
Canad. Math. Bull. Vol. 67 (1), 2024, pp. 244–256
http://dx.doi.org/10.4153/S0008439523000693
© The Author(s), 2023. Published by Cambridge University Press on behalf of The
Canadian Mathematical Society

A tracial characterization of Furstenberg’s
×p,×q conjecture

Chris Bruce and Eduardo Scarparo

Abstract. We investigate almost minimal actions of abelian groups and their crossed products. As an
application, given multiplicatively independent integers p and q, we show that Furstenberg’s ×p,×q
conjecture holds if and only if the canonical trace is the only faithful extreme tracial state on the
C∗-algebra of the group Z[ 1

pq ] ⋊ Z
2 . We also compute the primitive ideal space and K-theory of

C∗(Z[ 1
pq ] ⋊ Z

2).

1 Introduction

Let p, q ≥ 2 be two multiplicatively independent integers, in the sense that there are
no r, s ∈ Z>0 such that pr = qs . In [Fur67], Furstenberg showed that the only infinite
closed ×p, ×q-invariant subset of R

Z
≃ T is the whole circle. The measure-theoretic

analog of this result is now one of the most fundamental open problems in ergodic
theory (for a survey on this problem, see, for example, [Lin05]). It can be formulated
precisely as follows.

Conjecture 1 (Furstenberg’s ×p, ×q conjecture) The only ergodic ×p, ×q-invariant
probability measure on T with infinite (hence full) support is the Lebesgue measure.

There have already been two connections between the above conjecture and C∗-
algebra theory. Following an idea from Cuntz, Huang and Wu in [HW17] gave a
characterization of Furstenberg’s conjecture in terms of irreducible representations of
the group Z[ 1

pq ] ⋊Z
2. In [Sca20], Furstenberg’s theorem on closed ×p, ×q-invariant

subsets ofT was used to show that every nonzero ideal I ⊴ C∗(Z[ 1
pq ] ⋊Z

2) intersects
C[Z[ 1

pq ] ⋊Z
2] nontrivially. Since there is a nontrivial, but well-understood,

relationship between C∗-simplicity of a group (that is, simplicity of the reduced
group C∗-algebra) and uniqueness of the canonical tracial state on the reduced
group C∗-algebra [BKKO17], it is, in light of [Sca20], natural to ask if Furstenberg’s
×p, ×q conjecture has a C∗-algebraic manifestation in terms of tracial states on
C∗(Z[ 1

pq ] ⋊Z
2). In this work, we show that this is indeed the case: We present

a characterization of the conjecture in terms of the set of tracial states on
C∗(Z[ 1

pq ] ⋊Z
2) (see Corollary 3.7).
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Since C∗(Z[ 1
pq ] ⋊Z

2) can be realized as a crossed product C∗-algebra for a certain
almost minimal action ofZ2, we begin with several general results on tracial states and
primitive ideals for crossed products arising from such actions. Recall that an action of
a group � on a compact space X is said to be almost minimal if every invariant closed
set F ⊊ X is finite. Almost minimality is also known in the literature as irreducibility
or as the ID property (see, for example, [Sch95, Section 29] for an account of this
property).

In Section 2, we compute the primitive ideal space and the set of extreme tracial
states of the crossed product associated with an almost minimal action of an abelian
group. Along the way, we fix a mistake in the literature concerning the computation of
the primitive ideal spaces of a special class of such crossed products (see Remark 2.5).

In Section 3, we apply the results of the previous section for computing the
primitive ideal space and the set of extreme tracial states on C∗(Z[ 1

pq ] ⋊Z
2). As

an application, we show that Furstenberg’s ×p, ×q conjecture holds if and only if the
canonical trace is the only faithful extreme tracial state on C∗(Z[ 1

pq ] ⋊Z
2). We also

compute the K-theory of C∗(Z[ 1
pq ] ⋊Z

2).
Finally, in Section 4, we pose a few questions that arise naturally in light of our

results.

2 Almost minimal actions

2.1 Preliminaries

Throughout this paper, �↷X denotes an action of a group � on a compact Hausdorff
space X by homeomorphisms. Given x ∈ X, we let �x ∶= {g ∈ � ∶ gx = x} be the
stabilizer of x, and [x] ∶= {gx ∶ g ∈ �} be the orbit of x.

Given g ∈ �, let Fixg ∶= {x ∈ X ∶ gx = x}. We say that the action is faithful if
Fixg ⊊ X for any g ∈ �/{e}. The action is said to be topologically free if, for every
g ∈ �/{e}, int Fixg = ∅. If � is countable, then topological freeness is equivalent to
the set {x ∈ X ∶ �x = {e}} being dense in X by a Baire category argument.

