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This paper proposes a low-divergence method to generate inhomogeneous and anisotropic
turbulence. Based on the idea of correlation reconstruction, the proposed method uses the
Cholesky decomposition matrix to re-establish turbulence correlation functions. This is
in contrast with the time-consuming procedure used in conventional methods to solve
eigenvalues and eigenvectors in each location required by coordinate transformation,
thereby reducing the computational complexity and improving the efficiency of synthetic
turbulence generation. The proposed method is based on the classical spectrum-based
method that is widely used to generate homogeneous and isotropic turbulence. By
adjusting the generation strategy of specific random vectors, inhomogeneous and
anisotropic turbulence with a relatively low divergence level can be obtained in practice,
with almost no additional computational burden. Two versions of the proposed method
are presented: the inverter and shifter versions. Both the versions are highly efficient,
easy to implement, and compatible with high-performance computing. This method is
also suitable for providing high-quality initial or boundary conditions for scale-resolving
turbulence simulations with large grid numbers (such as direct numerical simulations
or large eddy simulations); it can be rapidly implemented using various open-source
computational fluid dynamics codes or common commercial software.

Key words: computational methods, turbulence simulation

1. Introduction

With the rapid development of high-performance computing (HPC) and related
hardware capabilities, scale-resolving turbulence simulations, such as direct numerical
simulations (DNSs) and large eddy simulations (LESs), have been gradually applied
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to increasingly complex geometries and working conditions (Garnier, Adams & Sagaut
2009). Despite the considerable progress in this field, acquiring the initial or boundary
conditions of general turbulence remains an unavoidable problem and has not yet been
perfectly solved (Tabor & Baba-Ahmadi 2010; Dhamankar, Blaisdell & Lyrintzis 2017).

The methods used to acquire the initial and boundary conditions for highly resolved
turbulence simulations can be divided into two general categories: the database methods
and synthetic turbulence methods. Detailed descriptions of these categories can be found
in the literature (Dhamankar et al. 2017). The database methods can obtain field data
that are consistent with or close to real turbulence with high precision and accuracy by
directly using experimental data, storing the results of a DNS, or constructing real-time
mapping from additional computational domains (Lund, Wu & Squires 1998; El-Askary,
Schroeder & Meinke 2003). However, the scope of application for these methods is very
limited. The data storage and access burden of these methods are typically large to preserve
the original information of real turbulence as much as possible, and sometimes, the
corresponding computational cost is of the same order as the main computational domain
of focused turbulent flows. Most methods are not well-adapted to parallel programming.
Moreover, a single method is typically only applicable to a specific type of turbulence;
therefore, meeting the requirements of generating more complex turbulence in engineering
may be difficult. Some previous studies have attempted to build turbulence generators
based on databases through deep learning (Yousif, Yu & Lim 2022); however, the
synthetic turbulence methods are undoubtedly more direct and effective at solving this
general problem. Synthetic turbulence methods are used to synthesize turbulence based on
particular information to provide the necessary initial and boundary conditions. They cover
a wide range of specific method types, including the spectral-representation-based method
(Kraichnan 1970; Smirnov, Shi & Celik 2001), digital-filter-based method (Klein, Sadiki
& Janicka 2003; Kempf, Klein & Janicka 2005; Kim, Castro & Xie 2013), synthetic-eddy
method (Benhamadouche et al. 2006; Jarrin et al. 2006; Mathey et al. 2006; Subbareddy
et al. 2006), turbulent spot method (Kornev & Hassel 2007; Kröger & Kornev 2018)
and diffusion-based method (Kempf et al. 2005). The spectrum-based method is widely
applied to many in-house codes and general computational fluid dynamics (CFD) software,
owing to its valid spatial correlation and scale-distribution property, which can realize
arbitrary spectra. For example, both the open-source code OpenFOAM (ESI-OpenCFD
2021) and the commercial software Ansys Fluent (2016) have implemented versions of the
spectrum-based method.

One of the most important requirements for synthetic turbulence is ensuring a
divergence-free or solenoidal property condition in an incompressible flow. Synthetic
incompressible turbulence that does not fulfil this condition may rapidly decay or cause
excessive pressure fluctuations (Poletto, Craft & Revell 2013). However, for compressible
flows, the artificially introduced velocity divergence produces spurious noise, which may
interfere with other shocks or expansion waves in high-speed flows (Dhamankar et al.
2017). Many types of synthetic-turbulence methods, such as digital filters (Klein et al.
2003) and synthetic-eddy methods (Jarrin et al. 2006), in their widely used classical
forms do not naturally generate divergence-free results because they primarily focus
on producing precise spatial/temporal correlations or physical statistics. Although some
studies have attempted to improve the digital-filter or synthetic-eddy methods to meet the
solenoidal requirements (Kim et al. 2013; Poletto et al. 2013), these improvements are
typically limited by the methodological framework. For example, the improved method of
Poletto et al. (2013) was derived only based on homogeneous anisotropic turbulence and
inherits some difficulties of the synthetic-eddy method by nature in specifying the length
scale and shape of turbulent structures (Dhamankar et al. 2017). Most improved versions
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of these methods either lose some of the advantages that the classical versions provide or
attach more limitations to the methods to ensure the divergence-free property. For example,
the improved method proposed by Kim et al. cannot simultaneously meet the requirements
of maintaining a constant mass flux and ensuring a divergence-free property (Kim et al.
2013). In the method proposed by Kempf et al. (2005), if the projection step (Lee, Lele &
Moin 1992) is employed to correct the divergence error, problems arise with the boundary
conditions, and desired correlations may deviate under certain circumstances. The vortex
method using the Biot–Savart law can guarantee divergence-free conditions only if there
are no streamwise fluctuations (Mathey et al. 2006).

In contrast to other synthetic methods, the classical form of the spectrum-based method
generates homogeneous and isotropic turbulence and produces only a divergence-free
result. However, subsequent improvements that extend it to cover inhomogeneous and
anisotropic turbulence have eliminated this solenoidal property. The method proposed by
Smirnov et al. (2001) is one of the most widely used spectrum-based methods for handling
inhomogeneity and anisotropy. This method uses a coordinate transformation and scaling
operation to achieve an inhomogeneity-and-anisotropy extension; however, the divergence
of the resulting field can no longer be ensured if the target turbulence is not homogeneous
or isotropic. A recent study showed that even the approximate zero divergence claimed
by Smirnov et al. does not hold in many cases (Yu & Bai 2014). Moreover, to obtain
the orthogonal matrix for coordinate transformation, all eigenvalues and eigenvectors of
the Reynolds stress tensor must be calculated for each grid point, which significantly
increases the computational cost of this method type. Yu et al. also introduced coordinate
transformation based on the extended version by Smirnov et al., and they improved the
method to ensure divergence-free results using the curl of a vector potential field (Yu &
Bai 2014). Although their method fulfils the solenoidal requirement, the time-consuming
eigenvalue and eigenvector calculations are also inherited from Smirnov’s method because
coordinate-transform matrices are still required for every grid point. In addition, the
introduction of the vector potential makes their method fundamentally different from the
conventional spectrum-based method, and the computational complexity is significantly
increased. Therefore, most of the existing spectrum-based-method code frameworks
cannot be sufficiently modified to implement this new version, which considerably limits
its practical application. A more recent progress was made by Patruno & Ricci (2018).
Their improved spectrum-based method combines the ideas of Poletto et al. (2013)
and Kröger & Kornev (2018) and innovatively corrects the divergence-free error caused
by directional anisotropy. However, the original N modes superposition is transformed
to an M × N modes superposition in the improved method, which clearly increases
the computational complexity. Moreover, the divergence-free error caused by strong
inhomogeneity may be amplified by the superposition of M modes compared with other
previous methods (Bervida et al. 2020).

This study proposes a new divergence-free spectrum-based method, which is
based on Cholesky decomposition for correlation reconstruction instead of coordinate
transformation, to solve the problem of inhomogeneity and anisotropy extension. This
method acquires divergence-free turbulence by correcting the calculation strategy of
specific defective steps according to divergence-free error terms that result from
correlation reconstruction; thus, it completely inherits the framework and advantages
of the classical spectrum-based method. The algorithm of this new method is quite
concise, requiring the modification of only two steps of the original method to ensure
the divergence-free property in inhomogeneous and anisotropic flow. Because the
conventional coordinate transformation is eliminated, no eigenvalue and eigenvector
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solving algorithms are involved. Thus, a faster computation speed can be achieved
when implementing a large number of grid points, particularly in high-resolution
DNSs/LESs. The effectiveness of the proposed method was verified using four types of
test cases: homogeneous and isotropic turbulence, anisotropic turbulence, inhomogeneous
turbulence, and typical inhomogeneous and anisotropic turbulence of the channel flow.

The remainder of this paper is organized as follows. Section 2 explains the theory
and derivation of the proposed method in detail. Section 3 analyses the algorithms and
computational complexity. In § 4, four representative cases are employed to verify the
proposed method and thoroughly test its practical performance. Section 5 presents the
concluding remarks of the study.

