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Abstract

Inflammation and immune evasion are major key players in breast cancer (BC) progression.
Recently, the FDA approved the use of anti-programmed death-ligand 1 antibody (anti-PD-
L1) and phosphoinositide 3-kinase (PI3K) inhibitors against aggressive BC. Despite the para-
digm shift in BC treatments, patients still suffer from resistance, recurrence and serious
immune-related adverse events. These obstacles require unravelling of the hidden molecular
contributors for such therapy failure hence yielding therapeutics that are at least as efficient
yet safer. Inflammasome pathway is activated when the pattern recognition receptor senses
danger signals (danger-associated molecular patterns) from damaged\dying cells or
pathogen-associated molecular patterns found in microbes, leading to secretion of the active
pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18). It has been
shown throughout numerous studies that inflammasome pathway enhanced invasion, metas-
tasis, provoked BC progression and therapy resistance. Additionally, inflammasomes upregu-
lated the proliferative index ki67 and enhanced PD-L1 expression leading to immunotherapy
resistance. IL-1β contributed to significant decrease in oestrogen receptor levels and promoted
BC chemo-resistance. High levels of IL-18 in sera of BC patients were associated with worst
prognosis. Stimulation of purinergic receptors and modulation of adipokines in obese subjects
activated inflammasomes that evoked radiotherapy resistance and BC progression. The micro
RNA miR-223-3p attenuated the inflammasome over-expression leading to lowered tumour
volume and lessened angiogenesis in BC. This review sheds the light on the molecular path-
ways of inflammasomes and their impacts in distinct BC subtypes. In addition, it highlights
novel strategies in treatment and prevention of BC.

Introduction

Breast cancer (BC) burden has surpassed lung cancer and was ranked the first diagnosed can-
cer globally and the first among females in Egypt according to GLOBOCAN 2020 (Refs 1, 2).
BC molecular classification was grounded on the expression of hormone receptors (HRs)
including oestrogen receptor (ER), progesterone receptors (PR), human epidermal growth fac-
tor receptors 2 (HER2) and the proliferative index Ki-67 (Ref. 3). Four main molecular BC
subtypes have been extensively characterised comprising: luminal A (ER+/PR+/HER2–/
lowKi-67) with best prognosis, luminal B (ER+/PR+/HER2–/+/high Ki-67), HER-2 enriched
(ER–/PR–/HER2+) and finally the most aggressive triple-negative breast cancer (TNBC) sub-
type (ER–/PR–/HER2–) which is associated with worst prognosis (Refs 3, 4). Inflammation
and immune evasion are major key players in BC progression that require urgent consider-
ation (Ref. 5). In 1863, the pathologist Rudolf Virchow noticed the presence of large number
of leucocytes infiltrating in tumour tissues and believed that cancer is similar to the process of
wound healing in chronic inflammation (Ref. 6). More than a century later, Dvorak demon-
strated that cancer is a wound that does not heal (Ref. 7). Further studies supported this belief
and showed that approximately 25% of all human cancers in adults result from chronic inflam-
mation (Ref. 8). Treatment with non-steroidal anti-inflammatory drugs such as, celecoxib; a
cyclooxygenase-2 selective inhibitor, showed anti-tumour effects in primary BC tissue during
clinical trial (Ref. 9). In chronic inflammation, immune cells generate high levels of cytokines
in an uncontrolled manner such as tumour necrosis factor-α (TNF-α) that induce accumula-
tion of reactive oxygen and nitrogen species which subsequently interact with DNA leading to
permanent genomic alterations, initiation of tumours and malignant cell growth (Ref. 10).
Malignant cells also interact with micro-environment via inflammation, where cancerous
cells secrete cytokines, chemokines and transcriptional factors that are molecular players in
the regulation of onco-genesis (Refs 11, 12).

