NI

)
= μ0 (1 + φ)

(
γ̇ + 6

5
λr

dγ̇

dt

)
− 16

5
μ0λrφ

dγ̇

dt
, (2.5)

where NI = τ11 − τ22, the first normal stress difference. The dimensions of the relations
are reduced by the characteristic shear rate, γ̇eff , and the angular oscillation frequency,
ωo, where γ̇ (t) = √

2γ̇eff sin(ωot). The representative shear stress is given by μ0γ̇eff .
Substituting γ̇ = γ̇eff γ̇

∗, τ12 = μ0γ̇eff τ
∗, NI = μ0γ̇eff N∗

I and t = t∗/ωo into (2.4) and
(2.5), the relations are expressed as

N∗
I + 6

5

(
Cd

dN∗
I

dt∗
− 2Caγ̇ ∗τ ∗

)
= −12

5
Ca
(

1 − 5
3
φ

)
γ̇ ∗2, (2.6)

τ ∗ + 6
5

(
Cd

dτ ∗

dt∗
+ 1

2
Caγ̇ ∗N∗

I

)
= (1 + φ) γ̇ ∗ + 6

5
Cd
(

1 − 5
3
φ

)
dγ̇ ∗

dt∗
, (2.7)

where an asterisk indicates a non-dimensional variable. In addition to the volume fraction
φ, the dimensionless parameters describing the stress response are Ca = λrγ̇eff and the
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dynamic capillary number Cd = λrωo representing the unsteadiness of the flow. Note that
(1.2) and (1.3) are derived from the set of (2.6) and (2.7) assuming steady shear (Cd = 0)
and negligible bubble deformation (Ca = 0), respectively.

Here, the viscoelastic properties are discussed based on (2.6) and (2.7). The relative
viscosity η is defined as the amplitude of τ ∗ divided by that of γ̇ ∗. The phase difference α

of τ ∗(t∗) against γ̇ ∗(t∗) indicates the conditions of the viscoelasticity, namely, the phase
of the viscoelasticity δ = π/2 − α rad, where π/2 rad represents a purely viscous fluid,
while δ = 0 rad means that the material is purely elastic. For intermediate δ values, 0 <

δ < π/2 rad, the fluid exhibits viscoelasticity. The phase δ is also given by tan δ = G′′/G′,
where G′ and G′′ are storage and loss moduli, respectively.

Under different combinations of φ, Ca and Cd, the corresponding η and δ are obtained
by numerically solving the set of equations (2.6) and (2.7). They are shown in figure 1
in the form of rheology maps, which are a comprehensive expression of viscoelasticity
proposed by Ohie et al. (2022). The modulations of both η and δ intensify as φ

increases. For the η distributions, the maximum value of η = 1 + φ (Taylor 1932) occurs
at Ca = 0 and Cd = 0, and it monotonically concentrically decreases in the higher Ca
and Cd directions. Ultimately, η converges to η = 1 − 5φ/3, which was also reported by
Mackenzie (1950). This doubly sigmoidal shape of the η distribution was also confirmed
by Mader et al. (2013). Although the viscosity decrease and increase intensify at higher
φ, the critical curve for η = 1 seems to be universal regardless of φ. Under steady shear
(Cd = 0), the critical capillary number of Ca = √

5/12 � 0.65 is obtained from (1.2).
Under small-amplitude oscillatory shear (Ca � 1), the relative viscosity derived from
(2.7) is

η = 1 + 1 − (12/5)Cd2

1 + [(6/5)Cd]2 φ, (2.8)

where the terms on the same scale as O(φ2) were ignored in the derivation. Note that
this equation has the same form as (1.2), and the critical dynamic capillary number is
also Cd = √

5/12 � 0.65. The increase or decrease in the viscosity therefore depends on
whether Ca or Cd exceeds this critical value.