2. Theory and methodology

2.1. Methods for generating homogeneous and isotropic turbulence
Adopting the notation of Bechara et al. (1994), the velocity vector in Cartesian space for a
single sampling can be expressed in a Fourier series as follows:

ui
(
x(k), t

) =
∑

n

2p(n) cos
(
κ

(n)
j xj + ω(n)t + ϕ(n)

)
σ

(n)
i , (2.1)

where the superscript (n) represents the nth Fourier mode and does not participate
in the tensor summation. Mode phase ϕ(n) ∼ U(0, 2π) and mode amplitude p(n) =√

Ek(κ(n))�κ(n). The energy spectrum can be obtained using experimental data such
as CBC data (Comte-Bellot & Corrsin 1971), which are widely used in the calculations
of homogeneous and isotropic turbulence decay. When computing each mode in the
algorithm used to generate the fluctuation velocity, the unit wavevector κ̂

(n)
i of the

mode is first obtained by generating a random unit vector. The symbol ˆ represents the
corresponding unit vector after normalization; for example, κ

(n)
i = κ(n)κ̂

(n)
i . The vector

product or cross product is then used to obtain the mode direction perpendicular to the
wave vector,

σ
(n)
i =

(
εijkξ

(n)
j κ̂

(n)
k

)
normalize

, (2.2)

where ξ (n) is a random unit vector that follows the spherical distribution as well. If we let
α(n)(x(k), t) = κ

(n)
j xj + ω(n)t + ϕ(n), we can obtain α

(n)
i = κ

(n)
i and ∂tα

(n) = ω(n).
For a given time instant, the divergence of the turbulent velocity field can be expressed

as

ui,i =
∑

n

2p(n) sin α(n)κ
(n)
i σ

(n)
i . (2.3)

As long as the wavevector and direction vector are strictly perpendicular, the generated
turbulence satisfies the divergence-free condition.

2.2. Extended method for inhomogeneous and anisotropic turbulence
The generation method represented by (2.1) only accounts for homogeneous and isotropic
turbulence and requires an extension technique to include inhomogeneous turbulence.
A typical approach is to introduce coordinate transformations and scaling operations
(Smirnov et al. 2001; Yu & Bai 2014). However, the orthogonal matrix computation for
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coordinate transformation requires the calculation of all eigenvalues and eigenvectors of
the Reynolds stress tensor at each spatial point, where synthetic turbulence is required.
Consequently, the computational cost increases significantly. To ensure the efficiency of
the computation, this study adopts a correlation reconstruction transformation based on
Cholesky decomposition matrices. The velocity is generated using the following formula:

vi
(
x(k), t

) =
∑

n

2q(n) cos
(
κ

(n)
j xj + ω(n)t + ϕ(n)

)
σ

(n)
i , (2.4)

ui
(
x(k), t

) = Lij
(
x(k), t

)
vj, (2.5)

where q(n) = p(n)/ut. ut is the characteristic velocity of turbulence corresponding to the

integration scale, and it can be calculated using
√

1
3 〈uiui〉.

The correlation reconstruction matrix Lij is obtained based on the Cholesky
decomposition of the Reynolds stress tensor Rij, that is, Rij = LikLjk. Therefore,

L11 =
√

R11, L21 = R21

L11
, L22 =

√
R22 − L2

21,

L31 = R31

L11
, L32 = R32 − L31L21

L22
, L33 =

√
R33 − L2

31 − L2
32,

L12 = L13 = L23 = 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.6)

The correlation reconstruction operation presented in (2.4)–(2.6) realizes the extension of
the original spectrum-based method to inhomogeneous and anisotropic turbulence. It has
been adopted in some previous studies for different types of generation methods to achieve
similar purposes (Shur et al. 2014; Patterson, Balin & Jansen 2021).

2.3. Divergence-free errors caused by correlation reconstruction
Although the correlation reconstruction matrix is relatively concise, this extended method
is limited because the divergence is no longer strictly zero. After the derivation, the
velocity divergence at this point is

u(n)
i,i = 2

∑
n

⎡
⎢⎣cos α(n)q(n)

,i Lijσ
(n)
j︸ ︷︷ ︸

Er1

+ cos α(n)q(n)Lijσ
(n)
j,i︸ ︷︷ ︸

Er2

− sin α(n)q(n)Lijσ
(n)
j κ

(n)
k,i xk︸ ︷︷ ︸

Er3

+ cos α(n)q(n)Lij,iσ
(n)
j︸ ︷︷ ︸

Er4

− sin α(n)q(n)κ
(n)
i Lijσ

(n)
j︸ ︷︷ ︸

Er5

⎤
⎥⎦ . (2.7)

There are five error terms in (2.7), which are responsible for the non-zero divergence
in inhomogeneous and anisotropic turbulence. The first term Er1 arises from the
inhomogeneity of the amplitude q(n) and is present in almost all improved spectrum-based
methods for inhomogeneous turbulence. Because Er1 is calculated from the normalized
energy spectrum, it is primarily affected by the change in the turbulence integral scale
in space. However, its inhomogeneity effect is limited. As shown in § 4.4, the results of
a spectrum using a constant scale and inhomogeneous scale are similar to each other.
Only in a statistical way through the entire computational domain could a small difference
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be observed. This implies that the effect of this term is minimal compared with that of
other terms and can be considered negligible. In the previous method, the second and
third terms are strictly zero. After modifications, the corresponding errors are introduced
only if the unit direction vector σ

(n)
i or wavevector κ

(n)
i exhibits strong variation. Here

Er2 and Er3 are essentially bound to additional adjustments; therefore, it is difficult to
design the correction in advance to ensure that these two terms naturally become zero.
Fortunately, most of the improvements result in both of these errors being negligibly small
in practical calculations. Furthermore, our verification cases presented in §§ 4.2 and 4.3
support this conclusion. In these test cases, the divergence-free errors caused by these two
items were always present and not processed. If Er2 and Er3 contribute significantly to the
divergence level of the results, the limited effect of the current divergence-free correction
ignoring these two terms would be observed. However, the correction method results are
very effective (nearly 100 %); this indicates that the errors caused by Er2 and Er3 are not
significant.

As a result, the main contribution of the divergence-free error is obtained as

[
u(n)

i,i

]
main

= 2
∑

n

⎡
⎢⎣cos α(n)q(n)Lij,iσ

(n)
j︸ ︷︷ ︸

Er4

− sin α(n)q(n)κ
(n)
i Lijσ

(n)
j︸ ︷︷ ︸

Er5

⎤
⎥⎦ . (2.8)

The increase in the divergence magnitude produced by the correlation reconstruction
operation is mainly because of Er4 and Er5; therefore, the correction method to strictly
ensure the divergence-free property of the resulting turbulence starts with these two error
terms. The fourth term Er4 represents the inhomogeneity of the correlation reconstruction
matrix, which is caused by the spatial distribution of the Reynolds stress tensor field
Rij. When Rij is uniform in the computational domain, Er4 = 0. The fifth term Er5 is
the influence of anisotropy of the correlation reconstruction, which is caused by the
anisotropy of the local Rij. When Rij is isotropic, the fifth term degenerates to the form
sin α(n)q(n) 1

3 Lkkκ
(n)
i δijσ

(n)
j = 0.

2.4. Weak inhomogeneity assumption
In (2.8), only Er5 contains the wavenumber magnitude κn. This indicates that a large
wavevector κ

(n)
i or small length scale tends to cause a larger anisotropy error term Er5

of a specific Fourier mode, while the inhomogeneity error term Er4 remains unaffected.
When the wavenumber κ(n) = ‖κ(n)

i ‖ is sufficiently large to exceed a critical value,
the overall divergence-free error caused by the correlation reconstruction is expected
to be dominated by Er5. In this scenario, accounting only for Er5 can also lead to a
significantly low divergence level. This phenomenon is termed weak inhomogeneity, and
the aforementioned modes are referred to as the scale satisfying weak inhomogeneity
assumption.

It is observed that, when
‖Lij,i‖2-norm

κ(n)‖Lij‖2-norm
� 1, (2.9)

Er4 is negligible compared with Er5. If (2.9) is satisfied for a certain wavenumber, the
corresponding scale can be considered as fulfilling the weak inhomogeneity assumption.
The physical meaning of (2.9) is that the spectrum-based method essentially superimposes
Fourier modes/series to construct/reproduce turbulent fluctuations. However, the largest
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scale that can be identified using the discrete Fourier transform is the largest spatial
scale corresponding to the computational domain. The zero-wavenumber mode is a
constant without spatial distribution. Therefore, spatial inhomogeneity is a signal with
wave numbers beyond the recognition range of the discrete Fourier series belonging
to [0, 2π/Ld]. As the wavenumber increases, the microscale turbulence tends to be
homogeneous, and the influence of this small-wavenumber signal becomes weaker.
Therefore, large-scale turbulence is mainly affected by macroscopic inhomogeneity, and
the divergence-free errors due to correlation reconstruction are also concentrated in
large-scale modes close to the scale of the computational domain. Thus, there exists a
critical mode nc, where the effect of Er4 is negligible for arbitrary Fourier modes fulfilling
κ(n) > κ(nc), that is, the error term associated with the spatial inhomogeneity generated by
these modes can be considered to be zero.

