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An equation describing eigenmodes in the ion cyclotron frequency range in ‘warm’
bounded plasmas, i.e. eigenmodes which are absent in the two-fluid model but exist in
kinetic theory due to finite Larmor radius of the ions, is derived for the first time. It is valid
for electrostatic modes but the developed approach is generic. Calculations are carried out
for two cases: first, for a homogeneous magnetic field; second, taking into account the
effects of toroidicity in tokamaks. It is found that, in general, equations for eigenmodes in
warm plasmas do not reduce to second-order differential equations (in contrast to those
which are usually used to describe the radial structure of eigenmodes in fusion devices).
The study of modes in warm plasmas is of interest, in particular, in connection with the
recent observations of superthermal ion cyclotron emission in the NSTX-U spherical torus
and DIII-D tokamak, which can be hardly explained by conventional theories employing
fast magnetoacoustic modes.
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1. Introduction

Eigenmodes in the ion cyclotron frequency range in toroidal plasmas are usually
described within a cold-plasma approximation (two-fluid model), in which case only
fast magnetoacoustic modes (FMM) (known also as CAE (compressional Alfvén
eigenmodes)) exist. However, recent experiments with ion cyclotron emission (ICE) on
the NSTX-U spherical torus (Fredrickson et al. 2021) and DIII-D tokamak (Crocker
et al. 2022) indicate that this approximation can be unsuitable. First, it was found
that the emission frequency in NSTX-U does not follow an Alfvénic scaling with
density; this newly discovered type of chirping ICE does not follow the well-known ICE
phenomenology on JET, TFTR, KSTAR or LHD. Second, a new diagnostic with Doppler
backscattering on the DIII-D has shown that the wavenumber exceeded that of FMM:
k � ω/vA, where k and ω are the wavenumber and wave frequency, respectively, and
vA the Alfvén velocity (Crocker et al. 2022). Therefore, it was concluded in Crocker
et al. (2022) that the observed ICE resulted from destabilized ion cyclotron waves,
either electrostatic waves (which presumably took place in TFTR (Dendy et al. 1994))
or electromagnetic waves. In contrast to FMM and Alfvén waves, these modes are absent
in ideal magnetohydrodynamics (MHD) and the two-fluid model with zero temperature.
They require a kinetic theory for their description in order to take into account finite
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Larmor radius of thermal ions of the bulk plasma. We therefore refer to them as modes in
‘warm’ plasmas.

The results of theories of waves in warm plasmas can be found in, for example,
overviews (Akhiezer et al. 1975; Stix 1992) and references therein. However, they are
obtained for infinite plasmas and for this reason the developed theories cannot determine
the eigenmode location and its radial structure in warm plasmas; they can be useful for a
local analysis of possible instabilities, but are not sufficient for a reliable identification of
destabilized modes. On the other hand, conventional equations for eigenmodes in bounded
plasmas (the second-order linear differential equations) can be inappropriate. The reason
is that coefficients in the eigenmode equations in warm plasmas depend on the mode
structure. Moreover, eigenmodes are standing waves, whereas the known way to take into
account finite Larmor radius employs travelling waves.

The mentioned experimental findings, in particular k � ω/vA, are consistent with
the high-k part of the FMM branch of the dispersion equation. However, this does
not mean that other modes could not be responsible for these findings. In particular,
electrostatic modes, the equations for which will be derived in this work, well satisfy k �
ω/vA. Although the radial mode structure was determined experimentally, no theoretical
calculations of radial dependence of the mode amplitudes of cyclotron waves were carried
out. Accordingly, the experimentally observed modes were not conclusively identified.

All these facts motivated us to carry out this work devoted to ICE eigenmode equations
in a warm plasma.

The work is organized as follows. Section 2 outlines our approach to the description
of eigenmodes. It consists of two parts. The first part (§ 2.1) deals with the peculiarities
of equations for eigenmodes in bounded warm plasmas and suggests a way to obtain
equations for cyclotron modes. The second part (§ 2.2) analyses key parameters associated
with toroidicity and discusses their roles. In § 3 an equation for electrostatic eigenmodes
valid for the cyclotron frequency range is derived: in § 3.1 the approximation of a
homogeneous magnetic field is used; an effect of toroidicity – non-uniform cyclotron
rotation (gyration) of the particles – is taken into account in § 3.2. In addition, an
equation for subharmonic modes in tokamaks is derived in § 3.3. Section 4 summarizes
the results obtained. Appendix A considers features of the dispersion function associated
with non-uniform particle gyration.

2. Approach to the description of eigenmodes
2.1. A way to derive eigenmode equations in warm plasmas; reconciling standing and

travelling waves
Eigenmodes in bounded plasmas are standing waves, but these waves represent a
superposition of travelling waves. This statement is employed below for both warm and
cold plasmas.