Let P�(X) be the space of �-invariant regular probability measures on X. We say
that μ ∈ P�(X) is essentially free if, for any g ∈ �/{e}, μ(Fixg) = 0. If � is countable,
then μ is essentially free if and only if μ({x ∈ X ∶ �x = {e}}) = 1.

The action is said to be almost minimal if every invariant closed set F ⊊ X is finite.
If �↷X is almost minimal, then any infinite orbit is dense in X.

Example 2.1 Let α be an action by homeomorphisms on a noncompact, locally
compact Hausdorff space X. If α is minimal (that is, every orbit is dense), then the
extension of α to the one-point compactification of X is almost minimal.

Certain almost minimal algebraic actions were studied by Berend [Ber83; Ber84]
and by Laca and Warren [LW20]. We also refer the reader to Schmidt’s book [Sch95,
Section 29] for further discussions of examples from algebraic actions.

Any action on a finite space is almost minimal, but if �↷X is an almost minimal
action and X is infinite, then � is infinite.
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Proposition 2.2 Let X be an infinite compact space, and let �↷X be an almost
minimal action. Then � is infinite.

Proof Suppose � is finite. Take x , y ∈ X such that [x] ∩ [y] = ∅. We will show
that there are disjoint �-invariant open neighborhoods Wx and Wy of [x] and [y],
respectively. This suffices to prove the result by the following argument: Since W c

x ∪
W c

y = X, we have that either W c
x or W c

y is infinite, hence equal to X, thus contradicting
that Wx and Wy are not empty.

Now, let us construct such Wx and Wy . Given an open neighborhood U of x, the
set V ∶= ⋂g∈�x gU is a �x -invariant open neighborhood of x. Let g1 , . . . , gn be left
coset representatives for �/�x . By taking U smaller, we may assume that g1V , . . . , gnV
are disjoint sets. Then Wx ∶= ⋃n

i=1 g i V is a �-invariant open neighborhood of [x].
Moreover, by taking U smaller, we can assume that Wx ∩ [y] = ∅. By constructing
a neighborhood Wy of [y] in an analogous way, such that Wy ⊆ Wx

c , we obtain the
open sets with the desired properties. ∎

For the proof of the next result, notice that, if h is a homeomorphism on a
space X, then, given Y ⊂ X, we have that h((int Y)c) = (h(int Y))c = (int h(Y))c .
In particular, if h(Y) = Y , then h((int Y)c) = (int Y)c as well.

Proposition 2.3 Let � be a countable abelian group, X an infinite compact space, and
�↷X a faithful almost minimal action. Then the action �↷X is topologically free, and
the set of points that have finite orbits is countable and has empty interior.

Proof Given g ∈ �/{e}, we have that Fixg ⊊ X is closed and invariant, hence finite.
Since (int Fixg)c is closed, infinite, and invariant, it follows that (int Fixg)c = X, hence
int Fixg = ∅. Therefore, the action is topologically free.

Suppose x ∈ X has finite orbit. Since � is infinite by Proposition 2.2, we have
that x ∈ Fixg for some g ∈ �/{e}. Since Fixg is finite and has empty interior for any
g ∈ �/{e}, the result follows from the Baire category theorem. ∎

2.2 Primitive ideals

Recall that an ideal I of a C∗-algebra A is said to be primitive if there exists a
nonzero irreducible representation φ∶ A → B(H) such that I = ker(φ). The primitive
ideal space of A, denoted by Prim(A), is the set of primitive ideals endowed with the
hull-kernel topology (see, for instance, [Mur90, Section 5.4]).

In the proof of the next result, we use a description from [Wil81] of the primitive
ideal space of the crossed product associated with an action of an abelian group.
We also use some ideas from [LW20, Section 5] (beware that there is an issue with
the description of convergent nets in [LW20, Theorem 5.2]; see Remark 2.5). For an
alternative approach to describing the primitive ideal space, see the proof of [BdlH20,
Theorem 9.D.1].

Theorem 2.4 Let � be a countable abelian group, X an infinite, second countable
compact space, and �↷X a faithful and almost minimal action. Then the set C of finite
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orbits is countable, and Prim(C(X) ⋊ �) is homeomorphic to

P ∶=
⎛
⎝ ⊔
[x]∈C

{[x]} × �̂x
⎞
⎠
⊔ {∞},

where the topology on P is defined as follows: the closed subsets of P are P and finite
unions of elements from the collection {{[x]} × F ∶ [x] ∈ C, F a closed subset of �̂x}.