However, for realistic turbulence, its integral scale/energy-containing scale is typically
in a large-scale range as well. Therefore, it is not sufficient for evaluating the
divergence-free error of flows to only consider whether the scale satisfies the weak
inhomogeneity assumption. The relative size of the energy-containing scale of the specific
turbulent flow should be taken into account as well. This is referred to as determining
whether the turbulence satisfies the weak inhomogeneity assumption. Whether Er4 is
negligible for flows depends on the relative size of the critical mode and integral scale
of the turbulence. If it satisfies

κc

κl
= ‖Lij,i‖2-norm

2π

√
ρ
(
Rij
) l � 1, (2.10)

the reconstruction divergence-free error owing to inhomogeneity is negligible. In (2.10), l
is the integral scale of the local turbulence, and ρ(Rij) represents the spectral radius of the
local Rij. As discussed in §§ 4.3 and 4.4, the condition of (2.10) is typically satisfied for
practical applications.

As regards whether the practical applications satisfy the weak inhomogeneity
assumption (i.e. whether (2.10) is satisfied), we conducted a theoretical calculation
and evaluation. A dimensionless variable κc/κl, which indicates the influence of
inhomogeneity, is calculated based on channel-flow data and (2.10). The distribution of
this wavenumber ratio is indicated by the red line shown in figure 1. Evidently, the
critical wavenumber of inhomogeneity κc in the entire domain is less than 8 % of the
energy-containing wavenumber κl, and this ratio remains below 4 % in most areas. This
illustrates that, in the channel flow, Er4 related to inhomogeneity is considerably less than
Er5. Therefore, the turbulent flow satisfies the weak inhomogeneity assumption.

It should be emphasized that the weak inhomogeneity assumption does not assume
that turbulence is homogeneous. Using the correlation reconstruction extension in
§ 2.2, the method can still obtain accurate, inhomogeneous and anisotropic turbulence
spatial correlations. The concept of the weak inhomogeneity assumption is that the
divergence-free error Er4 caused by the inhomogeneity is sufficiently small enough; hence,
only the anisotropy error of Er5 requires correction to obtain the inhomogeneous and
anisotropic turbulent field with considerably low divergence level in practice.

2.5. Divergence-free correction: inverter version
The inverter version divergence-free correction method is based on the weak
inhomogeneity assumption. It accounts only for the anisotropy error term Er5; this implies
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Figure 1. The proportion of influence of inhomogeneity and the spatial distribution of the turbulence integral
scale in channel flow. Results are based on DNS data of Kim, Moin & Moser (1987).

that

κ
(n)
i Lijσ

(n)
j = 0 (2.11)

should be satisfied for all modes.
However, it is not feasible to use the conventional operation directly because it would

result in the deviation of the turbulence correlation. This is common in previous studies
that sought to enforce a divergence-free property for various primitive methods. For
example, the use of the projection step as mentioned in § 1 will result in this type
of deviation from desired correlations (Yu & Bai 2014). Furthermore, this deviation
often depends on specific algorithms, in particular random unit vector generation and
manipulation. Therefore, deviations resulting from methods discussed in previous studies
are often unpredictable and extremely severe in certain instances; for example, a minimum
principal stress may be obtained in the direction of the expected maximum principal stress.
Therefore, the conventional operation in previous research (Saad et al. 2016) should not
be adopted. In contrast, if the weak inhomogeneity assumption is satisfied, this problem
can be avoided using a special computational strategy. The possible correlation deviation
caused by modifying the direction vectors σ

(n)
i was observed. Thus, in the inverter version,

we neglect the previously proposed conventional idea (Saad et al. 2016) to obtain σ
(n)
i by

first calculating the inhomogeneous temporary wavevector field according to the uniform
wavevector. Instead, the uniform σ

(n)
i of each mode is first obtained, and the temporary

direction vector is calculated as follows:

σ̃
(n)
i = Lijσ

(n)
j . (2.12)

The final wavevector direction κ̂
(n)
i , which is perpendicular to σ̃

(n)
i , is then obtained. There

is no trigonometric function in (2.12); therefore, the vector product can be used once or
twice (detailed in Appendix A) to calculate the perpendicular vectors. The inverter version
of the divergence-free spectrum-based method completely avoids the correlation deviation,
and it transfers all possible effects to the wavevector of each mode, which has exhibited
a negligible effect on the energy spectrum during our practical computation test. This is
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also supported by our verification cases discussed in §§ 4.2 and 4.3, for which no deviation
from the desired correlations is observed in the results of the inverter method.

For practical turbulent flow that fulfils the weak inhomogeneity assumption, the inverter
version correction method exhibits good performance not only in the low-divergence
property but also in the accuracy of the desired correlation tensors. For homogeneous
anisotropic turbulence in particular, this version of the generation method strictly corrects
the divergence-free error and can be termed a divergence-free method, whereas for
inhomogeneous anisotropy, the inverter version can still correct Er5 for anisotropy. The
inverter version naturally returns to the primitive extended method only in the synthesis
of inhomogeneous and isotropic turbulence. Even under this circumstance, the turbulence
correlation tensor produced by the inverter method is accurate and does not show the
aforementioned deviation owing to the employed strategy.

Notably, the inverter correction method handles the component (polarization)
anisotropy, and there is no additional processing regarding the different length scales in
different directions (directional anisotropy) as in certain prior studies (Patruno & Ricci
2018; Bervida et al. 2020). Therefore, the generated turbulence relies on subsequent
calculations to restore this directional anisotropy. However, compared with a total
computation requirement of M × N modes presented by Patruno & Ricci (2018), the
inverter method uses a concise operation of (2.12) and maintains a total number of
N modes in the current framework, which has advantages in terms of computational
complexity. Moreover, as mentioned by Bervida et al. (2020), the divergence-free error
resulting from strong inhomogeneity may increase through the superposition of M modes.
In contrast, although the divergence-free error of the inverter method may increase
in processing strongly inhomogeneous flow, the method can ensure that the generated
turbulence spatial correlations are accurate without deteriorating.

2.6. Divergence-free correction: shifter version
If the inhomogeneity of the turbulence is significantly strong, the assumption of weak
inhomogeneity of the flow is no longer valid. As presented by Bervida et al. (2020),
the divergence-free error caused by inhomogeneity will contribute significantly to the
results under this circumstance. At this time, although the inverter method can still provide
precise inhomogeneous turbulence statistics, the resulting divergence level will increase
significantly. Therefore, we propose the shifter version correction method to correct the
two terms in (2.8) for both inhomogeneous and anisotropic turbulence. However, the
correlation deviation can no longer be simply eliminated as in the inverter method.
Although this deviation problem cannot be solved perfectly, we noted that the actual
behaviour of deviation depends on the random unit vector operations. Therefore, using
special algorithms that generate and manipulate unit direction vectors, we successfully
transformed the correlation deviation which is a mathematical or statistical problem into
two more physical and predictable problems, namely the anisotropic degeneration and
TKE reduction. Moreover, the latter can be effectively compensated for the decrease by
adding a scaling operation to the algorithm (a more detailed explanation of the final
shifter version correction method is discussed in Appendix A). In general, although
the shifter method still has the problem of anisotropic degeneration when dealing with
inhomogeneous and anisotropic flows, such errors can be estimated, and are more
consistent with the physical laws. Hence, the generated turbulence is less likely to undergo
abnormal decay in subsequent calculations. In addition, the results generated by the shifter
method are strictly divergence-free regardless of whether the correlation matrix is deviated
or not.
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Figure 2. Comparison of different energy spectrum models with experimental data.

2.7. Energy spectrum models
A distinct advantage of the spectrum-based method is that it can produce turbulence based
on arbitrary forms of energy spectra. In addition to some specific flows that can be acquired
by interpolating experimental data (Comte-Bellot & Corrsin 1971), many existing studies
have employed various energy-spectrum models to ensure the use of complex flows (von
Kármán 1948; Pao 1965; Kraichnan 1970; Bailly & Juve 1999; Yu & Bai 2014). For
the spectrum-based method, the adopted model determines whether the method can be
applied for high-Reynolds-number turbulence. To ensure that the method applies to more
extensive flows, a high-Reynolds-number model with high accuracy is necessary. Except
for the low-Reynolds-number energy spectrum model used by Kraichnan (1970), almost
all high-Reynolds-number models can be expressed in their general form, as follows:

Ek(κ) = Cε2/3κ−5/3fl(κl)fη(κη), (2.13)

where the functions fl and fη describe the distribution form of the spectrum in
the energy-containing and dissipation ranges, respectively. We compared various
energy-spectrum models, including the low-Reynolds-number model, with the CBC
spectrum data (Comte-Bellot & Corrsin 1971), and the results are illustrated in figure 2.