It has been a mystery to distinguish between immunogenic and non-immunogenic cell
death (ICD) (Ref. 13). Many years ago, it was believed that physiologic cell death (apoptosis),
which occurs as a cellular byproduct turnover, does not cause any immune response (non-
immunogenic) and that apoptotic cells are phagocytosed rapidly without causing inflamma-
tion or auto-immunity (Ref. 13). In 1994, Polly Matzinger proposed ‘The Danger Model’,
which implies that the immune system is more concerned with damage than with foreignness
(Refs 14, 15). Stressed, injured or dying cells were found to express their fear of danger by
releasing mediators called ‘danger-associated molecular patterns’ (DAMPs) that warn the
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body about tissue injury or danger in these areas and trigger ster-
ile inflammation (Refs 14, 15). In healthy cells, DAMPs are kept
inside the cell (no inflammatory reaction) (Ref. 15). On the other
hand, when the cells are in danger (stressed or dying), such as
cancer cells exposed to radiation or some chemo-therapeutic
agents like oxaliplatin or anthracyclines, induction of a specific
form of apoptosis named ICD takes place by emission of
DAMPs from apoptotic cells (Refs 16, 17). Inflammation is an
innate defence mechanism (Ref. 18). Innate immune cells have
pattern recognition receptors (PRRs) that are able to recognise
molecules frequently found in microbes or released by injured/
necrotic cells through their pathogen-associated molecular pat-
terns (PAMPs) and DAMPs, respectively. Upon detecting
DAMPs or PAMPs by PRR, inflammasomes are activated facili-
tating pyroptosis (a lytic programmed cell death) via induction
of caspase 1 activation and the subsequent activation and release
of interleukin-1β (IL-1β) and interleukin-18 (IL-18) (Ref. 18)
(Fig. 1).

Throughout distinct studies, inflammasomes have been shown
to take part in development of several inflammatory disorders like
pancreatitis (Ref. 19) and might increase risk of cancer (Ref. 20).
In addition, high concentration of pro-inflammatory cytokines
IL-1β and IL-18 in tumour tissues was associated with increased
carcinogenesis and poor prognosis (Refs 21, 22). In BC, high
levels of ATP released from radiotherapy-resistant BC cells pro-
moted inflammasome activation via purinergic receptors leading
to increased invasion, angiogenesis and metastasis (Ref. 23).
Nevertheless, literature reported that obesity increased the risk
of BC development via increasing leptin and decreasing globular
adiponectin, resulting in activated inflammasome and tumour
growth (Ref. 24). Inhibition of the NLRP3 inflammasome via
micro-RNA (miRNA) 223-3p lessened the growth and immuno-
suppression of human BC in vitro and in vivo (Ref. 25). Activation
of AIM2 inflammasome and IL-1β secretion were reported to
increase programmed death-ligand 1 (PD-L1) expression and
subsequently, suppress anti-tumour immunity (Ref. 26).

Figure 1. Inflammasome complex activation. Pattern recognition receptors sense the presence of PAMPs or DAMPs stimulating the recruitment of ASC/Caspase and
their oligomerisation with PRR leading to the formation of inflammasome complex. The in-active pro-inflammatory cytokines (Pro-IL-1β and Pro-IL-18) are then
cleaved by caspase into their active forms. PAMPs, pathogen-associated molecular patterns; DAMPs, danger-associated molecular patterns; PRR, pattern recogni-
tion receptors; ASC, apoptosis-related speck-like protein containing a CARD; IL-1β, interleukin 1β; IL-18, interleukin 18.
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Blocking of IL-1β in mouse BC synergises the effect of anti-
programmed death-1 (PD-1) and reversed immunosuppression
(Ref. 27). Tecentriq® (Atezolizumab), the newly FDA-approved
anti-PD-L1 antibody, to be used in combination with chemother-
apy for the treatment of metastatic TNBC patients (Ref. 28),
unfortunately showed modest response rates and was associated
with serious immune-mediated adverse events (Ref. 29). Until
date, there is no available anti-cancer drug that directly targets
inflammasome pathway. This review highlights the effects of
inflammasomes pathways in BC and its possible molecular tar-
gets, thus sheds the lights on novel strategies in the prevention
and treatment of BC.