As known, eigenmodes can be described by the following equation (see e.g. Stix (1992)):

∇ × ∇ × δE − ω2

c2

↔
ε δE = 0, (2.1)

where δE ∝ exp(−iωt) is a perturbed electric field,
↔
ε is a dielectric tensor. This equation

immediately follows from the Maxwell equations ∇ × δE = (iω/c)δB and ∇ × δB =
−(iω/c) ↔

ε δE, where δB is the perturbed magnetic field. Equation (2.1) should be
supplemented by boundary conditions. Then it will determine waves standing in the radial
direction (in cylindrical geometry). When

↔
ε does not depend on the radial structure of

perturbation, as in cold plasmas, (2.1) reduces to a second-order differential equation.
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However, in general this is not the case:
↔
ε is determined by the disturbed distribution

function of the particles, δf , which, in turn, is determined by δE,

δf = − e
M

∫ t

−∞
dt′

[
δE − i

ω
v × ∇ × δE

]
∂F
∂v
, (2.2)

where F is an equilibrium distribution function, e and M are the particle charge and mass,
respectively, r = r(t′) and v = v(t′) (the integral is taken along particle orbits). The known
technique for the calculation of integral in (2.2) with Maxwell distribution function (FM)
relies on perturbations in the form of a plane travelling wave,

δE ∝ exp(ikr − iωt). (2.3)

This means that δE ∝ eikrr, which is not consistent with δE(r) determined by (2.1)
(r is the radial coordinate). However, the inconsistency diminishes when kr � kϑ (ϑ is
the poloidal angle): the dependence of

↔
ε on kr becomes negligible, which implies that

↔
ε

is valid for various kr, not only for the radial wavenumber of (2.3). To see this, we note
that the propagation of the wave (2.3) across the magnetic field manifests itself in

↔
ε in

the form of Bessel functions with the argument that contains Larmor radius in the product
k⊥ρT (ρT is the Larmor radius of thermal particles and k⊥ is transverse wavenumber).
Due to this,

↔
ε is valid for any kr that satisfies the condition kr � kϑ . On the other hand,

when k⊥ρT → 0 due to vanishing Larmor radius, the condition kr � kϑ is not necessary.
Thus, (2.1) with

↔
ε calculated for a plane wave is self-consistent when ρT is neglected

(in cold plasmas); it is self-consistent for ρT 
= 0 provided that k2
⊥ ≈ k2

ϑ . Otherwise, there
is a conflict between (2.1) and (2.3). Nevertheless, there is a way to use the technique
developed for plane travelling waves in every case: for this purpose, one has to expand δE
in a Fourier series with terms in the form of plane waves. This approach will be used in
this work.

Below we consider an example which demonstrates that the mentioned Fourier
expansion can be useful even in the analysis of eigenmodes in a cold plasma.

The studies of edge-localized ICE associated with FMM often relied on a simple
model employing plasma inhomogeneity to provide a potential well in a Schrödinger-like
equation, see Coppi (1993) and the overview Gorelenkov (2016). In this model the
eigenmode amplitude is a Gaussian,

δE(x) = δE0 exp
[
− (x − x0)

2

Δ2

]
, (2.4)

where x = r/a, a is the plasma radius, and x0 and Δ are parameters defined by
equations (7)–(9) in Coppi (1993). It was obtained in the assumption that the radial
derivative terms in the eigenmode equation are small, ∂/∂r � m/r (m is the poloidal mode
number). This implies that an effective radial wavenumber defined by ikef

r δE ∼ ∂δE/∂r is
small (kef

r � k) and, therefore, the FMM frequency for small longitudinal wavenumber
(k‖) is approximately determined by kϑ = m/r (Coppi 1993),

ω2 = k2
ϑ(x0)v

2
A(x0)+ δω2, (2.5)

where δω2 � ω2. However, the exact magnitude of kef
r cannot be introduced and, therefore,

it is not clear how large m should be for (2.4), (2.5) to hold.
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In order to clarify this point, let us write δE(x) as a superposition of plane waves with
the radial wavenumbers kr,ν = 2πν/a, where ν = 0, 1, 2, . . . ,∞:

δE(x) = A0

2
+

∞∑
ν=1

[Aν cos(2πνx)+ Bν sin(2πνx)] , (2.6)

where

Aν = 2
∫ 1

0
dxδE(x) cos(2πνx), Bν = 2

∫ 1

0
dxδE(x) sin(2πνx). (2.7a,b)

The infinite series in (2.6) is consistent with the condition kr � kϑ only when the terms
with large ν weakly contribute and can be neglected. To consider this case, we replace∑∞

0 with
∑νmax

0 , assuming that terms with ν > νmax are negligible. Then kr,ν ≤ kr,max =
2πνmax/a, and the condition kr,max � kϑ requires

νmax � m
2πx

. (2.8)

Because νmax = N − 1 (N is the number of the terms in the sum with ν ≤ νmax), (2.8)
represents the mildest restriction on m when N is smallest. Thus, we need to know the
minimum number Nmin of the terms in (2.6) which provides a good approximation for
(2.4). After Nmin is found, by using (2.8) we can obtain the poloidal mode numbers for
which kr � kϑ :

m � mcrit ≡ 2πx (Nmin − 1) . (2.9)

As in Coppi (1993), we consider the JET preliminary tritium experiment where the ICE
was observed (Cottrell et al. 1993), and take x0 = r0/a = 0.816, Δ = 0.738/

√
m, which

correspond to ion density profile ni = ni(0)(1 − x2)1/2. We found that the mode radial
structure (2.4) can be approximated satisfactory by a superposition of plane waves with
kr,ν � kϑ only for m � mcrit = 5(Nmin − 1) � 15, with Nmin ∼ 4–5, see figure 1. Taking
ω ≈ mvA/r ≈ lωBi (with r = 0.85 m, vA = 107 m s−1, the ion gyrofrequency ωBi = 1.35 ×
108 s−1 in deuterium plasma, and l is an integer) and m � mcrit we obtain l � 1. This
means that the model of Coppi (1993) is not suitable for the description of cyclotron modes
with l ∼ 1 for the parameters used.