Figure 2 shows that the high-Reynolds-number model that adopts the energy-containing
range model of p0 = 4 and the dissipation range model of β = 5.2 exhibits the best
performance. Therefore, this combination of the energy-spectrum model is implemented
in the code. Detailed information concerning particular parameters and the calculation of
model coefficients can be found in Pope’s book (Pope 2001). The final spectrum model
that accounts for high-Reynolds-number-flow is defined as follows:

Ek(κ) = 1.5ε2/3κ−5/3

[
κl√

(κl)2 + cL

]17/3

exp
(
−5.2

[
4
√

(κη)4 + c4
η − cη

])
, (2.14)

where cL = 1.10075 and cη = 0.401685.

970 A2-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

54
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.548


An efficient and low-divergence method for generating turbulence

2.8. Remarks on the inverter and shifter methods
This section presents a summary of the features and application range of the proposed
inverter version and shifter version divergence-free correction method. The inverter
method can ensure accurate spatial correlations under general conditions regarding
inhomogeneous and anisotropic turbulence. However, the weak inhomogeneity assumption
must be satisfied to keep the divergence level of generated turbulence sufficiently
low. If the weak inhomogeneity assumption is not valid, the divergence-free error will
gradually increase with the enhancement of inhomogeneity. In several applications of
complex flow, strict verification of weak inhomogeneity is difficult to implement. Hence,
we recommend using the inverter version correction method first. If the generated
turbulence has an unusually high divergence level or an abnormal decay is observed
in the follow-up calculation, the shifter version should be adopted to regenerate the
turbulence. The shifter method can obtain divergence-free results for any inhomogeneous
and anisotropic turbulence. Furthermore, the method can transform the unpredictable
correlation distortion into predictable anisotropic degradation. Owing to the advantages
of the spectrum-based method in spatial correlation, such degradation generally does
not cause abnormal decay in subsequent calculations and the correct anisotropy can be
recovered; however, its possible drawback in practical use must be noted.

An advantage of the proposed method (both the inverter and shifter versions) is that the
restrictions on the specific flow types applicable are minimal. A variety of internal and
external flows can be applied, and the requirements for input turbulence information are
flexible. The quality of the results generated using this method is not related to the specific
flow type, but to the detail of turbulence information input to the method in practice.
If the energy spectrum data, Reynolds stress tensor distribution, and dissipation rate
distribution corresponding to a unique flow can be provided, the turbulence generated by
the proposed method would be close to the real condition. However, even if the turbulence
input parameters are not sufficiently detailed (for example, several external flow problems
can only provide a turbulence intensity of the upstream), the proposed method can still
adopt the default energy spectrum model (2.14). In addition, it can estimate the missing
parameters (e.g. integral scale and correlation tensor) according to the default settings
and then obtain a result that satisfies the conventional energy spectrum distribution while
maintaining a strong spatial correlation. The generated turbulence is less likely to decay
owing to the spatial correlation associated with the spectrum-based method. If there is a
deviation from the real turbulence owing to a lack of input parameters, it will be rapidly
recovered in the subsequent calculation. To ensure a strong correlation and prevent decay,
some other more special turbulence characteristics (such as directional anisotropy) are not
considered in the method at present. Therefore, these characteristics can only be gradually
recovered using subsequent calculations; this is a major limitation of the current method.

3. Algorithm

In this section, specific implementation algorithm of the inverter-version correction
methods is described, and the corresponding computational complexity and runtime
storage requirements are analysed. For detailed descriptions and analysis of the shifter
version algorithm, please refer to § A.3.

3.1. Implementation recipe
The algorithm for the inverter version is as follows.
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(i) The correlation reconstruction tensor field Lij is calculated from (2.6) based on the
given Reynolds stress distribution.

(ii) The unit direction vector σ
(n)
i and random unit vector ξ

(n)
i are generated for each

Fourier mode.
(iii) The intermediate direction vector σ̃

(n)
i is calculated from (2.12).

(iv) The wavevector κ
(n)
i = κ(n)κ̂

(n)
i is calculated using a one-time or two-time cross

product operation using ξ
(n)
i .

(v) The intermediate velocity field vi is calculated through (2.4).
(vi) The final velocity field ui is calculated from (2.5) using the correlation reconstruction

tensor Lij.

3.2. Computational complexity
Compared with earlier spectrum-based methods that are applicable to the generation
of homogeneous and isotropic turbulence, the additional computational complexity
according to the above steps mainly consists of the Cholesky decomposition of the
Reynolds stress field and the construction of intermediate wavevectors. The computational
cost for the construction of the intermediate direction vector σ̃

(n)
i using (2.12) is rather

small. Cholesky decomposition needs to operate on the entire domain; however, it only
needs to be performed once, regardless of mode, and it does not involve any algorithm
for computing eigenvalues or eigenvectors. Compared with the algorithm that requires
coordinate transformation and scaling operations, the proposed method is significantly
more efficient. The computational procedure above is concise and easy to implement, and
it requires only a slight modification of the spectrum-based method code that generates
homogeneous and isotropic turbulence to realize this new improvement.

3.3. Runtime storage requirements
The additional runtime memory usage in the inverter version of the proposed
divergence-free method is only the storage of the correlation reconstruction tensor field
Lij, and it is almost negligible. Moreover, because Lij is a lower triangular matrix, only six
components must be stored for each grid point in practice, rather than the nine components
required of a typical orthogonal matrix. All the above steps use only local storage and local
information; therefore, the proposed method is easy to parallelize naturally and is suitable
for HPC for the scale-resolving turbulence simulation.

4. Results and discussion

Four types of verification calculation are performed to verify the effectiveness of the
new method. The code implementation and corresponding CFD computations for each
method are realized using OpenFOAM (ESI-OpenCFD 2021). The number of modes in
all cases is 5000, and the interpolation method of logarithmically distributed modes is
employed. Case 1 is a classical benchmark of homogeneous and isotropic turbulence decay,
which is mainly used to illustrate the correct realization of the classical spectrum-based
method and the effectiveness of the CFD codes and to verify that the new method
accurately reverts to the original method in the application of homogeneous and isotropic
turbulence. Another important purpose of Case 1 is to obtain the benchmark value of the
divergence level at which the box-geometry-type case can be considered divergence-free
in practical calculations under the same number of grids. Cases 2 and 3 used the box
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geometry of Case 1 in a similar manner. Case 2 focuses on the performance of the
method for handling anisotropic turbulence. Therefore, homogeneous synthetic turbulence
with different anisotropy types is examined in detail, and the performances in producing
the desired statistics between the shifter version and inverter version are compared. The
anisotropy degeneration and TKE decay issues produced by the shifter version are also
studied in Case 2. Case 3 verifies the treatment of inhomogeneity. An inhomogeneous
turbulence with distribution only in the x direction and a wavelength of one computational
domain size is assumed. The purpose of this artificial design is to maintain the y–z plane
for spatial averaging in a single realization/sampling as well as ensemble averaging for
multiple realizations/samplings. In Case 3, which mainly adopts the inverter version of the
divergence-free method, the magnitudes of the reconstructed divergence-free errors caused
by inhomogeneity and anisotropy are compared. Case 4 considers a typical application of
inhomogeneous and anisotropic turbulence in engineering practice: channel flow. First,
we analyse whether inhomogeneous divergence-free errors of the actual turbulence can be
ignored. Case 4 is primarily carried out using the inverter version as well. Turbulence
generation using a uniform integral scale and a spatial-distributed integral scale are
compared in order to investigate the effect of the inhomogeneity of the normalized energy
spectrum. Finally, the proposed method is applied to generate the initial field of the channel
flow to verify its practical performance in a scale-resolving turbulence simulation.

In Cases 1 and 4, LESs are carried out with second-order temporal and spatial
discretizations. The subgrid model of the LES in Case 1 is the WALE model (Nicoud
& Ducros 1999). In Case 4, the subgrid model is not employed because a mesh with a
DNS resolution was used.

4.1. Homogeneous and isotropic turbulence
Case 1 covers a benchmark of the decay of homogeneous and isotropic turbulence,
where the size of the computational domain is 2π × 9 cm, and the number of grids
is 2563. When generating homogeneous and isotropic turbulence, the shifter version,
inverter version, and extended methods without divergence-free correction are equivalent
to the original spectrum-based method, and there is no difference in the generated
initial field. There LESs are performed based on OpenFOAM, a finite-volume method
open-source CFD code. A second-order Euler scheme is used for time advancement, and
the spatial discretization employs the central difference scheme. The energy spectra of
the computational results at different times are compared with the experimental data, as
shown in figure 3. The energy spectrum of the simulation is in good agreement with the
CBC data, which indicates that both the method implementation and CFD code are valid.