Proof By Proposition 2.3, �↷X is topologically free, and C is countable.
Consider the equivalence relation on X × �̂ defined by (x , η) ∼ (y, χ) if [x] = [y]

and η∣�x = χ∣�x (note that, since � is abelian, [x] = [y] implies that �x = �y). By
[Wil81, Theorem 5.3], Prim(C(X) ⋊ �) is homeomorphic to the quotient space X×�̂

∼
.

Given x ∈ X such that [x] ∉ C, it follows from almost minimality and topologi-
cal freeness of the action that [x] = X and �x = {e}. Let f ∶ X×�̂

∼
→ P be given by

f ([x , χ]) ∶= ([x], χ∣�x ) if [x] ∈ C, and f ([x , χ]) ∶= ∞ otherwise. Given x ∈ X, let
rx ∶ �̂ → �̂x be the restriction map. It is not difficult to see that f is bijective (surjectivity
follows from surjectivity of each rx ).

Let π∶ X × �̂ → X×�̂
∼

be the quotient map. We will show that f is continuous. For
this, it suffices to show that f ○ π is continuous. Given [x] ∈ C and F ⊆ �̂x closed, we
have that ( f ○ π)−1({[x]} × F) = [x] × r−1

x (F) is closed in X × �̂. Therefore, f ○ π is
continuous.

Let us now show that f −1 is continuous, that is, that f is a closed map. Let A ⊆ X×�̂
∼

be a closed subset. We will show that f (A) is closed in P.
Case∞ ∈ f (A): In this case, {x ∈ X ∶ [x] ∉ C} × �̂ ⊆ π−1(A). Since the set of points

with infinite orbit is dense in X by Proposition 2.3, it follows that π−1(A) = X × �̂,
hence f (A) = f (π(π−1(A))) = P.

Case IA ∶= {[x] ∈ C ∶ f (A) ∩ ({[x]} × �̂x) ≠ ∅} is infinite: Since U ∶= ⋃ IA is
�-invariant and infinite, it follows from almost minimality that U is dense in X.
This implies that {x ∶ ∃χ ∈ �̂ with (x , χ) ∈ π−1(A)} = X. Hence, there exists (x , χ) ∈
π−1(A) such that [x] ∉ C. In particular, ∞ ∈ f (A) and f (A) = P by the previous case.

Finally, assume that IA is finite and ∞ ∉ f (A). In this case, there exists a family
(B[x])[x]∈IA such that each B[x] is a subset of �̂x , and f (A) = ⊔[x]∈IA{[x]} × B[x]. In
order to conclude that f (A) is closed, we have to show that each B[x] is closed in �̂x .
We have that π−1(A) = ⊔[x]∈IA[x] × r−1

x (B[x]). Given [x] ∈ IA, since π−1(A) is closed
in X × �̂, it follows that r−1

x (B[x]) is closed in �̂. Since rx is a quotient map (being a
surjective continuous map between compact spaces), we conclude that B[x] is closed
in �̂x . ∎

Remark 2.5 Given �↷X and P as in Theorem 2.4, we have that∞ is a dense point in
P (this corresponds to the fact that the ideal {0} is a dense point in Prim(C(X) ⋊ �)).
Moreover, given a net ([x i], χ i) in P/{∞}, we have:
(a) if for every finite set F ⊆ C, the net [x i] is eventually outside F, then ([x i], χ i)

converges to every point in P;
(b) if [x i] is eventually constant, [x i] = [x] for all i ≥ j say, then ([x i], χ i) converges

to ([y], χ) if and only if [y] = [x] and χ = limi≥ j χ i .
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The paper [LW20] considers a special class of algebraic actions coming from algebraic
number theory. Theorem 2.4 corrects an error in [LW20, Section 5]: Convergent nets
as in (a) above are not accounted for in the description of the topology on the primitive
ideal space stated in [LW20, Theorem 5.2]. Note that the class of actions considered in
[LW20, Theorem 5.2] satisfy the hypothesis of Theorem 2.4 by [LW20, Theorem 4.3].

2.3 Tracial states

Given a group �, let Sub(�) be the set of subgroups of �, endowed with the Chabauty
topology; this is the restriction to Sub(�) of the product topology on {0, 1}�, where
every Λ ∈ Sub(�) is identified with its characteristic function 1Λ ∈ {0, 1}�. We also
endow Sub(�) with the action of � given by conjugation.

Given a convex set K, let ∂K be the set of extreme points of K.