Note that although all works employing the described model (and its modifications by
including effects of toroidicity, etc.) assumed m � 1, no attempt to find mcrit was done yet.
On the other hand, it was found recently that FMMs with frequencies ω ≥ ωBi, including
ω ≈ lωBi, can occupy a considerable part of the plasma cross-section and can have
maximum amplitudes in the plasma core (Burdo & Kolesnichenko 2020). The restriction
m � mcrit is absent for these modes. However, the analysis of the mentioned work is not
applicable to warm plasmas.

2.2. Toroidicity parameters and choice of approximation
When the magnetic field is homogeneous, MHD modes in a cold plasma – Alfvén modes
with frequency ω = k‖vA and FMM with ω = kvA – can be obtained in a kinetic theory
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FIGURE 1. Approximation of the amplitude of the mode given by (2.4) with m = 50 (black
line with markers) by several Fourier coefficients (colour lines). We observe that five harmonics
(νmax = 4) provide a good approximation.

provided that

xl ≡ ω − lωB,j

k‖vT,j
� 1, (2.10)

k⊥ρT,j � 1, (2.11)

where vT = √
2T/M is thermal velocity, ρT = vT/ωB, the subscripts ‖ and ⊥ label

magnitudes along and across the magnetic field, respectively, j = e, i labels electrons
and ions. Wave damping is exponentially small or vanishing due to the first inequality.
The Larmor radius can be eliminated from εij when the second inequality holds. Finite
(non-vanishing) k⊥ρT leads to the existence of modes that are absent in MHD and in the
two-fluid model. Because the Larmor radius ρ⊥ = v⊥/ωB (v is the particle velocity) is
responsible for the deflection of individual particles from the magnetic field lines, kinetic
theory contains only one parameter associated with transverse motion,

ξ = k⊥ρ⊥. (2.12)

The inhomogeneity of the magnetic field increases the number of characteristic
parameters, as described below.

In tokamaks, the magnetic field can be approximated by

B = B̄(1 − ε cosϑ), (2.13)

where B̄ is the magnetic field on the magnetic axis, ϑ is the poloidal angle, ε = r/R, R is
the major radius of the torus. In this field, the particle radial excursion is Δr ∼ vDτb,
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where vD ∼ vρ/R is the toroidal drift velocity, ρ = v/ωB, τb ∼ ω−1
b , ωb ∼ v‖/(qR) is

transit/bounce frequency, q is the tokamak safety factor. This leads to the following
characteristic drift parameter for passing and trapped particles:

ξD = k⊥vDτb. (2.14)

In addition, bounce oscillations of trapped particles along the magnetic field result in

ξb = k‖A, (2.15)

where A ∼ v‖τb ∼ 2κqR is the oscillation amplitude, 2κ represents turning points ϑt of
trapped particles, κ = [E − μB̄(1 − ε)]/(2μB̄ε) is the particle trapping parameter (κ < 1
for trapped particles), E and μ are the particle energy and magnetic moment, respectively.
One more parameter arises because of the dependence of ωB on ϑ . For passing particles
moving along the field lines this parameter is

ζl = εlω̄Bτb = lq
r
ρ‖
, (2.16)

where ρ‖ = v‖/ω̄B.
All these parameters are a consequence of the periodic motion of the particles. They

appear in arguments of Bessel functions as a result of the expansion of the electromagnetic
field perturbations proportional to exp(ix sinφ) in the Fourier series

e±ix sinφ =
∞∑

p=−∞
Jp(x)e±ipφ, (2.17)

where Jp(x) is the Bessel function of the first kind, and p is an integer. For Larmor
rotation φ = ωBt, x = ξ ; for bounce/transit motion φ = ωbt, x is represented by ξD, ξb
and ζl. The left-hand side of (2.17) represents a part of the phase Ψ of the perturbation
δX ∝ exp(−iΨ ), with Ψ (t) = ∫ t dt′(ω − mϑ̇ + nϕ̇), where ϕ is the toroidal angle, a dot
over letters denotes a time derivative, n is the toroidal mode number. The right-hand side
of (2.17) produces terms proportional to lωB and sωb (l and s are integers) in the phase,
which leads to an infinite number of wave–particle resonances.

Although (2.17) is the same for both types of the particle motion, the roles of Larmor
rotation and transit/bounce motion are different: transit/bounce motion manifests itself
only for long time scale, Δt � ω−1

B . Due to this, the approximation of the straight
magnetic field is suitable for the study of fast instabilities, i.e. instabilities with the
growth rate γ > ωb. Another difference is that many terms of (2.17) are important for
transit/bounce motion (for high frequency modes, but not for low frequency modes, like
toroidicity-induced Alfvén eigenmodes); in contrast to this, one can consider a separate
cyclotron harmonic, at least for ω ≈ lωBi with low l (the resonances of different harmonics
overlap at sufficiently large l, which can explain the continuum ICE spectrum for l > 7
(Fülöp et al. 1997) observed in JET (Cottrell et al. 1993)).