Although the divergence is zero in theory, the numerical divergence of the practical
computation after discretization has a non-zero value, owing to the influence of a series
of factors, such as the floating-point number accuracy, numerical error, flow type and
divergence-calculation method. Previous studies have shown that when the number of
grids is sufficient, high-order interpolation methods exhibit limited improvement in the
accuracy of divergence calculations (Yu & Bai 2014). Therefore, the second-order central
difference method is used to calculate the divergence in all the test cases. Undoubtedly,
the solenoidal property of the original spectral method that addressed inhomogeneity
and isotropy is recognized. Therefore, we consider the realistic divergence value of the
proposed method, which produces homogeneous and isotropic turbulence as the reference
or benchmark, thereby indicating that it is divergence-free. This treatment eliminates other
irrelevant factors in the subsequent discussion of the divergence-free error of the same
type of box geometry. Figure 4 shows the actual divergence magnitude level |ui,i| for
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Figure 3. Energy spectrum validation. (a) The smallest turbulence scale resolved by different cell sizes. Dash
line represents high-Re spectrum model shown in (2.14). (b) Energy spectrum of homogeneous and isotropic
turbulence at different times during decay. Experimental data were obtained from the literature (Comte-Bellot
& Corrsin 1971).
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Figure 4. Reference value indicating a divergence-free property under different mesh resolutions (obtained
by homogeneous and anisotropic turbulence-generation computations).

homogeneous and isotropic turbulence at different grid resolutions. The blue line in the
figure represents the spatial average of the divergence magnitude E (sample expectation),
and the grey area represents the range of [max(0, E − D), D], where D is the sample
standard deviation of the divergence magnitude distribution that is obtained based on
spatial averaging.

4.2. Anisotropic turbulence
Case 2 adopts the same box geometry as Case 1, and four types of anisotropic turbulence
are tested while the TKE remains the same. Detailed component information is presented
in table 1. In the table, R0 = k/6 = 〈uiui〉/12. The off-diagonal elements of the Reynolds
stress of types A, B and C are all zero, and the three diagonal elements are the three
principal stresses. The type-D tensor contains non-zero off-diagonal components. Type A
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Type A
〈uiuj〉/R0 j = 1 j = 2 j = 3

i = 1 10 0 0
i = 2 0 1 0
i = 3 0 0 1

Type B
〈uiuj〉/R0 j = 1 j = 2 j = 3

i = 1 7 0 0
i = 2 0 4 0
i = 3 0 0 1

Type C
〈uiuj〉/R0 j = 1 j = 2 j = 3

i = 1 5 0 0
i = 2 0 5 0
i = 3 0 0 2

Type D
〈uiuj〉/R0 j = 1 j = 2 j = 3

i = 1 8 −2 0
i = 2 −2 1 0
i = 3 0 0 3

Table 1. Four types of tested anisotropy.

represents the anisotropy caused by one principal stress being significantly large; type B
represents the anisotropy caused by one principal stress being equal to the average stress,
and the other two principal stresses being larger or smaller; and type C represents the
anisotropy caused by one principal stress being smaller than the other two. Because type
D contains non-zero off-diagonal elements, the coordinate axis is not the same as the
stress principal axis, which is a more common situation. The magnitude relationship
between each component is designed to satisfy the stress-magnitude relationship in a
typical channel flow (i.e. Case 4): 〈u1u1〉 is the maximum, 〈u3u3〉 is slightly greater than
〈u2u2〉, 〈u1u2〉 is negative, and the remaining components are all zero.

The shifter and inverter versions were used to generate these four types of anisotropic
turbulence, and the corresponding statistical results based on spatial averaging are shown
in table 2. The data in the table exhibit the turbulence-field results obtained by only
one realization (one sample), where the seeds of the random-number engine in the two
versions are guaranteed to be the same. It is evident from the table that the inverter-version
results are in good agreement with the four given anisotropies, which ensures the accurate
reproduction of the desired second-order correlation function. However, the Reynolds
stress components depicted by the shifter version exhibit an evident deviation under all four
anisotropies, which leads to tensor deformation. As mentioned above, the reason for this
result is that the unit direction vector cannot maintain the original spherical distribution;
thus, the covariance matrix deviates from the unit matrix.

Figure 5 shows the increase in the divergence-free error if the divergence correction is
not applied (i.e. the extended method in § 2.2). The error-growth factor in the figure is
defined as follows:

RX = Xuncorrected − Xstandard

Xstandard
, (4.1)
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Type A Shifter Ver. Inverter Ver.

R11/R0 8.13069 9.99790
R22/R0 1.89343 9.90726 × 10−1

R33/R0 1.97590 1.01142
R12/R0 1.51089 × 10−2 −3.54073 × 10−2

R13/R0 −7.63861 × 10−2 −8.31628 × 10−2

R23/R0 6.08866 × 10−2 1.62758 × 10−2

Type B Shifter Ver. Inverter Ver.
R11/R0 6.16861 7.04413
R22/R0 4.29450 3.92606
R33/R0 1.53690 1.02981
R12/R0 1.03419 × 10−2 1.32772 × 10−2

R13/R0 −5.37689 × 10−2 −1.01037 × 10−1

R23/R0 6.22320 × 10−2 3.61277 × 10−2

Type C Shifter Ver. Inverter Ver.
R11/R0 4.78214 5.03483
R22/R0 4.68151 4.93443
R33/R0 2.53635 2.03074
R12/R0 1.50719 × 10−2 6.74909 × 10−2

R13/R0 −5.44608 × 10−2 −1.56510 × 10−1

R23/R0 9.48676 × 10−2 5.04841 × 10−2

Type D Shifter Ver. Inverter Ver.
R11/R0 6.71562 7.90558
R22/R0 1.23883 1.00987
R33/R0 4.04554 3.08455
R12/R0 −1.54632 −2.00715
R13/R0 −1.28067 × 10−1 −4.69213 × 10−2

R23/R0 5.95098 × 10−2 2.44947 × 10−2

Table 2. The accuracy of desired anisotropic Reynolds stress generated by different versions of the
proposed method.

where X is the statistical indicator used; in figure 5(a), this is the mean value E, and
in figure 5(b), this is the deviation D. Here Xstandard represents the zero-divergence
benchmark under the same mesh resolution, which is the result of the calculation in § 4.1
(figure 4). Four grid numbers (643, 1283, 1923, and 2563) are adopted. It is clear from
the figure that the more anisotropic the turbulence, the larger the divergence-free error,
particularly for types A and D. The behaviour of the anisotropy-intensity relationship is
consistent with the relative magnitudes of Ad and An calculated using (4.3) and (4.4),
respectively. In addition, the relative growth rate of the error RX also exhibited a mild
dependence on the mesh resolution, that is, the larger the number of grids, the higher the
relative growth rate of the error. The behaviour of the mean value E in the figure is the
same as that of the deviation value D, which means that the observation is independent of
the chosen indicator.

Figure 6 illustrates the effectiveness of the inverter-version spectrum-based method for
correcting divergence growth. The correction effectiveness in the figure is calculated using
the following formula:

RX = Xcorrected − Xstandard

Xuncorrected − Xstandard
, (4.2)

where Xcorrected represents the calculation result of the divergence-free method. When ηX
is close to zero, the method does not correct the error. As ηX approaches 1, the method
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Figure 5. Variation of the divergence-free error due to different anisotropy types with respect to increasing
mesh resolution: (a) mean value/sample expectation; (b) deviation value/sample standard deviation.
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Figure 6. Effectiveness of the inverter version on the correction of a divergence-free error for different
anisotropy types: (a) mean value/sample expectation, (b) deviation value/sample standard deviation.

corrects the 100 % increase in divergence caused by anisotropy. Owing to the existence
of factors such as numerical errors, the correction effectiveness calculated in this manner
may exceed unity. Figures 6(a) and 6(b) show the effectiveness represented by the mean
and deviation values, respectively. The figure shows that the inverter version corrects
the four types of anisotropy close to 100 %, and the minimum value in figure 6(a) also
reaches unity. Owing to the characteristics of the standard deviation itself, the behaviour
of the correction performance in figure 6(b) is different from that in figure 6(a). The
minimum value of the effectiveness is also above 90 % of the total effectiveness, which
fully illustrates the qualification of the inverter version in correcting the divergence-free
error caused by anisotropy. Moreover, although a mesh dependence is observed in the
uncorrected errors shown in figure 5, the behaviour in figure 6 is independent of grid
size, which indicates that the inverter method is grid-independent for the correction of a
divergence-free error.