Proposition 2.6 Let � be a countable abelian group and �↷X a topologically free
action on a compact space X. Given μ ∈ ∂P�(X) with full support, we have that μ is
essentially free.

Proof Suppose that μ({x ∈ X ∶ �x ≠ {e}}) > 0. The map

S∶ X → Sub(�)
x ↦ �x

is �-invariant and Borel measurable. Since � is abelian, the action �↷Sub(�) is
trivial. Given any Borel measurable set U ⊆ Sub(�), by ergodicity of μ we have that
S∗μ(U) = μ(S−1(U)) ∈ {0, 1}. Thus, there exists {e} ≰ Λ ≤ � such that S∗μ = δΛ , the
point-mass measure concentrated at Λ. It follows that μ({x ∈ X ∶ �x = Λ}) = 1. Since
μ has full support, we have that {x ∈ X ∶ �x = Λ} is dense. This implies that, for any
x ∈ X, it holds that Λ ≤ �x . But by topological freeness, there exists x ∈ X such that
�x = {e}, which gives a contradiction. ∎

Given a C∗-algebra A, we denote by T(A) the set of tracial states on A. We say that
τ ∈ T(A) is faithful if, for any a ∈ A/{0}, we have that τ(a∗a) > 0.

Let � be an abelian group acting on a compact space X. Given x ∈ X with finite
orbit and χ ∈ �̂x , let τx , χ be the state on C(X) ⋊ � such that, given f ∈ C(X) and
g ∈ �,

τx , χ( f ug) =
⎧⎪⎪⎨⎪⎪⎩

χ(g)
∣�x ∣ ∑y∈[x] f (y), if g ∈ �x ,

0, otherwise.
(2.1)

The fact that τx , χ is well defined follows, for example, from [BO08, Corollary 2.5.12
and Exercise 4.1.4]. Here, and throughout this paper, we use ug to denote both the
canonical unitary in the group C∗-algebra C∗r (�) and the canonical unitary in the
crossed product C(X) ⋊r � corresponding to an element g ∈ �.

Given μ ∈ P�(X), let τμ be the state on C(X) ⋊ � such that, given f ∈ C(X) and
g ∈ �,
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τμ( f ug) =
⎧⎪⎪⎨⎪⎪⎩
∫X f dμ, if g = e ,
0, otherwise.

(2.2)

The following result is an immediate consequence of Propositions 2.3 and 2.6,
together with [Nes13, Corollary 2.4] (for an alternative approach to Neshveyev’s result,
see [KTT90, Theorem 2.7] and the proof of [BdlH20, Theorem 12.D.1]).

Proposition 2.7 Let � be a countable abelian group, X an infinite, second countable
compact space, and �↷X a faithful and almost minimal action. Then the set C of finite
orbits is countable, and there is a bijective correspondence between

⎛
⎝ ⊔
[x]∈C

{[x]} × �̂x
⎞
⎠
⊔ {μ ∈ ∂P�(X) ∶ μ has full support}

and ∂T(C(X) ⋊ �), which maps μ ∈ ∂P�(X) with full support to τμ as in (2.2), and,
given [x] ∈ C, maps ([x], χ) ∈ {[x]} × �̂x to τx , χ as in (2.1).

3 Some observations on C∗(Z[1/pq] ⋊Z2)

3.1 Preliminaries

Fix integers p, q ≥ 2, and let α be the action of Z2 on Z[ 1
pq ] given by α(n ,m)(x) ∶=

pn qm x, for n, m ∈ Z, and x ∈ Z[ 1
pq ]. Also, let

φ∶T → T, z ↦ zpq ,

and consider the compact abelian group

X ∶= lim←2(T, φ) =
⎧⎪⎪⎨⎪⎪⎩
(xn)n∈Z≥0 ∈ ∏

n∈Z≥0

T ∶ for all n ∈ Z≥0 , xn = φ(xn+1)
⎫⎪⎪⎬⎪⎪⎭

.

There is a homeomorphism (which is also a group isomorphism) H∶ Ẑ[ 1
pq ] → X

given by

H(τ) ∶= (τ ( 1
(pq)n ))

n∈Z≥0

,(3.1)

for τ ∈ Ẑ[ 1
pq ] (see, for example, the proof of [Sca20, Lemma 2.3]).