Because ζl and ξD are relevant to the same time scale, it is of interest to compare them.
Taking ξD ∼ k⊥qρv/v‖ we obtain

ζl

ξD
∼ l

k⊥ρ
r
ρ
. (2.18)

We conclude that typically ζl � ξD.

https://doi.org/10.1017/S0022377823000521 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000521


Equations for ion cyclotron modes 7

The presence of two groups of particles – passing and trapped – considerably
complicates eigenmode equations. First, the large time scale ∼ τb should lead to two
infinite series of Bessel functions. Second, orbits with κ ∼ 1 (marginally trapped and
marginally passing orbits) are known to be described by special functions (by elliptic
integrals). Third, the presence of a border between trapped and passing particles in the
velocity space further complicates equations. These facts make analytical calculation of
the integrals in (2.2) impossible, unless simplifying assumptions are made. Note that
this problem can be minimized for fast ions: one simplification arises when the fast ion
population consists of either trapped or passing particles (not both together). Another
simplification occurs when, as it is often the case, the perturbative approach is sufficient.
Then one needs to know only the anti-Hermitian part of the fast-ion contribution to the
dielectric tensor.

In this work, we restrict ourselves to consideration of passing particles only, neglecting
the presence of trapped particles. This in justified when toroidicity is very small (the
fraction of trapped particles at a certain flux surface equals 0.9

√
r/R when orbits are

standard and velocity distribution is isotropic). In addition, this can also make sense for
any toroidicity provided that k‖qR � 1: then ξb � 1 and, therefore, the term with p = 0 in
(2.17) mainly contributes for x = ξb, which implies that the bounce oscillation parameter
is not important. On the other hand, the role of finite orbit width, ξD, is similar to that for
passing particles. The latter is expected to be of minor importance due to (2.18), see § 3.2.

3. Derivation of equations for electrostatic eigenmodes

In this section we derive an eigenmode equation assuming δB = 0, in which case a
scalar potential (δΦ) describes the perturbed electric field, δE = −∇δΦ. In order to
calculate the disturbed distribution function of the particles we will expand δΦ in a Fourier
series, as outlined in § 2.1.

3.1. Equation for eigenmodes when the magnetic field is homogeneous
The approximation of homogeneous magnetic field can be justified by the fact that ICE is
a local phenomenon, as shown by contemporary particle-in-cell simulations across most
tokamaks and stellarators (Carbajal et al. 2017). Therefore, many results are obtained in
this approximation, and we first derive equations for a homogeneous magnetic field.

We proceed from a Poisson equation

∇2δΦ = −
∑
j=e,i

4πej

∫
d3vδfj, (3.1)

where δf is given by (2.2) which for δB = 0 reduces to

δfj = ej

Mj

∫ t

−∞
dτ∇δΦ(τ) · ∂Fj

∂v(τ )
. (3.2)

We take δΦ in the form of a monochromatic travelling wave in the poloidal and toroidal
directions, whereas its radial dependence will remain unspecified but presented as a
superposition of plane waves,

δΦ = Φ̂(r) exp(−iωt + imϑ − inϕ), (3.3)

Φ̂(r) =
∞∑

ν=−∞
Φνeikνr, (3.4)
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where Φν are Fourier coefficients defined by

Φν = 1
a

∫ a

0
dr′Φ̂(r′)e−ikνr′

, (3.5)

and kν ≡ kr(ν) = 2πν/a are the radial mode numbers of harmonics constituting the mode,
and ν are integers (in contrast to (2.6), here −∞ < ν < ∞). The perturbation (3.4) in the
integrand of (3.2) can be written as (we take into account that coordinates and velocities
depend on time, as explained after (2.2))

δΦ(t, τ ) =
∑
ν

Φν exp(−iωt + kνx(t)) exp
(

−i
∫ τ

t
dt′(ω − kνv(t′))

)
, (3.6)

where kν is a wavevector with kr = kν , kνv = kνvr + kbvb + k‖v‖, the subscript ‘b’ labels
binormal components of the vectors (k‖ = kϑbϑ + kϕbϕ = (mq−1 − n)/R, kb = kϑbϕ −
kϕbϑ ≈ m/r for m/n � ε2/q, b = B/B). Then (3.2) for F = F(E) takes the form

f̂ =
∑
ν

ieΦν

∂F
∂E

[∫ t

−∞
dτAν(t, τ )kνv(τ )

]
eikνr, (3.7)

where

Aν(t, τ ) = exp
[
−i

∫ τ

t
dt′Ω(t′)

]
, (3.8)

Ω = ω − kνv, the subscript j, which labels species, is omitted. Because kνv = ω −Ω

and Ω(τ)Aν(t, τ ) = i∂Aν(t, τ )/∂τ , we can integrate the term proportional to Ω in (3.7).
Then, due to Aν(t, t) = 1,

f̂ =
∑
ν

eΦν

∂F
∂E

[
iω

∫ t

−∞
dτAν(t, τ )+ 1

]
eikνr. (3.9)