Literature search was done at the States National Library of
Medicine (PubMed). The descriptors used for the search in data-
bases were: ‘inflammasome’ and ‘purinergic receptor’ or ‘P2Y1R’
‘P2Y2R’ or ‘P2Y4R’ or ‘P2Y6R’ or ‘P2Y11R’ or ‘P2Y12R’or
‘P2Y13R’ or ‘P2Y14R’ or ‘P2X1R’ or ‘P2X2R’ or ‘P2X3R’ or
‘P2X4R’ or ‘P2X5R’ or ‘P2X6R’or ‘P2X7R’ and ‘breast cancer’,
‘adipokine’ or ‘leptin’ or ‘adiponectin’ and ‘inflammasome’ and
‘breast cancer’, ‘none coding RNA’ or ‘miRNA’ or ‘lncRNA’
and ‘inflammasome’ and ‘breast cancer’, ‘inflammasome’ and
‘immune check point’ or ‘PD-1’ or ‘PD-L1’ or ‘CTLA4’ and
‘breast cancer’. Published data, research papers and books were
reviewed for their relevance to the aim of the review. The selection
was done by reading abstracts first and then reading relevant full-
text articles of relevant publications. Criteria for inclusion were:
complete, relevant publications, available online, all years were
included (no filters), in English, with detailed information
about participants, methods and analyses. Criteria for exclusion:
duplicate and out of scope publications. Data collection was
done during December 2022, and data abstracted was in the
form of descriptive information, covering the type of samples
used, techniques and findings or effects reported. Bias was limited
through the evaluation of the studies through their internal valid-
ity rather than the conclusion.

What are inflammasomes?

Inflammasome structure and activation

In 2002, Fabio Martinon was the first to identify the inflamma-
some complex (Ref. 30). From the name, it’s an inflammatory sig-
nalling complex, located inside the cell (Ref. 18). The
inflammasome is made up of a receptor that works as a sensor
(PRR), the adaptor protein apoptosis-related speck-like protein
containing a CARD (ASC) and the effector Caspase as reported
by Jay Amin et al. (Ref. 18). Once PRR senses the presence of
DAMPs or PAMPs, oligomerisation of inflammasome compo-
nents occurs (PRRs and ASC), then ASC polymerises to form hel-
ical structure called ASC speck formation, which is essential for
recruitment of caspase 1 (Ref. 31), that in turn cleaves and acti-
vates IL-1β and IL-18 (Ref. 32). Finally, cell membrane perfora-
tions and inflammatory programmed cell death called
pyroptosis occur (derived from the Greek terms ‘pyro’, which
means fire, and ‘ptosis’, refers to falling) (Ref. 33) (Fig. 1).

PRRs involved in formation of inflammasomes
PRRs recognise distinct ligands and can be classified according to
its cellular location into transmembrane and cytoplasmic PRRs
(Ref. 18). The transmembrane PRRs include Toll-like receptors
and the C-type lectin receptors, while cytoplasmic PRRs encom-
pass nucleotide-binding oligomerisation domain-leucine-rich
repeats-containing receptors (NLR), retinoic acid-inducible
gene-I-like receptors, absent-in-melanoma (AIM)-like receptors
and pyrin inflammasome (Refs 18, 34).

ASC and caspases
ASC ‘also called PYCARD’ is responsible for the activation of cas-
pases (Refs 35, 36), which are important for association and acti-
vation of inflammasome (Refs 36, 37, 38). Caspases are divided
into apoptotic (e.g. caspase 8) and inflammatory caspases
(e.g. caspases 1, 4 and 5) (Refs 36, 37, 38). According to the
type of caspases involved, inflammasomes are divided into the
canonical and non-canonical inflammasome (Refs 18, 39, 40).
Caspase 1 is activated within canonical inflammasome while cas-
pase 4/5 or 8 is involved in non-canonical inflammasome path-
way (Ref. 41). Notably, the impacts of canonical and
non-canonical inflammasome activation are similar; caspase-1
provokes activation of IL-1β, IL-18 and the release of danger sig-
nals, as well as pyroptosis, while caspase-4/5 promotes pyroptosis
via cleavage of the pore-forming protein gasdermin D (GSDMD)
and triggers a secondary activation of the canonical inflamma-
some and subsequent cytokine release (Ref. 41).