Let S∶ X → X be the left shift map and Tp , Tq ∶ X → X be the maps given by
Tp(x) ∶= x p and Tq(x) ∶= xq , for x ∈ X. Then Tp and Tq are the continuous group
automorphisms of X associated with the multiplication-by-p and the multiplication-
by-q automorphisms of Z[ 1

pq ] via the homeomorphism H. Moreover, Tp and Tq

satisfy T−1
p = STq and T−1

q = STp . Let β ∶ Z2 ↷X be given by

β(r ,s) = T−r
p T−s

q ,(3.2)

for (r, s) ∈ Z2. In particular, β(1,1) = S.
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Furthermore, one can easily check that H conjugates α̂∶Z2 ↷Ẑ[ 1
pq ] with β, where

α̂∶Z2 ↷ Ẑ[ 1
pq ] is the action α̂(r ,s)(χ) ∶= χ ○ α(−r ,−s) for all (r, s) ∈ Z2 and χ ∈ Ẑ[ 1

pq ].
Hence, C∗(Z[ 1

pq ] ⋊Z
2) ≃ C(X) ⋊Z

2.
Let φp , φq ∶T → T be given by φp(z) ∶= zp and φq(z) ∶= zq , for z ∈ T, and

I ∶= {B ⊆ T ∶ φp(B) = φq(B) = B}.

Given i ∈ Z≥0, let π i ∶ X → T be defined by π i((xn)) ∶= x i , for (xn) ∈ X.

Proposition 3.1 There is a bijection between closed Z
2-invariant subsets F ⊆ X and

closed sets B ∈ I, which maps F into π0(F). Moreover, a Z
2-invariant subset F ⊂ X is

finite if and only if π0(F) is finite.

Proof Given F ⊂ X closed and Z
2-invariant, it follows from the definition of the

Z
2-action in (3.2) that π0(F) ∈ I. Since F is shift-invariant (recall that S = T−1

p T−1
q ),

we also have that π0(F) = πn(F) for every n ≥ 0.
We claim that F = (∏n≥0 πn(F)) ∩ X. Clearly, F ⊂ (∏n≥0 πn(F)) ∩ X. Conversely,

given x ∈ (∏n≥0 πn(F)) ∩ X, for each m ∈ Z≥0 there is y ∈ F such that πn(x) = πn(y)
for n ≤ m. Since F is closed, we conclude that x ∈ F, thus showing the claim. In
particular, F = (∏n≥0 π0(F)) ∩ X.

Given B ∈ I, we have that F ∶= (∏n≥0 B) ∩ X is closed,Z2-invariant and π0(F) = B.
This concludes the proof of the first claim.

Suppose B ∶= π0(F) is finite. Given z ∈ B, since B = Bpq and B is finite, there is a
unique w ∈ B such that w pq = z. This shows that any x ∈ F is uniquely determined by
π0(x). Therefore, ∣B∣ = ∣F∣. ∎

Recall that integers p, q ≥ 2 are said to be multiplicatively independent if pr ≠ qs

for all r, s ∈ Z>0. Furstenberg’s theorem [Fur67, Part IV] and Proposition 3.1 imply
that Z2 ↷X is almost minimal. By [Sca20, Lemma 2.2] (or Proposition 2.3), Z2 ↷X is
topologically free. For future reference, let us record these facts in the following result.

Lemma 3.2 Let p, q ≥ 2 be multiplicatively independent integers. Then Z
2 ↷X is

almost minimal and topologically free.

Let O be the set of finite minimal (among the nonempty sets) elements of I. Notice
that O is in one-to-one correspondence with the set of finite orbits of Z2 ↷X. For any
r ∈ Z>0 coprime with p and q, we have that {e 2πi

r ∶ 1 ≤ i < r} ∈ I. In particular, O is
infinite. The following is an immediate consequence of Lemma 3.2, Theorem 2.4, and
the isomorphism C∗(Z[ 1

pq ] ⋊Z
2) ≃ C(X) ⋊Z

2. Note that if a point of X has finite
Z

2-orbit, then its stabilizer subgroup is of finite index in Z
2 and is thus isomorphic

to Z
2.

Theorem 3.3 Let p, q ≥ 2 be multiplicatively independent integers. Then the primitive
ideal space of C∗(Z[ 1

pq ] ⋊Z
2) is homeomorphic to

P ∶= (O ×T
2) ⊔ {∞},
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where the closed subsets of P are P and finite unions of elements of the collection {{B} ×
F ∶ B ∈ O, F a closed subset of T2}.

Let Pp,q(T) be the set of regular probability measures μ on T such that
(φp)∗μ = (φq)∗μ = μ. Since φp ○ π0 = π0 ○ Tp and φq ○ π0 = π0 ○ Tq , it follows that
(π0)∗∶PZ2(X) → Pp,q(T) is a well-defined affine map. The following result is known
(see [HW17, Proposition 4.1]), but for the reader’s convenience, we provide a different
proof.