In order to calculate the integral
∫ τ

t kνv dt′ in (3.8) we write k⊥,νv⊥ = k⊥,νv⊥
cos(α − ψν), with k2

⊥,ν = k2
ν + k2

b, ψν the angle defined by kν = k⊥,ν cosψν , and α the
gyroangle, α̇ = −ωB (see e.g. Belikov & Kolesnichenko 1982; Mikhailovskii 1986).
This yields ∫ τ

t
dt′k⊥,νv⊥ cos(α − ψ) = ξν(sinαt − sinατ ), (3.10)

with ξν = k⊥,νv⊥/ωB, sinαt ≡ sin(α(t)− ψ) and sinατ ≡ sin(α(τ)− ψ). Here sinατ can
be transformed to ατ by Fourier expansion (2.17), with

ατ − αt =
∫ τ

t
dt′α̇ =

∫ t

τ

dt′ωB. (3.11)

As a result, we obtain

Aν(t, τ ) =
∑

l

Jl(ξν) exp(iξν sinαt − ilαt) exp
(

i
∫ t

τ

dt′Ωl

)
, (3.12)

where Ωl = ω − lωB − k‖v‖. Because Ωl = const. in (3.12), A(t, τ ) = A(t − τ), which
leads to ∫ t

−∞
dτAν(t, τ ) = i

∑
l

Z(Ωl)Jl(ξν) exp(iξν sinαt − ilαt), (3.13)
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where

Z(Ωl) = −i
∫ ∞

0
eiΩl t′ dt′ = P

Ωl
− iπδ(Ωl), (3.14)

and P/Ωl means Cauchy principal value. Combining (3.13), (3.9) and using relation∮
dφ
2π

exp(±ix sinφ ∓ inφ) = Jn(x), (3.15)

we obtain after alpha averaging∮
dα
2π

f̂ = −
∑

l,ν

eΦν

dF
dE

[Z(Ωl)J2
l (ξ)ω − 1

]
. (3.16)

For Maxwell distribution FM = n(r)F‖(v‖)F⊥(v⊥) (n(r) is the particle density) the
known integrals are

2π

∫ ∞

0
dv⊥v⊥F⊥J2

l (ξ) = Îl(z) (3.17)

and ∫ ∞

−∞
dv‖Z(Ωl)F‖ = 1

ω − lωB
Zl(xl). (3.18)

Here

Zl(xl) =
∫ ∞

−∞
dv‖

F‖
1 − v‖/(vTxl)

, (3.19)

Îl(z) ≡ Il(z)e−z, Il(z) is the modified Bessel function of the first kind, z = 0.5k2
⊥ρ

2
T , xl is

given by (2.10); Zl(xl) ≈ 1 for xl � 1 and Zl(xl) ≈ 2x2
l − i

√
πxl for xl � 1 (Shafranov

1967). Note that Zl(x) = −xZdis(x), where Zdis(x) is the plasma dispersion function of
Richardson (2019).

Now we are ready to finalize the eigenmode equation. We write (3.1) as

1
r

d
dr

r
dΦ̂
dr

−
(

m2

r2
+ n2

R2

)
Φ̂ = −

∑
j=e,i

4πej

∫
dv⊥ dv‖ f̂j, (3.20)

where dv⊥ = dv⊥v⊥ dα. Using (3.16)–(3.20) we obtain

1
r

d
dr

r
dΦ̂
dr

−
(

m2

r2
+ n2

R2

)
Φ̂

+
∑
j=e,i

∞∑
ν=−∞

1
d2

j

[ ∞∑
l=−∞

Îl(zν,j)Zl(xl)
ω

ω − lωB
− 1

]
Φνeikνr = 0, (3.21)

where Φν is given by (3.5). Normally a finite number of ν-harmonics is important (see the
example in § 2.1). Therefore, when zν=1,e � 1, zν 
=1,e can be small, too. Then the electron
contribution to the mode equation reduces to

1
d2

e

[Z0(x0)− 1] Φ̂. (3.22)

Equation (3.21) can be transformed to an equation for a plane travelling wave by keeping
only one term in the sum over ν and replacing the first term with −k2

r . In this particular
case (3.21) coincides with the equation which can be obtained from that of Harris (1961)
after applying relations (3.17), (3.18).
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3.2. Equation with a non-uniform particle gyration
One can expect that the main effect of toroidicity will be associated with a non-uniform
gyration of passing particles: as shown in § 2.2, ζl � ξD, unless k⊥ρ is unrealistically large.
Below we consider this case.

We employ (3.12) with ξ = ξ̄ (bar over letters means that B = B̄), which can be justified
as follows.

As in a homogeneous magnetic field, the gyration can be described by (Mikhailovskii
1986; Belikov & Kolesnichenko 1982)

r̃(τ )− r̃(t) ≈ v⊥
ωB

sinα(t)− v⊥
ωB

sinα(τ). (3.23)

This agrees with the right-hand side of (3.10) and, therefore, we can use (3.10) even for
inhomogeneous magnetic field. However, now we have to take into account that α(t) is not
a linear function (α̇ 
= const.). The variation of α̇ affects the phase in (3.10) for a particle
transit time considerably. This follows from (3.11) and the relations

Ωl = Ω̄l − lω̄Bε cosϑ, Ω̄l = ω − lω̄B − k‖v‖. (3.24a,b)

There is one more effect of the inhomogeneity of the magnetic field: the transverse Larmor
radius ρ⊥ ≡ v⊥/ωB varies when B = B(ϑ). Using conservation of the particle magnetic
moment we find that ρ⊥ = ρ̄⊥(1 + 0.5ε cosϑ). Due to this, (3.10) leads to (3.12) with
ξ = ξ̄ provided 0.5εξ̄ is sufficiently small, so that exp[iεξ̄/2] ≈ 1. Below we assume that
this is the case and omit the bar over ξ .