The δ distributions have minimum points at approximately Ca � 1 and Cd ∼ 1, as
shown in figures 1(d)–1( f ). Assuming small-amplitude oscillatory shear (Ca � 1), from
(2.7), δ is

δ = π

2
− tan−1 (16/5)Cdφ

(1 + φ) + [1 − (5/3)φ][(6/5)Cd]2 . (2.9)

The minimum point is determined to satisfy ∂δ/∂Cd = 0. Under the dilute condition, it is
given by

Cd = 5
6

√
1 + φ

1 − (5/3)φ
∼ 1. (2.10)

The viscoelastic properties are most pronounced at this point, and δ monotonically
increases toward other areas, converging to that of a purely viscous fluid. This means
that the bubble suspension has the most prominent viscoelasticity when the time scale
of the shear deformation is the same as the relaxation time of the bubble. One of the
advantages of the map representation is that the dependences of the viscoelasticity on the
shear rate, strain and oscillation frequency can be simultaneously determined. As shown by
the dashed line in figure 1(d), the distributions of δ have a boundary at Cd/Ca = 1, where
the shear strain is exactly unity. Therefore, the bubble suspension loses viscoelasticity
when the shear strain is larger than this critical value regardless of Ca and Cd.
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Figure 1. Viscoelasticity of dilute bubble suspensions. Relative viscosities (η) at volume fractions (φ) of
(a) 1 %, (b) 2 % and (c) 3 %. Phases of the viscoelasticity (δ) at volume fractions of (d) 1 %, (e) 2 % and
( f ) 3 %. Assuming that δ = π/2 × 98 %, for example, G′′/G′ = 31.8. The loss modulus is therefore dozens of
times the elastic modulus, indicating that the viscous component is still prominent.

3. Experimental verification

Theoretically or empirically derived constitutive equations have usually been evaluated
by rheological measurements. However, existing techniques have difficulties with bubble
suspensions. A standard torque-type rheometer with a cone and plate geometry is the
first candidate for suspensions, but the maximum size of the dispersion usually has to be
smaller than 10 μm; hence, it is not practical for bubble suspensions. Other candidates are
parallel plates and concentric cylinders, but it is challenging to remove the bubble-rise
effect (Pal 2003) and edge effect in the cylinder, respectively. The parallel plate was
previously used by Llewellin et al. (2002) for small-amplitude oscillatory shear (Ca � 1),
but it is not applicable for Ca = O(1) because the shear rate amplitude has a radial profile.
Another potential approach is falling sphere viscometry (Murai & Oiwa 2008), but it has
three-dimensional flow around the sphere, not simple shear flow.

As the most promising method for bubble suspensions, viscoelastic analysis by
ultrasonic spinning rheometry (USR) (Tasaka et al. 2018) is introduced here. Ultrasonic
spinning rheometry is a novel technique for evaluating complex fluids under heterogeneous
and non-equilibrium conditions. In USR, a test fluid is filled in an acrylic cylindrical
vessel oscillated in a sinusoidal manner, as shown in figure 2, and the spatio-temporal
distribution of the azimuthal velocity uθ (r, t) is measured by an ultrasonic velocity profiler
(UVP) (Takeda 2012; Tan et al. 2021). The UVP captures the spatial and temporal velocity
distribution uξ along the measurement direction, as shown in figure 2(b). Assuming the
flow is dominated in the azimuthal direction and axially symmetric, uξ is converted to
the azimuthal velocity as uθ (r, t) = (r/y)uξ . The spatial profiles of the effective shear
rate γ̇eff (r) and stress τeff (r) are obtained from the velocity information through equations
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Figure 2. Experimental set-up for USR: (a) cross-section of the set-up and (b) top view of the double cylinders.
Fine bubbles are generated by four needles mounted on the acrylic plate. The outer cylinder is surrounded by
water for temperature control and propagation of ultrasonic waves.

of the fluid motion. In the cylindrical vessel, one-directional and axisymmetric flow is
realized and it satisfies the following Cauchy’s equation of motion:

ρ
∂uθ

∂t
=
(

∂

∂r
+ 2

r

)
τ, (3.1)

with the fluid density ρ. The following Maxwell model is used to separate viscous and
elastic contributions to the shear stress

τ + μ

E
∂τ

∂t
= μ

(
∂

∂r
− 1

r

)
uθ , (3.2)

where μ and E are the viscosity coefficient and elastic modulus. The time derivative
in (3.2) should be an objective derivative such as the Jaumann or other derivative to
satisfy the principle of material objectivity. However, assuming that the flow field is
axially symmetric and dominant in the azimuthal direction, and that the shear stress is
more dominant than the first normal stress difference, the Jaumann derivative reduces
to the dime derivative ∂τ/∂t in this system. The velocity profile uθ (r, t) includes the
measurement noise of the UVP, discrete Fourier transform is therefore performed at
each radial position, and only the Fourier coefficients ûθ (r, ω = ωo) corresponding to the
cylinder oscillation are extracted. The rheological properties μ and E are determined at
each radial position so that the following cost function takes the minimum value:

F(μ, δ; r) =
∣∣∣∣iωρûθ −

(
∂

∂r
+ 2

r

)
τ̂

∣∣∣∣
2

ω=ωo

, (3.3)

with tan δ = E/μωo. The cost function is the residual of both sides of the Fourier
transformed equation (3.1), the viscoelasticity is therefore locally determined so that the
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Figure 3. Viscoelastic analysis of the bubble suspension by USR. (a) Experimental set-up. (b) Spatio-temporal
distribution of the azimuthal velocity uθ (r, t) at the oscillation frequency of fo = 1.0 Hz and rotation amplitude
of Θ = π/4 rad. (c) Flow curve evaluated by USR, where the dark plots are the average values of the data points
shown in the background and the error bars indicate the standard deviation. The solid line shows the flow curve
of τeff = μ0γ̇eff .

velocity distribution satisfies (3.1) and (3.2). The phase of the viscoelasticity δ is used
instead of E for narrowing the search range in the optimization problem, where δ goes
from zero to π/2 rad while E goes from zero to infinity. In the cylindrical coordinate, the
shear rate in the azimuthal direction is defined by

γ̇ (r, t) =
(

∂uθ

∂r
− 1

r

)
uθ , (3.4)

and its effective value γ̇eff is used as a representative shear rate at each radial position. The
effective shear stress τeff is defined as τeff = μγ̇eff sin δ.

An example of the measurement of a dilute bubble suspension with φ = 1.3 % and a =
0.8 mm suspended in Newtonian silicone oil (KF-96-3,000cs, Shin-Etsu Chemical Co.,
Ltd., Japan, μ0 = 2.90 Pa s, σ = 21 mNm) is shown in figure 3(a). The spatio-temporal
distribution of the azimuthal velocity uθ (r, t) measured by UVP is shown in figure 3(b).
The cylindrical vessel is driven by a stepping motor and the wall velocity is controlled
as uθ (r = R, t) = Uwall sin(ωot). The maximum wall velocity is Uwall = 2πfoRΘ with
the oscillation frequency of fo and the oscillation amplitude Θ . The oscillatory shear is
induced at the wall (r/R = 1) and it propagates toward the central axis with accompanying
phase delay, as shown in figure 3(b). The phase lag and attenuation of the velocity
amplitude reflect the viscoelasticity at each radial position. The effective shear stress
τeff and shear rate γ̇eff are locally evaluated using the procedure explained above and
summarized in figure 3(c), where the symbols and error bars represent mean values and
standard deviations at each shear rate. The oscillation frequency of the vessel 2.0 Hz
gives Cd = 1.4, and the shear rate range from 0 to 20 s−1 corresponds to Ca from 0 to
2.2. Based on figure 1(a), the relative viscosity is approximately unity, starting viscosity
reduction. The solid line in figure 3(c) shows the flow curve of τeff = μ0γ̇eff , and most
of the points are close to or below this line. Therefore, the experimental result obtained
by USR is statistically consistent with the theoretical value, although the raw data are
highly scattered. As this rheometry is still a developing method, its oscillation frequency
is now limited around that frequency. The measurement therefore could not be repeated
for different values of Cd. In the field of suspension rheology, the two disciplines of
theory and experimentation with novel tools have made great contributions to clarifying
the physics of the rheological properties (Tapia et al. 2022). To experimentally investigate
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Figure 4. Experimental verification of the theory: (a) cross-section of the experimental set-up, (b) top view of
the double cylinders and (c) comparison of the experimentally measured torque ratio and theoretically evaluated
wall shear stress ratio. The orange symbols are based on the viscoelasticity. The green and black symbols are
predicted by (1.2) and (1.1) with b = 1 and −5/3.