Lemma 3.4 The map (π0)∗∶PZ2(X) → Pp,q(T) is an affine isomorphism.

Proof We will show that (π0)∗ is bijective by constructing an inverse. Given
n ∈ Z≥0, let π∗n ∶C(T) → C(X) be the adjoint map given by π∗n( f ) ∶= f ○ πn for
f ∈ C(T), and An ∶= π∗n(C(T)). Notice that π∗n is injective. For every n ∈ Z≥0, we have
that

π∗n = π∗n+1 ○ φ∗ .(3.3)

In particular, An ⊆ An+1.
Fix μ ∈ Pp,q(T). By (3.3) and the invariance of μ, there exists a bounded, positive,

and unital linear functional σ on ⋃n∈Z≥0 An such that, for f ∈ C(T) and n ∈ Z≥0, we
have that σ(π∗n( f )) = ∫ f dμ. Since C(X) = ⋃n∈Z≥0 An , we can extend σ to a state on
C(X). Let ψ(μ) ∈ P(X) be the measure corresponding to σ . By ×p, ×q-invariance of
μ, we have that ψ(μ) is Z2-invariant.

By Tp , Tq-invariance, we have that (πn)∗∣P
Z2 (X) = (π0)∗∣P

Z2 (X) for any n ≥ 0. This
shows that any ν ∈ PZ2 is uniquely determined by its restriction to A0. Using this fact,
it is easy to check that ψ∶Pp,q(T) → PZ2(X) is an inverse for (π0)∗∣P

Z2 (X). ∎

Let Ev∶C∗(Z[ 1
pq ]) → C(Ẑ[ 1

pq ]) be the isomorphism given by point evaluation,

that is, given g ∈ Z[ 1
pq ] and χ ∈ Ẑ[ 1

pq ], we have that Ev(ug)(χ) = χ(g). One can easily

check that Ev conjugates the canonical actions Z2 ↷C∗(Z[ 1
pq ]) and Z

2 ↷C(Ẑ[ 1
pq ]).

Proposition 3.5 Let p, q ≥ 2 be multiplicatively independent integers. Then there is a
bijection between ∂T(C∗(Z[ 1

pq ] ⋊Z
2)) and

(O ×T
2) ⊔ {μ ∈ ∂Pp,q(T) ∶ μ has full support}

as in Proposition 2.7. This bijection takes the non-faithful tracial states into O ×T
2, and

takes each faithful tracial state τ to μ ∈ ∂Pp,q(T) with full support such that, for n ∈ Z,

τ(u(n ,0,0)) = ∫
T

zn dμ(z).(3.4)

Proof Identify C∗(Z[ 1
pq ] ⋊Z

2) with C(X) ⋊Z
2. Notice that the tracial states in

(2.1) are not faithful, whereas, given μ ∈ PZ2(X) with full support, the tracial states as
in (2.2) are faithful. Together with Proposition 2.7, this shows the first claims.
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Let us prove (3.4). Identify C∗(Z[ 1
pq ] ⋊Z

2) with C∗(Z[ 1
pq ]) ⋊Z

2. By
Proposition 2.7, there exists ν ∈ ∂PZ2(X) with full support such that

τ ○ Ev−1( f ○ H) = ∫
X

f dν(3.5)

for any f ∈ C(X). Let μ ∶= (π0)∗(ν). Given n ∈ Z, we have that

∫
T

zn dμ(z) = ∫
X

xn
0 dν(x).(3.6)

Given χ ∈ Ẑ[ 1
pq ], we also have that H(χ)n

0 = χ(n) = Ev(un)(χ) (here, H is the
isomorphism defined in (3.1)). Together with (3.5) and (3.6), this concludes the proof
of (3.4). ∎

3.2 Tracial states

A group � is said to be icc if the conjugacy class of any g ∈ �/{e} is infinite. Here, icc
stands for infinite conjugacy classes.

The canonical trace on C∗r (�) is the faithful tracial state τ on C∗r (�) which satisfies
τ(ug) = 0 for all g ∈ �/{e}. Recall that � is icc if and only if the canonical trace is an
extreme tracial state on C∗r (�) [BdlH20, Propositions 7.A.1 and 11.C.3].

Lemma 3.6 Let p, q ≥ 2 be multiplicatively independent integers. Then Z[ 1
pq ] ⋊Z

2

is icc.

Proof Given x ∈ Z[ 1
pq ]/{0}, y ∈ Z2 and n ∈ Z, we have that

(0, n, 0)(x , y)(0, −n, 0) = (pn x , y).