Inflammasome and its inflammatory cytokines in breast
cancer

Inflammasome dual impacts in BC
Inflammasome is a double-edged weapon that exhibited dual
roles in the modulation of BC tumourigenesis. NLRP3 activation
contributed to immune system dysfunction, BC metastasis, inva-
sion and migration (Ref. 42). NLR family pyrin domain contain-
ing 1 (NLRP1) expressing cells showed upregulated mesenchymal
markers (Snail, MMP-9, Vimentin and C-myc), whereas epithelial
markers (E-cadherin) were downregulated (Ref. 43). Moreover,
NLR family CARD domain containing 4 (NLRC4) upregulated
vascular endothelial growth factor A (VEGFA), resulting in angio-
genesis induction and BC progression (Ref. 44). Elevated NLRP3
levels increased the expression of the proliferative index Ki67 in
BC (Ref. 25). In addition, the relative mRNA expression of
NLRP3 in BC cell lines (MDA-MB231, MCF-7 and SKBR3)
was higher than normal mammary epithelial cells (Ref. 25).
Knockdown of NLRP3 in MCF-7 cell lines repressed the expres-
sion of Ki67 and decreased immunosuppression (Ref. 45). NLRP3
was upregulated in TNBC cell lines leading to gemcitabine resist-
ance and enhanced survival of BC cells (Ref. 46). NLRP3 inhib-
ition reduced viability, colony formation and migration of
TNBC cells (Ref. 47). Literature demonstrated that reactive oxy-
gen species (ROS) can activate inflammasome pathway
(Ref. 48). Interestingly, TNBC cell lines showed increased ROS
levels that prolonged its survival (Ref. 49). ROS scavenging or
repression in TNBC cell lines downregulated NLRP3 leading to
inhibition of metastasis (Ref. 50), angiogenesis (Refs 51, 52),
reduced migration and invasion (Ref. 53). On the contrary,
ROS-activated inflammasome contributed to cell death of
MDA-MB231 (Refs 51, 54). In addition, AIM2 suppressed prolif-
eration of human BC (Ref. 55) and interferon-γ (IFNγ)-induced
AIM2 activation promoted apoptosis in MCF-7 BC cells
(Ref. 56). Collectively, the afore-mentioned opposing impacts of
inflammasome in BC remain controversial and require further
investigation.

IL-1β
IL-1β activation and secretion is primarily dependent on inflam-
masomes activation. In 1988, North et al. highlighted the ability
of IL-1β to exert anti-tumour effects through inducing
T-helper-1 (TH1) and T-helper-17 (TH17) responses (Ref. 57).
In addition, literature reported that it served as an adjuvant for
maturation and expansion of CD4+, CD8+ T cells and promoted
adaptive T-cell-mediated immunity (Ref. 58). However, in BC, the
high levels of IL-1β enhanced BC proliferation (Ref. 59) and were
significantly associated with BC metastasis (Ref. 60) and invasion
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(Ref. 61). Moreover, IL-1β contributed to cisplatin resistance
(Ref. 62) and doxorubicin resistance in BC cells (Ref. 63). In add-
ition, IL-1β induced epithelial mesenchymal transition (EMT)
and contributed to methylation of the ER 1 gene promoter.
This epigenetic modification led to a significant decrease in
ERα levels and promoted BC chemo-resistance (Ref. 64).
Interestingly, after neoadjuvant chemotherapy (nCT), literature
demonstrated that BC patients might experience change in their
tumour subtype leading to adjuvant treatment alteration in
100% of such patients (Refs 65, 66, 67, 68). That’s why HER2
and HR status (including ER and PR) should be evaluated not
only before the initiation of nCT but also after nCT (Refs 65,
66, 67, 68). Since IL-1β contributed to a significant decrease in
ERα levels (Ref. 64), further studies should be done to unravel
the hidden reasons for such BC subtype conversion post nCT
and whether inflammasome pathway and the subsequent IL-1β
secretion were responsible for such change. Thus, targeting
IL-1β might give promising effects in counteracting ER lowering,
chemo-resistance and BC progression.