4.2.1. Correlation deviation issue of the shifter method
Further investigation of the results in table 2 shows that the correlation deformation of
the shifter version integrating the special technique exhibits a common pattern, which
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we call anisotropy degeneration: any anisotropic tensor tends to degenerate towards an
isotropic tensor δij. In the deformed tensors of types A, B and C, this pattern is expressed
as the three principal stresses being more uniform: the larger principal stress decreases,
and the smaller principal stress increases. In the results for type D, this isotropy trend
indicates that the off-diagonal elements are closer to zero. This anisotropic degradation
pattern is acceptable because it does not introduce errors or distortions that violate
physics. The anisotropy intensity of the resultant turbulent field is weakened; however,
it can be quickly restored to the real anisotropic state after development (calculation).
Moreover, it is important to note that the anisotropic degradation presented in the shifter
version described above does not necessarily apply to other spectrum-based methods
that adopt similar ideas but different vector normalization algorithms (Kraichnan 1970;
Smirnov et al. 2001). This is because the change in the statistical distribution owing to
normalization at different steps is typically different. For example, when three directions
of a vector follow three independent Gaussian distributions, the covariance matrix is the
identity matrix. However, after normalizing it to a unit vector, each component has a
normal distribution of range [−1, 1] and a 1/3 variance, and the three components are
no longer independent. Although three times the covariance matrix of the latter is still the
identity matrix, the two random vectors are already different from a statistical perspective.
After an identical tensor operation, for example, tensor multiplication, the distributions
of these two vectors will be significantly different (even if the covariance matrix is no
longer the same). We attempted to use only the Gaussian distribution to generate vector
components and did not perform unit-vector normalization in the intermediate process.
We only performed an operation similar to dividing by three to ensure that the covariance
matrix of the vector remained unchanged. As a result, the Reynolds-stress distortion
obtained by this treatment was even worse than that of the shifter version, and there was no
similar pattern of anisotropy degeneration. Unreasonable oversizing and undersizing were
observed. However, this treatment did not perform normalization operations; therefore, the
analytical formula of the statistics could be obtained through theoretical analysis. Among
them, we obtained two physical quantities that characterize the degree of anisotropy:

Ad = (R11 − R22)
2 + (R11 − R33)

2 + (R22 − R33)
2

(R11 + R22 + R33)
2 , (4.3)

An = R2
12 + R2

13 + R2
23

(R11 + R22 + R33)
2 . (4.4)

In these equations, Ad denotes the anisotropy of the diagonal elements of the matrix, and
An denotes that of the off-diagonal elements.

In addition to the anisotropic degradation, the shifter version leads to a decay in the
TKE, which is also not present in the inverter version. This TKE reduction is also caused
by the change in the statistical distribution of the unit direction vector σ

(n)
i . As mentioned

above, theoretically deriving the exact distribution form and covariance matrix can be
difficult and tedious because the intermediate step of the shifter version correction method
introduces vector-normalization operations. Therefore, we used numerical experiments to
test the behaviour of this TKE decay with respect to anisotropy intensity Ad and An, and the
relevant results are shown in figure 7. Each data point in figure 7 is calculated by averaging
20 000 samples. Figures 7(a) and 7(b) show how the reduction of TKE varies with the
diagonal anisotropy intensity Ad and off-diagonal anisotropy intensity An, respectively.
The off-diagonal components of the input stress tensor in figure 7(a) are zero, and each
diagonal component varies in range from 1 to 100 by two orders of magnitude. The figure
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Figure 7. The reduction in TKE owing to the mapped direction vector: (a) diagonal element anisotropy, and
(b) off-diagonal element anisotropy.

clearly shows that at this time, different types of anisotropy do not completely fall into a
single curve, but present a clear distribution area. The range of this distribution area is
large, at Ad = 0.5–1.5, and it tends to an overlapping curve when the anisotropy is large
and small. The blue dot set in figure 7(a) shows the influence of type A anisotropy, in which
a particular principal stress is significantly larger, on the TKE decay. Additionally, in this
case, the diagonal anisotropy intensity is close to its upper limit of two. It can be observed
that this type basically determines the upper limit of the TKE decay, which coincides with
the analytical curve of kcal = kref

√
1 − 0.5Ad. The anisotropy of the principal stress is

observed to have a strong influence on TKE reduction. When Ad tends to two, the TKE will
be close to zero. In figure 7(b), the diagonal components are all maintained at unity, and
the off-diagonal components are varied from 0 to 1/3 to ensure that the matrix is always
positive definite. The influence of off-diagonal anisotropy has a law that is similar to that
of diagonal anisotropy, i.e. it does not coincide with a single curve, but its influence is
significantly smaller than that of the diagonal anisotropy. Even when the three off-diagonal
elements reach the maximum value, the calculated TKE reduction is less than 20 %. The
red dot in the figure shows the case in which the three off-diagonal elements are equal.
The upper limit of the decay is determined again, and it is satisfied by the analytical curve
kcal = kref (1 − √

3An).
Therefore, the shifter version exhibits two undesirable characteristics: anisotropic

degradation and TKE reduction. The latter can be scaled to recover according to Ad
and An using the analytical function, whereas the former has no effective correction
strategy if the framework of the shifter version is retained. However, the degenerated
anisotropy can be quickly recovered to the real state in the actual calculation, as revealed
by the applications using isotropic turbulence as the initial condition for anisotropic
computations. However, the inverter version does not encounter the above two issues and
performs well in reproducing the desired correlations and statistics.

4.3. Inhomogeneous turbulence
Case 3 also uses box geometry; however, to study the performance of processing
inhomogeneous turbulence, an artificial distribution of correlations along the x direction
is set as follows:

〈uiuj〉 = 〈uiuj〉mean

[
1 − A0 cos

(
2π

x
xd

)]
, (4.5)
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Figure 8. Spatial distribution of statistical results of Reynolds stress components (100 realizations of
turbulence generation): (a) isotropic turbulence; (b) anisotropic turbulence (type A).

where xd is the total length of the box domain in the x direction. The y and z directions
are still set to maintain homogeneity. Thus, in addition to ensemble averaging for multiple
realizations, the planar averaging operation can still be performed to study the performance
of the new method in a single realization. According to the Fourier series in (2.4), the
minimum wavenumber of the generated velocity ui is 2π/xd. Therefore, the minimum
wave number of uiuj is π/xd, that is, the maximum wavelength identified is 0.5xd. The
Fourier mode of wavelength xd in (4.5) is clearly not in the recognizable range. Therefore,
as mentioned above, it is a good choice for characterizing macroscopic inhomogeneity.
By controlling the parameter A0 (0 ≤ A0 ≤ 1), distributed turbulence with different
inhomogeneities can be obtained. The calculation results in this section are all acquired
using the inverter version.

Isotropic but inhomogeneous turbulence and type A anisotropic turbulence satisfying
(4.5) were generated under the condition that the spatial-averaged TKE is the same.
The spatial distribution of the stresses after 100 consecutive generations and ensemble
averaging are presented in figure 8. The z cross-section in the figure shows the principal
stress in the x direction, and the two y cross-sections show the distribution of the other
two principal stresses. The figure shows that both isotropic and anisotropic turbulence
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Figure 9. The reproduction of the target inhomogeneous distribution of turbulence correlations using the
divergence-free method (single realization, y–z plane averaging): (a) TKE k for different inhomogeneities,
and (b) Reynolds stress component of the type D anisotropy for A0 = 0.8.

Isotropy Type A anisotropy Type D anisotropy

A0 Mean Deviation Mean Deviation Mean Deviation

0 44.3570 50.8523 105.751 85.1091 108.345 87.1736
0.2 44.3546 50.8510 105.749 85.1060 108.342 87.1709
0.5 44.3360 50.8411 105.725 85.0870 108.320 87.1536
0.8 44.2757 50.8047 105.632 85.0154 108.240 87.0894

Table 3. Divergence-free errors (uncorrected) of synthesized turbulence with different
inhomogeneity intensities.

accurately restore the inhomogeneous distribution of the cosine modes. Compared
with the situation in which the three principal stress distributions in figure 8(a) are
approximately the same, a significantly larger value of components 〈u1u1〉 is observed in
figure 8(b), which indicates that the method also provides good accuracy in reproducing
inhomogeneous anisotropy.

Distributions of the TKE and Reynolds stress components in figure 9 are obtained by
a single realization and cross-plane averaging to further verify the reduction effect of
the proposed method on the inhomogeneity. Figure 9(a) shows the TKE distribution for
different inhomogeneity intensities reflected by the A0 magnitude. It is evident that the
new method has good accuracy for all distributions of k, even for a single realization.
Figure 9(b) shows the verification results of the anisotropy of type D. The reproduction
characterizations of all distributions are in good agreement with either the three normal
stresses or the one non-zero shear stress. The distributions of 〈u1u3〉 and 〈u2u3〉 remain at
zero with mild fluctuations. The larger fluctuations in the components 〈u1u3〉 are due to
larger velocities in the two associated directions.

The special-averaged divergence levels of isotropy, type-A anisotropy and type-D
anisotropy at A0 = 0 (homogeneity), 0.2, 0.5 and 0.8, were computed to observe the
absolute divergence increase caused by anisotropy and inhomogeneity in both anisotropic
and inhomogeneous turbulence. The results are presented in table 3. The turbulence
intensity varies at different spatial locations owing to the inhomogeneity. Therefore, to
eliminate the influence of this factor on statistics, the averaged results in the table are
dimensionless normalized divergence |ui,i|/ut.
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Isotropy Type A anisotropy Type D anisotropy

A0 Mean Deviation Mean Deviation Mean Deviation

0 44.3570 50.8523 42.1230 49.9550 36.5007 48.0495
0.2 44.3546 50.8510 42.1259 49.9564 36.5075 48.0469
0.5 44.3360 50.8411 42.1413 49.9588 36.5565 48.0499
0.8 44.2757 50.8047 42.2085 49.9608 36.7595 48.0733

Table 4. Divergence-free errors (after the inverter-version correction) of synthesized turbulence with
different inhomogeneity intensities.