Therefore, the conjugacy class of (x , y) is infinite.
Given (m, n) ∈ Z2/{0, 0} and x ∈ Z[ 1

pq ], we have that

(x , 0)(0, m, n)(−x , 0) = ((1 − pm qn)x , m, n).

From multiplicative independence of p and q, we conclude that the conjugacy class of
(0, m, n) is infinite as well. ∎

Since the canonical trace corresponds to the Lebesgue measure on T under the
bijection of Proposition 3.5, the following holds.

Corollary 3.7 Let p, q ≥ 2 be multiplicatively independent integers. Then the canon-
ical trace is the only faithful extreme tracial state on C∗(Z[ 1

pq ] ⋊Z
2) if and only if

Furstenberg’s ×p, ×q conjecture holds.

For the purpose of the following discussion, let us say that an icc group � has
the weak unique trace property if the canonical trace is the only faithful extreme
tracial state on C∗r (�) and is weakly C∗-simple if every nonzero ideal I ⊴ C∗r (�)
intersects C� non-trivially. In [Sca20], it was shown that, for p, q ≥ 2 multiplicatively
independent integers, Z[ 1

pq ] ⋊Z
2 is weakly C∗-simple. Furthermore, Corollary 3.7
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can be rephrased as saying that Furstenberg’s ×p, ×q conjecture holds if and only if
Z[ 1

pq ] ⋊Z
2 has the weak unique trace property.

Since C∗-simplicity implies the unique trace property by [BKKO17, Corollary 4.3],
one could naively wonder whether weak C∗-simplicity implies the weak unique trace
property (by the above, if this were true, it would imply Furstenberg’s conjecture).
Unfortunately, this does not hold in general, as the following example shows.

Example 3.8 It was observed by Ozawa that the lamplighter group Z2 ≀Z is weakly
C∗-simple [Ale19]. We claim that Z2 ≀Z does not have the weak unique trace prop-
erty. Given t ∈ (0, 1), let μt ∶= ∏Z(tδ0 + (1 − t)δ1) ∈ ∂PZ({0, 1}Z). Since μt has full
support, it follows from [Nes13, Corollary 2.4] that μt gives rise to a faithful extreme
tracial state on C∗(Z2 ≀Z) ≃ C({0, 1}Z) ⋊Z (this has been observed independently
by Vaes in [Vae]).

3.3 K-theory

Given an automorphism α on a C∗-algebra A, let ι∶ A → A ⋊Z be the canonical
embedding. The Pimsner–Voiculescu sequence is the following exact sequence (see,
for instance, [PV80]):

K0(A) id−α∗ �� K0(A) ι∗ �� K0(A ⋊Z)

∂0

��
K1(A ⋊Z)

∂1

��

K1(A)ι∗
�� K1(A)

id−α∗
��

We provide the proof of the following simple lemma for the reader’s convenience.

Lemma 3.9 Let m ≤ n be positive integers and ψ be the endomorphism on Z

nZ given
by ψ(x) ∶= mx, for x ∈ Z

nZ . Then ker(ψ) ≃
Z

nZ
im ψ ≃ Z

gcd(m ,n)Z .

Proof Clearly, im ψ = gcd(m, n) Z

nZ ≃ Z
n

gcd(m ,n)Z
. The result then follows from cardi-

nality arguments. ∎

Theorem 3.10 Let p, q ≥ 2 be integers. For i = 0, 1, we have

K i(C∗(Z[1/pq] ⋊Z
2)) ≃ Z

2 ⊕ Z

gcd(p − 1, q − 1)Z .

Proof Let η∶Z↷Z[ 1
pq ] be given by multiplication by pq and γ∶Z↷Z[ 1

pq ] ⋊η Z be
given by γn(x , z) ∶= (pn x , z), for (x , z) ∈ Z[ 1

pq ] ⋊η Z. Notice that

Z[1/pq] ⋊Z
2 → (Z[1/pq] ⋊η Z) ⋊γ Z

(x , m, n) ↦ (x , n, m − n)

is an isomorphism.
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Let A ∶= C∗(Z[1/pq] ⋊η Z). Using the fact that Z[1/pq] ⋊η Z is isomorphic to the
Baumslag–Solitar group BS(1, pq), it follows from [PV18, Theorem 1] that K0(A) =
Z[1A] (an infinite cyclic group generated by [1A]), and K1(A) = Z⊕ Z

(pq−1)Z , with
generators [u(0,1)]1 of infinite order and [u(1,0)]1 of order pq − 1.