the bubble suspension rheology in more detail, further improvement of USR with respect
to the measurement noise is important future work.

Now, we show application of the theoretical work in § 2 to flow prediction. The
Taylor–Couette geometry was chosen as a typical geometry, and the wall shear stress
acting on the inner cylinder was compared between the prediction and experimental
results. The experimental set-up mainly consisted of a fixed inner cylinder connected to a
torque sensor (UTM III 0.5 Nm, Unipulse Co., Ltd., Japan) and an outer cylinder driven
by a stepping motor, as shown in figures 4(a) and 4(b). The radii of the cylinders were
Rout = 105 mm and Rin = 50 mm, with the corresponding gap size of 55 mm. Controlling
the outer cylinder motion by the stepping motor to uwall(t) = Uwall sin(ωot), the test fluid
in the gap was subjected to one-directional oscillatory shear, which was dominant in the
azimuthal direction. The oscillatory shear flow is induced at the wall and it propagates
toward the fixed inner cylinder. The axial torque sensor is installed on the inner cylinder,
and the measured torque value is proportional to the wall shear stress acting on the inner
cylinder surface. Highly viscous silicone oil (KF-96-5,000cs, Shin-Etsu Chemical Co.,
Ltd., Japan, μ0 = 4.86 Pa s, σ = 21 mNm) as a Newtonian fluid was filled in the cylinder,
and fine bubbles were generated by the four fine needles mounted on the stepped disk. The
representative bubble radius a was determined to be a = 0.6 mm, and the volume fraction
was φ = 1.1 %. The amplitude of the axial torque was measured under different Uwall and
ωo. The parameter Tb represents the torque amplitude for the bubble suspension, and T0
represents that for the pure silicone oil. This experiment was conducted for both silicone
oil and bubble suspension, and the torque ratio Tb/T0, that is, the wall shear stress ratio,
was evaluated under different oscillation frequencies and amplitudes of the outer cylinder.

The velocity field of the oscillatory shear flow between the double cylinders was
reconstructed based on the rheology map shown in figure 1 along with the method
proposed by Ohie et al. (2022), and the wall shear stress ratio τb/τ0 was obtained.
In the prediction scheme, the oscillatory shear flow is obtained by solving (3.1) and a
viscoelasticity model with a convergence calculation. A comparison of the ratios from
experiment and theory is shown in figure 4(c), where C̄a is the bulk capillary number
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defined as C̄a = λrUwall/(Rout − Rin). At each Cd, the corresponding ratio decreased
as C̄a increased. The prediction was also conducted assuming purely viscous fluids
whose viscosities follow (1.1) and (1.2). Focusing on the prediction based on (1.2)
(green symbols), which does not account for the viscoelasticity, the slope of the symbols
decreases monotonically with increasing Cd. For conditions where Cd is less than unity,
the viscoelasticity starts to disappear and the viscosity equation under the steady shear
becomes valid. The green circle and triangle symbols are therefore concentrated near the
diagonal line. Taking all of these into account, the prediction based on the viscoelasticity
shows the best agreement. This result verified the theoretical work in § 2 generalizing
the viscoelasticity of a dilute bubble suspension, and it indicates the applicability of the
constitutive equation for predicting the diverse shear flows in industry and nature.