To calculate the integral in (3.12) we note that

exp(i
∫ t

τ

dt′Ωl(t′)) = exp(iΩ̄l(t − τ)− iζl sinϑ(t)) exp(iζl sinϑ(τ)), (3.25)

where ζl = lω̄Bqr/v‖ and sinϑ(τ) can be transformed to τ by means of the Bessel series
expansion (2.17). Then due to the relation

ϑ(t)− v‖
qR

t = ϑ(τ)− v‖
qR
τ, (3.26)

which results from the equation of motion for the particle guiding centre, we obtain

∫ t

−∞
dτ exp

(
i
∫ t

τ

dt′Ωl(t′)
)

= i
∑

s

Js(ζl)

Ω̄l − sv‖/(qR)
exp (−iζl sinϑ(t)+ isϑ(t)) .

(3.27)
The flux surface averaging and the gyrophase averaging result in

∮
dϑ
2π

∮
dα
2π

∫ t

−∞
Aν(t, τ ) = i

∑
l,s

J2
l (ξ)J

2
s (ζl)

Ω̄l,s
, (3.28)

where

Ω̄l,s = ω − lω̄B − k‖,sv‖, (3.29)

with k‖,s = k‖ + s/(qR).
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For Maxwell distribution, the velocity integral of (3.28) can be written as

∫
dv⊥F⊥

∫
dv‖F‖

∮
dϑ
2π

∮
dα
2π

∫ t

−∞
dτAν(t, τ ) = i

∑
l

YlÎl(zν), (3.30)

where

Yl =
∞∑

s=−∞

∫
dv‖F‖

J2
s (ζl)

Ω̄l,s
. (3.31)

In the limit case of a plasma with zero temperature F‖ = δ(v‖) (δ(x) is a Dirac delta
function) and, therefore, Ω̄l,s is not involved in the summation. Due to this, taking into
account that

∞∑
s=−∞

J2
s = 1, (3.32)

we obtain

Yl(T = 0) = 1
ω − lω̄B

. (3.33)

The same relation takes place in homogeneous magnetic field:
∫

dv‖F‖(T = 0)/(ω −
lω̄B − k‖v‖) = 1/(ω − lω̄B). This is explained by the fact that there is no particle motion
along the field lines in the cold plasma.

It is convenient to introduce Yl by (compare with (3.18))

Yl = 1
ω − lωB

Yl, (3.34)

where

Yl(xl, ζT) =
∞∑

s=−∞

∫ ∞

−∞
dv‖F‖

J2
s (ζTvT/v‖)

1 − k‖,sv‖/(k‖vTxl)
, (3.35)

xl = (ω − lω̄B)/(k‖vT), ζT = lqr/ρT .
Due to (3.30), the eigenmode equation in the considered case can be obtained from

(3.21) by replacing Zl(xl) with Yl(xl, ζT). To draw this conclusion we substituted (3.30)
into the angle-averaged (3.9) and then used (3.20) with flux surface averaged right-hand
side. Thus, Yl(xl, ζT) plays the role of the dispersion function Zl(xl) when particle gyration
is affected by toroidicity. Its features are considered in appendix A.

3.3. Equation for subharmonic modes
Based on (2.18), in the previous section we neglected the toroidal drift. However, finite
Larmor radius and non-uniform particle gyration do not manifest themselves in the l =
0 term of the eigenmode equations, which can describe subharmonic modes (ω � ωBi).
Therefore, a question arises about the role of finite width of drift orbits for these modes.
Below we consider this issue.
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We proceed from (3.9) with Aν(τ, t) given by (3.8) which in the considered case is

Aν(t, τ ) = exp
[
−i

∫ τ

t
dt′(ω − k‖v‖ − k⊥,νvD)

]
, (3.36)

where k⊥,νv⊥ = k⊥,νvD sin(ϑ + ψ). Using ϑ̇ = v‖/(qR) and

exp(iξD cosϑτ ) = is
∞∑

s=−∞
Js(ξD)eisϑτ , (3.37)

with ϑτ = ϑ(τ)+ ψ , ξD = k⊥vDqR/v‖, we obtain

Aν(t, τ ) =
∑

s

isJs(ξD,ν) exp
(

i
∫ τ

t
dt′Ω0,s

)
exp(isϑt − iξD,ν cosϑt), (3.38)

where Ω0,s = ω − k‖,sv‖. The flux surface averaging with

Jp(x) = ip
∮

dχ
2π

exp(−ix cosχ + ipχ) (3.39)

and time integration yield

∫ t

−∞
dτ

∮
dϑ
2π

Aν(t, τ ) = i
∞∑

s=−∞

J2
s (ξD)

Ω0,s
. (3.40)

Using (3.40), (3.9) and (3.20) we obtain

1
r

d
dr

r
dΦ̂
dr

−
(

m2

r2
+ n2

R2

)
Φ̂

=
∑
j=e,i

∞∑
ν=−∞

1
d2

j

〈
1 −

∞∑
s=−∞

J2
s (ξD,ν)

ω

Ω0,s

〉
Φνeikνr, (3.41)

where 〈(· · · )〉 ≡ ∫
d3v(· · · )F‖F⊥.