The calculated results of the mean and deviation of the divergence level in the
table show that the increase in inhomogeneity intensity has almost no effect on the
increase in divergence level. When A0 increases from 0 to 0.8, the divergence level
of both isotropic and anisotropic turbulence remains nearly the same. Taking isotropic
turbulence as an example, its mean value remains at approximately 40, whereas the
standard deviation remains almost unchanged at approximately 51 for all inhomogeneities.
However, when the flow changes from isotropic to anisotropic, the divergence-free error
increased significantly. For the type A anisotropy, the mean value increased from 44 to
106, and the deviation increased from 51 to 85. For the type D anisotropic turbulence,
the mean value increased from 44 to 108, and the deviation increased from 51 to 87.
The results in table 3 show that under an inhomogeneous distribution of this form
(cosine distribution of wavelength xd), the increase in the error caused by anisotropy
exceeds that caused by inhomogeneity. When A0 = 0.8, which is where the most intensive
inhomogeneity of this wavenumber is approached, the increase in divergence-free errors
brought about by inhomogeneity is still not clearly observed. Clearly, increasing the
wavenumber (frequency) of the mode can indeed induce a larger local gradient and
inhomogeneity, but this part of the mode can already be identified and constructed using
spectrum-based methods. It is doubtful whether these high-frequency signals can be
regarded as macroscopic inhomogeneity rather than as small-scale turbulence.

Table 4 shows the inverter version’s correction performance for the two types of
anisotropy in table 3 (isotropic data directly follows the results of table 3). The table
shows that both the mean and deviation values of the two types of anisotropic turbulence
generated by the correction method reach the actual divergence level of isotropic
turbulence under the same conditions; therefore, the divergence-free requirements can
be considered satisfied in practice. The inverter-version correction does not account for
inhomogeneity errors; however, the correlation reconstruction matrix varies spatially,
which leads to an effective correction for inhomogeneous anisotropy as well. This is
reflected in table 4, which shows that the results of different intensities of A0 have similar
correction effectiveness.

4.4. Typical inhomogeneous and anisotropic turbulent flow
The fourth case is a typical inhomogeneous and anisotropic turbulent flow that is
common in practical engineering: a channel flow with fully developed boundary layers.
The first three cases have verified the method in terms of the correlation accuracy
and divergence-free property; however, Case 4 is mainly used to test the performance
of the proposed method (inverter version) in practical applications used for practical
turbulent flow. Additionally, the influence of inhomogeneity on divergence errors is
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Figure 10. Statistical distribution of divergence-free errors in the entire computation domain: (a) results of the
spectrum adopting the non-uniform integral scale profile, and (b) results of the spectrum adopting a constant
integral length scale.

checked analytically for the channel flow. The periodic channel-flow parameters and grids
selected in this case are consistent with those in the DNS literature (Kim et al. 1987),
and further information is provided by Mansour, Kim & Moin (1988). In this case, the
LES does not use any subgrid stress model owing to the DNS-resolution mesh. (Complete
LES calculations have been performed, and the validity of the CFD code is not shown
here owing to content constraints and limited relevance.) The reference data used for
comparison and the data used for the theoretical analysis in this section are the DNS
calculation results in the literature.

In channel flows, the turbulent integral length scale (energy-containing scale) is
typically not constant; it has a specific spatial distribution, as shown by the lilac line in
figure 1. The integral scale of the region near the core is larger than that of the region near
the wall. However, the non-uniform integral scale directly leads to different energy spectra
at different spatial locations (multiple items in (2.13) are directly or indirectly dependent
on l or the turbulent dissipative rate). As shown in (2.7), this will cause the divergence-free
error of Er1 to occur simultaneously. To analyse the influence of the distributed integral
scale, Case 4 generates inhomogeneous and anisotropic turbulence of the channel flow
from the uniform integral scale of a single constant (the mean value represented by the
grey dashed lines in figure 1) and the distributed integral scale profile, respectively. The
differences in the statistical accuracy and divergence-free characteristics of the two are
compared.

Figure 10 shows the probability density distributions of the divergence-free error of
turbulence generated by the distributed and constant integral scale in a single realization.
The solid red line represents an approximate fitting line. First, it should be noted that
no common distribution can accurately describe the probability distribution function of
the two, and the relative frequencies of both distributions approach zero rapidly, which
reflects the effectiveness of the divergence-free correction. The black dot is the relative
cumulative frequency of the divergence level of the probability distribution function, and
the red dotted line is the fitting curve in an exponential form. The figure also shows the
specific divergence level at cumulative frequencies of 20 %, 50 % and 90 %. The horizontal
axis in the figure represents the dimensionless result normalized by uτ /ν. The figure shows
that there are differences in the statistical distribution of the divergence under the two
integral scale choices. The results of the non-uniform integral scale in figure 10(a) have a
larger frequency near zero, and the frequency in the range of 0–0.5 is smaller than that of
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Figure 11. Spatial distribution of ensemble-averaged Reynolds stress components in the channel flow (100
samples): (a) results of the spectrum adopting the non-uniform integral scale profile, and (b) results of the
spectrum adopting a constant integral length scale.

the constant integral scale in figure 10(b). However, both the mean and deviation were very
close to each other. From the perspective of cumulative frequency, the divergence level of
the varying scale at 20 % is slightly lower than that of the constant scale, the divergence
level at 50 % is close to that of the constant scale, and the divergence level at 90 % is
slightly higher than that of the constant scale. Although the figure shows a difference in
the absolute divergence between the two cases, the effect is minimal, and it is acceptable
to ignore Er1 when the distributed integral scale is adopted.

The generated correlation between the two energy spectra using different integral
scale models was averaged using 100 samples, as shown in figure 11. In the figure, the
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Figure 12. The reproduction performance of the stress profile by the proposed method (100 samples, spatial
averaging in x–z plane): (a) normal stress; (b) shear stress.
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Figure 13. The effectiveness of different types of synthetic turbulence methods when generating initial fields
for LES computation. (a) Comparison of turbulence decay between the proposed spectrum-based method and
white-noise generator in coarse and fine meshes, and (b) energy spectra of white-noise generator in different
grid sizes with respect to the length scale.

z cross-section shows the shear stress contour, whereas the other three planes indicate the
normal stress contour. The figure illustrates that the given correlation distribution is well
produced by both scale models. Notably, it is difficult to distinguish between figures 11(a)
and 11(b), which indicates that the difference between the two is negligible and that the
constant integral scale model is sufficiently accurate. The results of figure 11(a) are further
spatially averaged in figure 12 to obtain normal stress profiles in figure 12(a) and the shear
stress profile in figure 12(b). The figures show that all profiles are in good agreement with
the benchmark data.

Finally, the new method is applied to the LES calculation of channel flow. To illustrate
the turbulence decay problem, a comparison is made with a classical white-noise
generator. The calculation results for a coarser mesh are added to discuss the performance
of the method under different mesh resolutions. Although figure 13(a) shows only the
instantaneous velocity at a probe near the core area, the instantaneous velocity and surface
average Reynolds stress at other locations are also monitored, and their behaviour is
consistent. Figure 13(a) clearly shows that the turbulence initial field generated by the
white-noise method has a very clear decay phenomenon in the CFD calculation, and this
decay exhibits a strong dependence on the grid size. The initial fluctuation under the
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coarse grid is strong, the decay speed is slow, and the correct state can be regenerated
by the grid itself. However, the initial fluctuation in the finer grid is weaker, and the
decay process occurs considerably faster. Generating turbulence again after the initial
turbulence becomes totally laminar is difficult (the figure only shows the calculation results
for 300 s, but there is still no fluctuation when the actual calculation time reaches 5000 s).
This is caused by the lack of spatial correlation and distortion of the energy-spectrum
distribution in the generated white noise. Previous literature typically refers to this
generator as the white-noise method because the energy of the signal is the same at
each frequency; however, this conclusion only addresses the temporal characteristics of
boundary turbulence. When analysing the energy spectrum, we observed that the energy
spectrum of the white-noise method exhibits the behaviour presented in figure 13(b),
owing to the spatial characteristics of the turbulence. The energy of the large-scale
turbulence was completely missing. Moreover, the smaller the grid size, the smaller the
energy-containing scale. Thus, for a grid with DNS resolution, the kinetic energy of
the white-noise method mostly falls into the dissipation scale. This feature leads to an
unphysically large dissipation of the turbulence. The proposed spectrum-based method in
figure 13(a) is based on the inverter version; barely any turbulence-decay phenomenon is
observed, which shows the effectiveness of the method as an initial-field generator. The
actual performance of the shifter version is very similar to that of the inverter version in
figure 13(a) (not shown here), which indicates that the shifter version is also efficient as
an initial-field-generation method, even if anisotropy degeneration occurs.