Consider the Pimsner–Voiculescu sequence associated with γ̃∶Z↷A, where γ̃ is
the action induced by γ. Surjectivity of ∂1 follows from [PV18, Lemma 2]. Moreover,
id − γ̃∗∶ K0(A) → K0(A) is 0. Therefore, the following sequence is exact:

0 �� Z
ι∗ �� K0(A ⋊γ̃ Z) �� Z⊕ Z

(pq−1)Z

id−γ̃∗ �� Z⊕ Z

(pq−1)Z
ι∗ �� K1(A ⋊γ̃ Z) �� Z �� 0.

For (x , y) ∈ Z⊕ Z

(1−pq)Z , we have that (γ̃∗ − id)(x , y) = (0, (p − 1)y). In particular,
by Lemma 3.9, we have that

Z⊕ Z

(1−pq)Z

im(id − γ̃∗)
≃ Z⊕ Z

gcd(1 − pq, p − 1)Z = Z⊕ Z

gcd(p − 1, q − 1)Z .

This finishes the computation of K1(C∗(Z[1/pq] ⋊Z
2)).

By Lemma 3.9 again, we also have that ker(id − γ̃∗) ≃ Z⊕ Z

gcd(p−1,q−1)Z .
Let τ∶ A ⋊γ̃ Z ≅ C∗(Z[1/pq] ⋊Z

2) → Cbe the unital∗-homomorphism associated
with the trivial representation of Z[1/pq] ⋊Z

2. By identifying K0(C) with Z, we
obtain that K0(τ) ○ ι∗ = idZ, and the short exact sequence

0 �� Z
ι∗ �� K0(A ⋊γ̃ Z) �� Z⊕ Z

gcd(p−1,q−1)Z
�� 0

left splits. This concludes the proof. ∎

Example 3.11 Given integers p, q ≥ 2, let α p,q ∶Z2 ↷Z[ 1
pq ] be given by multiplica-

tion by p and q. For i = 0, 1, we have

K i(C∗(Z[1/6] ⋊α2,3 Z
2)) ≃ Z

2 ,
K i(C∗(Z[1/15] ⋊α3,5 Z

2)) ≃ Z
2 ⊕Z2 .

4 Questions

Let us conclude by posing a few questions that arise naturally in light of our results.
Given multiplicatively independent integers p, q ≥ 2, we know that the group

Z[ 1
pq ] ⋊Z

2 is weakly C∗-simple by [Sca20], and that it has the weak unique trace
property if and only if Furstenberg’s conjecture is true by Corollary 3.7 (this termi-
nology is defined in the discussion following Corollary 3.7). We have also seen in
Example 3.8 that Z2 ≀Z is weakly C∗-simple without having the weak unique trace
property.
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It follows from [BKKO17, Theorem 6.11] that, for groups with countably many
subgroups, C∗-simplicity is equivalent to the unique trace property. On the other
hand, Z[ 1

pq ] ⋊Z
2 has countably many subgroups by the argument in [BLT19,

Corollary 8.4] (whereas Z2 ≀Z has uncountably many subgroups).

Question 4.1 Is there an icc group with countably many subgroups that is weakly
C∗-simple but does not have the weak unique trace property?

Given a faithful, almost minimal action � ↷ X as in Theorem 2.4, the crossed
product C(X) ⋊ � has the property that any of its irreducible representations are either
faithful or have finite-dimensional image.

Question 4.2 Can (some of) the theory of just-infinite C∗-algebras from [GMR18]
be extended to the class of C∗-algebras for which any irreducible representation is
either faithful or has finite-dimensional image?

In [Rør19], it was shown that each infinite-dimensional metrizable Choquet
simplex arises as the trace simplex of a residually finite-dimensional just-infinite
AF-algebra. A C∗-algebra is said to be subhomogeneous if it is isomorphic to a
sub-C∗-algebra of Mn(C0(X)) for some n ∈ Z>0 and X locally compact Hausdorff
space. A C∗-algebra is said to be approximately subhomogeneous (ASH-algebra) if it
is the inductive limit of a sequence of subhomogeneous C∗-algebras.

Question 4.3 Let p, q ≥ 2 be multiplicatively independent integers. Is there a unital
ASH-algebra A with the property that any of its irreducible representations are either
faithful or have finite-dimensional image, and such that A has the same K-theory and
primitive ideal space of C∗(Z[1/pq] ⋊Z

2)? If yes, can one compute the trace simplex
of A?

Acknowledgment We thank the referee for several useful suggestions and for
pointing out a gap in the original argument of Theorem 3.10.
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