The mode frequency below but close to ωBi well exceeds v‖/(qR), by a factor of qR/ρ.
On the other hand, when ξD ∼ 1 or less, a few terms in the sum

∑∞
−∞ J2

s (ξD) are sufficient
to make this sum very close to unity,

∑sm
−sm

J2
s (ξD,ν) ≈ 1. Due to this, the right-hand side

of (3.41) reduces to ∑
j=e,i

1
d2

j
[1 − Z0(x0,j)]Φ̂. (3.42)

Thus, the influence of the toroidal drift on the equation of modes with ω � ωBi is
negligible.

4. Summary

Cyclotron waves can manifest themselves in fusion devices and in space plasmas (Dendy
1994). However, minor attention was paid to eigenmodes in warm plasmas after the first
works carried out in the middle of the last century. In particular, no attempts to describe
the radial structure of those eigenmodes were done yet. This can be explained by the fact
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that there are many experimental observations of destabilized MHD modes, especially
toroidicity-induced Alfvén eigenmodes, and at the same time the theory of modes in
cold plasma is simpler (because they are described by MHD and two-fluid models and
do not require kinetic theory). This work represents an indispensable step towards a
study of eigenmodes in warm bounded plasmas. It was motivated, first of all, by the ICE
experiments on NSTX-U and DIII-D (Fredrickson et al. 2021; Crocker et al. 2022), which
can be hardly described by existing theories employing FMMs. Some other recent DIII-D
results on ICE can be found in Thome et al. (2019), DeGrandchamp et al. (2021) and
DeGrandchamp et al. (2022).

The results obtained within the work can be summarized as follows.
A method for derivation of equations for the mentioned eigenmodes, based on expansion

of the radial profile of the mode amplitude in a Fourier series with coefficients in the form
of plane waves is proposed. Using this method, an equation for electrostatic modes with
frequencies in the range of ion cyclotron harmonics in a Maxwellian plasma is derived
for the first time, see (3.21). In fact, this is an integro-differential equation. It reduces to a
second-order differential equation in the special case of kr � k.

Equation (3.21) is derived in the assumption that the magnetic field is homogeneous.
A comprehensive treatment of toroidicity would have resulted in an equation which has
a form hardly suitable for applications (more details are given in § 2.2). Therefore, we
restricted ourselves to taking into account the non-uniform gyration of particles, which
seems to represent the main effect of toroidicity on eigenmodes when toroidicity is small
(
√
ε � 1) and/or k‖qR � 1. It is found that non-uniform gyration leads to replacement

of the known dispersion function Zl(xl) in the mode equation with the function Yl(xl, ζT).
Both these functions are proportional to |ω − lω̄B|2 when |ω − lω̄B| is sufficiently small,
and weakly depend on |ω − lω̄B| in the opposite case.

An equation for subharmonic modes (ω � ωBi), that takes into account finite drift-orbit
width, is derived. It is found that toroidicity is not important for these modes.

A by-product of this work is finding a minimum magnitude of the poloidal mode number
in the known ICE model (Coppi 1993), which restricts applicability of that model to high
cyclotron harmonics.
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Appendix A. Dispersion function Yl

In this section we consider features of the dispersion function associated with
inhomogeneous gyration.
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Proceeding to variable y = v‖/vT we write (3.34) in the form

Yl =
∑

s

xl,s√
π

∫ ∞

−∞
dy

e−y2 J2
s (ζT/y)

xl,s − y
, (A1)

where

xl,s = ω − lω̄B

k‖,svT
, k‖,s = k‖ + s

qR
, ζT ≡ ζl(ρ‖ = ρT) = lq

r
ρT

� 1. (A2a–c)

The integrand in (A1) contains a singularity at y = xl,s. In order to avoid it we follow
the known rule, replacing ω with ω + i0, which implies that

1
xl,s − y

= P
xl,s − y

− iπδ( y − xl,s). (A3)

Then

Yl =
∑

s

xl,s√
π

−
∫ ∞

−∞
dy

e−y2 J2
s (ζT/y)

xl,s − y
− i

∑
s

√
πxl,se−x2

l,s J2
s (ζT/xl,s). (A4)

This equation shows that the damping is not vanishing even when k‖ = 0. However, it is
exponentially small unless xl,s � 1. On the other hand, Bessel functions are largest when
their order s ∼ 1 and their argument ζT/xl,s ∼ 1 which is not possible with xl,s � 1 because
ζT � 1. Thus, the damping cannot be large. In order to calculate it a dispersion relation
for a particular eigenfrequency should be considered.