4. Concluding remarks

This paper theoretically investigated the viscoelasticity of dilute bubble suspensions in
unsteady shear flows based on the constitutive equation proposed by Frankel & Acrivos
(1970), which was originally for a dilute emulsion. Non-dimensionalization of the original
tensor equation revealed that the viscoelasticity can be described by volume fraction,
capillary number Ca and dynamic capillary number Cd, where the latter two represent
the bubble deformability and unsteadiness of its deformation. A sinusoidal shear rate was
input into the non-dimensionalized constitutive equation, and the corresponding shear
stress was numerically obtained. Their amplitude ratio and phase difference, that is, the
viscoelastic properties, were comprehensively investigated under different combinations
of Ca and Cd. The relative viscosity η takes the maximum value, 1 + φ (Taylor 1932),
at Ca � 1 and Cd � 1, and monotonically converges to the minimum value, 1 − 5φ/3
(Mackenzie 1950) in the higher Ca and Cd directions. Whether the relative viscosity is
higher than unity or not depends on whether Ca or Cd exceeds a common critical value,√

5/12 � 0.65. Regarding the phase of viscoelasticity δ, it takes the minimum value at
Ca � 1 and Cd ∼ 1. The viscoelastic properties are most pronounced at this condition,
and δ monotonically increases toward other Ca and Cd conditions, converging to that of
purely viscous fluid. As verification of the above theoretical work, oscillatory shear flows
in a Taylor–Couette geometry was predicted based on the theoretically derived viscoelastic
properties and the predicted wall shear stress was compared with experimentally measured
axial torque under different combinations of the oscillation frequency and rotation angle.
A reasonable agreement was confirmed and it intensified the validity of the above
theoretical work. These theoretical and experimental results are under dilute conditions,
and further research under non-dilute conditions is an important future work.
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Figure 5. Histograms of the generated bubble diameters in (a) 3000 and (b) 5000 cSt silicon oil. The dashed
lines correspond to the De Brouchere average diameters, and the plus symbols indicate the cumulative volume
fractions.

Appendix. Method for generation of the bubble suspension

Here, the specifications of the bubble generation method in double concentric cylinders
are explained. An acrylic plate was fixed to the inner cylinder, which was independent
of the outer cylinder, as shown in figures 2(a) and 4(a). Four fine needles were mounted
on the plate, and air was distributed by four pumps through silicone tubes located in the
inner cylinder. Before starting the measurement in the oscillatory shear flow, the outer
cylinder was rotated with a constant velocity of approximately 6 rpm, and fine bubbles
with almost the same diameter (≤2 mm) were generated in the silicone oil. Before starting
the measurement, impellers were used to gently stir the suspension to evenly disperse
the bubbles in the gap. The resulting volume fractions were 1.3 % and 1.1 % in 3000
and 5000 cSt silicon oil, respectively. Histograms of the bubble diameters are shown in
figure 5. The De Brouchere average diameter, which is the ratio between the fourth and
third moments of the size distribution, recently proposed by Mitrou et al. (2023), was
used as the representative radius a to calculate both the capillary and dynamic capillary
numbers. The resulting diameters were 2a = 1.66 and 1.15 mm, as shown by the dashed
lines in figure 5. These values correspond to the diameters at which the cumulative volume
fractions were approximately 50 %, as shown by the plus symbols in figure 5. Regarding
spatial heterogeneity in the bubble volume fraction, it is considered to be negligible in
both experiments. For the velocity-profiling-based rheometry, the spatial resolution of
the ultrasonic transducer is a cylindrical shape with diameter of 10 mm and thickness
of O(1 mm), more than a few bubbles are therefore included in the measurement volume.
Furthermore, the viscoelasticity is not determined from the instantaneous velocity profile,
but is analysed using the data from dozens of cycles, the velocity distribution of the bulk
as the bubble suspension is captured by UVP measurement.
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