5. Conclusions

This study proposed a highly efficient and low-divergence inhomogeneous and anisotropic
turbulence-generation method that can use arbitrary energy spectra. This method was
verified by thorough test cases, and the results show that this method can accurately restore
the distribution of turbulence statistics and effectively correct divergence-free errors. The
main conclusions are as follows.

(i) A high-Reynolds-number spectrum model is adopted in the proposed method. The
verification showed that the non-uniform spectrum has almost no effect on the correlation
function and divergence level of the generated turbulence. Therefore, it is acceptable to
use either a distributed integral scale or constant scale in practical applications.

(ii) If the weak inhomogeneity assumption is satisfied, an inverter version of the
proposed method is recommended. Its effectiveness in anisotropy error correction was
well illustrated in several test cases. Although the correction for an inhomogeneous
divergence-free error was not presented, this study demonstrated through several
verification cases that an increase in the divergence level in common applications is
primarily owing to anisotropy, and the error caused by inhomogeneity is typically
negligible. Therefore, for typical inhomogeneous and anisotropic turbulent flows in
engineering, the results obtained using the inverter version are both accurate and
effectively solenoidal.

(iii) If the target turbulence exhibits strong inhomogeneity, the shifter version of
the method is recommended. This method ensured a strict divergence-free feature in
inhomogeneous and anisotropic turbulence; however, issues of anisotropy degeneration
and kinetic energy reduction may occur. The latter can be effectively corrected using
scaling functions, whereas the former may require a longer recovery time or length.
However, using the proposed method of this version as an initial field generator is still
effective because the degenerated anisotropy can rapidly recover to its real state without
unphysical turbulence decay.
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(iv) The proposed method uses the correlation reconstruction technique to extend
the method to the application of inhomogeneous and anisotropic turbulence without an
algorithm that involves coordinate transformation or eigenvalue computations. Compared
with the spectrum-based methods proposed in previous studies, our method provides
the advantages of high computational efficiency, low runtime memory cost and easy
implementation. Moreover, the required information is stored locally. Therefore, this
method can undergo multiprocess parallelization in HPC, which is suitable for the practical
computing requirements of large-scale scale-resolving turbulence simulations, such as
DNSs and LESs.
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Appendix A. Details of shifter version divergence-free correction method

The direction vector σ
(n)
i exists in the same form in Er4 and Er5 such that it satisfies(

cos α(n)Lij,i − sin α(n)κ
(n)
i Lij

)
σ

(n)
j = κ̃

(n)
j σ

(n)
j = 0, (A1)

that is, σ
(n)
j and κ

(n)
i are perpendicular to each other, and the divergence of the generated

turbulence is strictly zero. Therefore, by improving the construction strategy of the
direction vector, we obtain a shifter version of the divergence-free spectrum-based method
suitable for the generation of inhomogeneous and anisotropic turbulence. First, the
intermediate wavevector is calculated as follows:

κ̃
(n)
j = cos α(n)Lij,i − sin α(n)κ

(n)
i Lij. (A2)

A mode direction vector that is perpendicular to the intermediate wavevector is then
constructed. The shifter version of this divergence-free method simultaneously corrects
for the correlation reconstruction errors caused by inhomogeneity and anisotropy, and it
guarantees the fully solenoidal characteristics of the generated turbulence. However, in
practical applications, we noticed that some problems in the shifter version require further
improvement.

A.1. Correlation deviation problem
Equation (A2) includes trigonometric functions, and the intermediate wave vector shifts
in the plane based on the divergence of the reconstruction matrix Lij,i and vector κ

(n)
i Lij

with different spatial positions; hence, this version is referred to as the ‘shifter version’.
When the inhomogeneity of the turbulent field is significantly small (Lij,i is close to or
strictly equal to zero), the existence of the sin α(n) function leads to the frequent flipping
of the supposed constant vector σ

(n)
i , if the perpendicular vector is constructed using

(2.2). This limitation leads to a considerable deviation in the synthetic turbulence from the
given energy spectrum. Moreover, the method is unable to correctly recover to the original
version presented in § 2.1 when considering homogeneous turbulence. The flipping occurs
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because the restriction introduced by the theory only provides a perpendicular line;
however, the direction vector has two options. The final direction depends on the algorithm
that numerically employs the vector product operation. However, the one-time vector
product directly introduces the positive and negative effects of trigonometric functions.
This results in a direction vector jumping between the two possibilities according to spatial
positions. To overcome this limitation, we introduce two vector-product operations in the
direction computation step, that is, we substitute (2.2) using the following procedure:

ζ
(n)
i =

(
εijkξ

(n)
j κ̃

(n)
k

)
normalize

, (A3)

σ
(n)
i =

(
εijkκ̃

(n)
j ζ

(n)
k

)
normalize

. (A4)

This treatment consists of two vector products, and the projection of the random unit
vector ξ

(n)
i on a plane perpendicular to κn

i is calculated. Moreover, this treatment is more
reasonable in physics than the one-time vector product version because the quantity that
contains the permutation symbol εijk is not a tensor in essence (it does not satisfy Galilean
invariance in a mirror coordinate transformation).

Although the correction method of the shifter version strictly ensures the solenoidal
condition in a large application, it still requires solving the correlation deviation problem
as mentioned in § 2.6. Consequently, the covariance matrix of the intermediate velocity
vi deviates from the identity matrix, leading to a departure from the desired Reynolds
stress. However, by adopting a special algorithm of (A3) and (A4), we can transform
the correlation deviation problem into two physical and predictable problems, namely the
anisotropic degeneration and TKE reduction. The TKE reduction can be almost eliminated
by scaling it according to the two types of anisotropy intensities, whereas the solution
is not simple for anisotropy degeneration. The primary reason for this deviation is that
the random wavevector originally follows a spherical distribution; however, it cannot
maintain this characteristic after a series of specific transformations. A further discussion
concerning anisotropic degeneration and TKE reduction issues is presented in detail in
§ 4.2.1.

In summary, the shifter version of the correction method strictly ensures divergence-free
properties of inhomogeneous and anisotropic turbulence. Although the generated
turbulence field will exhibit a deviation in the correlation function, we observed that
the shifter version, which preserves a solid spatial correlation, can generate the turbulent
boundary and initial field. However, it requires an increased recovery length (boundary
condition) or recovery time (initial condition), which is still less than that of other methods
that include decay in turbulence. Owing to the effectiveness of the spatial correlation, the
initial deviation of the synthetic turbulence produced by the shifter version method can
rapidly develop and recover to the correct state without decay.

A.2. Correction for TKE reduction
As shown in § 4.2.1 and figure 7, the ratio of reduced TKE over the desired one can be
estimated as

kcal

kref
=
√

1 − Ad

2
, (A5)

kcal

kref
= 1 −

√
3An. (A6)
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Therefore, a scaling operation can be employed after (2.5) to fix the reduction as

[ui]scaled = ui
(
x(k), t

)(√
1 − Ad

2

)(
1 − √

3An

)
+ ε

, (A7)

where ε is a small number to prevent the denominator from being zero.

A.3. Algorithm of the shifter-version correction method
The algorithm for the shifter version is as follows.

(i) The correlation reconstruction tensor field Lij is calculated from (2.6) based on the
given Reynolds stress distribution.

(ii) Random unit vectors κ̂
(n)
i and ξ

(n)
i are generated for each Fourier mode.

(iii) The temporary or intermediate wavevector κ̃
(n)
i is calculated from (A2).

(iv) The direction vector σ
(n)
i is obtained based on ξ

(n)
i via two vector products using

(A3) and (A4).
(v) The intermediate velocity field vi is calculated using (2.4).

(vi) The final velocity field ui is calculated from (2.5) using the correlation reconstruction
tensor Lij.

(vii) The scaling operation using (A7) is conducted to correct the TKE.

Evidently, the difference between the inverter version and shifter version is in steps
2–4 and step 7, particularly in step 3. Because the trigonometric functions in the latter are
eventually used in (2.4), the construction of the intermediate wavevector in step 3 adds only
a few multiplication operations. Similarly, in the shifter version of the correction method,
the implementation of the correlation reconstruction for inhomogeneity and anisotropy
extension does not involve any coordinate transformation or eigenvalue computation
algorithm; this significantly improves the computation speed, particularly in HPC. Similar
to the inverter version, the shifter version is concise and efficient, and the codes of
other primitive spectrum-based methods require only minimal changes to realize this
divergence-free extension.

Further, similar to the inverter version, the shifter version of the correction method only
adds a small amount of memory usage to the original method, and these runtime storages
comprise field data that can be arranged in distributed machines with corresponding
meshes. The algorithm only requires local information; therefore, it is easy to parallelize in
HPC, which is suitable for providing both the initial and boundary conditions for high-cost
LESs or DNSs.
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