It is convenient to write the real part of Yl in the form

ReYl = 1√
π

∞∑
s=−∞

−
∫ ∞

−∞
dy

e−y2 J2
s (ζT/y)

1 − σ(s + k̃‖)y
, (A5)

with

σ ≡ ε

ζTΔω

, k̃‖ ≡ k‖qR, Δω ≡ ω − lω̄B

lω̄B
. (A6a–c)

A rough estimate of ReYl can be easily done for xl,s � 1: in this case the effect of
singularity y = xl,s in (A1) is negligible because the integrand is exponentially small at
y � 1. Due to this, thermal particles mainly contribute to the integral (y ∼ 1). On the
other hand, ζT is very large; for instance, for the above-mentioned ICE experiment on
DIII-D (Crocker et al. 2022) ζT = 240 (we take l = 2, q = 2, ρT = 0.5 cm, r = 30 cm).
Using a large value of ζT and taking y = 1 in the argument of the Bessel functions, we
can write J2

s (ζT/y) ∼ 1/ζT with |s| < sm ≡ ζT . In addition, we take into account that the
condition xl,s � 1 implies Δω/ε > s/ζT for k̃‖ � s, which can be replaced by the softer
condition k̃‖ � 1 because large numbers s mainly contribute. Then we conclude that

ReYl ∼ 1
ζT

sm∑
s=−sm

ReZl(xl,s) ∼ 1 forΔω > ε and k̃‖ � 1. (A7)

Below we make a more accurate estimate of Yl that is valid for all xl,s when k̃‖ � 1.
Under the latter condition, the pole of the denominator of (A5) stays within or outside
the range of integration for all |s| depending on whether (ζTσ)

−1 = Δω/ε is, respectively,
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less or greater than unity; this enables one to treat all terms of the infinite sum in (A5)
uniformly.

We again rely on the asymptotic behaviour of Bessel functions,

J2
s (u) �

{
0, |u| < |s|,
(2/π|u|) cos2 χ(u), |u| > |s|, (A8)

where u is an arbitrary variable and χ ∼ u + const.(s) is the ‘phase’ determining the
location of the zeros of Js, i.e. zeros of Js are separated by approximately π; the transition
between the two asymptotic behaviours occurs, to the same order, over one period, i.e.

||u| − |s|| � π. (A9)

In our case, u = ζT/y. Since ζT � 1 and the term exp(−y2) in the integrand of (A5)
strongly suppresses contributions from large |y|, we can ‘average’ the term J2

s (ζT/y) over
these fast oscillations in the integrand,

〈
J2

s (ζT/y)
〉 �

{
0, |ζT/y| < |s|,
|y|/(πζT), |ζT/y| > |s|. (A10)

Substituting (A10) into (A5), we then have the approximation

ReYl ≈ 1√
π

∞∑
s=−∞

−
∫ ζT/|s|

−ζT/|s|
dy

|y|
πζT

e−y2

1 − σ(s + k̃‖)y
. (A11)

This approximation fails when the pole of the denominator at xl,s = 1/σ(s + k̃‖) is
not suppressed by the exp(−y2) term and falls within the transition region (A9). The
first of these two conditions can be expressed as |xl,s| � C with some constant C > 1;
neglecting k̃‖, this reduces to |s| > 1/(Cσ). The second condition (A9) yields |s| − π <
ζT/|xl,s| < |s| + π, which reduces to |ε/Δω − 1| < π/|s|. Since the smallest |s| limit
the acceptable range of Δω/ε the most, we combine the two conditions to obtain
|ε/Δω − 1| < Cπ/ζT(ε/Δω), or equivalently |Δω/ε − 1| < Cπ/ζT . We will therefore
exclude this vicinity of the point Δω/ε = 1 from numerical calculations.

Transforming (A11) neglecting k̃‖, we have

π
√

πζTReYl ≈ 1 + 2
∞∑

s=1

1
(σ s)2

−
∫ (ζT/s)2

0
dt

e−t

(σ s)−2 − t

= 1 + 2
∞∑

s=1

e−(σ s)−2

(σ s)2
−
∫ (ζT/s)2−1/(σ s)2

−1/(σ s)2
dx

e−x

−x

= 1 + 2
∞∑

s=1

e−(σ s)−2

(σ s)2

[
−
∫ ∞

−1/(σ s)2
dx

e−x

−x
− −

∫ ∞

(ζT/s)2−1/(σ s)2
dx

e−x

−x

]

= 1 + 2
∞∑

s=1

e−(σ s)−2

(σ s)2
×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ei
(

1
(σ s)2

)
− Ei

(
1

(σ s)2
− ζ 2

T

s2

)
(1/σ > ζT)

Ei
(

1
(σ s)2

)
+ E1

(
ζ 2

T

s2
− 1
(σ s)2

)
(1/σ < ζT)

(A12)

where Ei(u) ≡ −−
∫ ∞

−u du e−u/u and E1(u) ≡ ∫ ∞
u du e−u/u (u > 0) are the exponential

integrals (see e.g. Abramowitz & Stegun (1972), chapter 4). The infinite sum in (A12)
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FIGURE 2. Here ReYl is calculated for ζT = 240 and k̃‖ = 0 using the averaged asymptotic of
the Bessel function J2

s (ζTvT/v‖). The vicinity of Δω/ε = 1 is excluded because the averaged
asymptotic approximation fails there.

converges as s → ∞ because the summand is O(s−2). A somewhat more complicated
closed-form expression for (A11) in terms of a sum of exponential integrals can be
derived also for the case when k̃‖ 
= 0. However, numerical calculations show that, as
long as ζT � 1 and k̃‖ � 1, the main contribution to ReYl comes from terms with
large s, and (A11) very weakly depends on both ζT and k̃‖. This justifies the use of the
simpler expression (A12). The dependence of this expression onΔω/ε is shown in figure 2.
It behaves as (Δω/ε)

2 for small Δω/ε and as a constant for large Δω/ε, matching the
limiting case described by (A7).
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