IL-18
In 1989, IL-18 was first identified as a factor that enhanced IFNγ
production from TH1 cells (IL-18 is also known as IFNγ-inducing
factor) (Ref. 69). Similar to IL-1β, it is cleaved and activated by
caspase 1. It is produced from a wide range of normal and cancer
cell types, where it binds to IL-18 receptor. Its activity is sup-
pressed by the naturally occurring high-affinity IL-18-binding
protein that inhibits its binding to IL-18 receptor (Refs 70, 71).
IL-18 has opposing effects in BC. For instance, intra-peritoneal
injection of IL-18 suppressed metastasis of BC to bones
(Ref. 72) and canine IL-18 induced apoptosis in BC cells
(Ref. 73). In addition, mesenchymal stem cells suppressed BC
proliferation via IL-18 expression in vitro (Ref. 74). Contrarily, lit-
erature demonstrated IL-18 as a pro-oncogenic cytokine (Ref. 75)
where its expression in BC led to enhanced invasion, metastasis
(Refs 76, 77, 78, 79, 80, 81), migration (Refs 76, 82), proliferation
(Ref. 83), angiogenesis (Ref. 84) and progression (Refs 85, 86).
Interestingly, polymorphism in IL-18 contributed to BC among
postmenopausal women (Ref. 87). IL-18-rs1946518, IL-18-607
and IL18-137 gene polymorphisms were significantly correlated
with increased risk of BC (Refs 88, 89, 90, 91). It’s also worth
mentioning that IL-18 was overexpressed in tumour samples
(Refs 92, 93), plasma (Ref. 94), saliva (Ref. 77) and sera
(Ref. 85) of BC patients compared with control. IL-18 was asso-
ciated with worst prognosis (Refs 21, 95) and its low expression
represented better survival (Ref. 96). In addition, it contributed
to doxorubicin resistance (Ref. 97). Combining chemotherapeu-
tics with IL-18-targeted therapy is highly promising since it has
been noticed that low levels of plasma IL-18 were predictive of
excellent long-term survival in metastatic BC during chemother-
apy (Ref. 98).

Purinergic receptors and inflammasomes in breast cancer

ATP release and purinergic receptors

Purinergic receptors are found in all cell types (Ref. 99) and are
implicated in learning, memory, behaviour, sleep (Ref. 100), vas-
cular contractility, immune function and growth (Ref. 101).
Recently, there is increasing interest in the involvement of puri-
nergic signalling in Corona virus disease 2019 (Covid-19) hyper-
inflammation, and thrombosis (Ref. 102). In addition, purinergic
receptors were over-expressed in various tumours and regulated pro-
liferation in lung, bladder, prostate tumours (Refs 103, 104, 105) and
have been associated with enhanced BC growth and invasion
(Ref. 106).

Intracellular ATP is produced by mitochondria as a source of
energy (Ref. 107). Damaged cells/tumour cells release ATP out-
side the cell where it acts as a DAMP (Ref. 107). In 1999, it
was stated that TNF-α, which was highly abundant in tumour
micro-environment, has shown to enhance tumour progression
(Refs 108, 109) and metastasis (Ref. 110). Literature showed
that TNF-α enhanced ATP release, especially in MDA-MB231,
and it is radiotherapy resistant (RT-R-MDA-MB231) (Ref. 23).

The extracellular ATP activates its purinergic receptors (pre-
sent on adjacent cells) via binding either to the seven P2X ion
channel receptors subtypes (P2X 1–7) or the eight known P2Y
G-protein coupled receptors subtypes (P2Y1, P2Y2, P2Y4,
P2Y6, P2Y11, P2Y12, P2Y13 and P2Y14) (Ref. 107).

P2Y purinergic receptors in BC

Several studies demonstrated various tumour-promoting effects of
P2Y receptors in BC (Refs 111, 112, 113, 114, 115, 116, 117).
P2Y1, P2Y6 and P2Y11 inhibition blunted BC metastasis and
migration (Refs 111, 112, 116). In addition, the P2Y1 antagonist
MRS2179 lessened BC growth (Ref. 113) and inhibited angiogen-
esis via blocking activation of vascular endothelial growth factor
receptor 2 (VEGFR-2) (Ref. 114). The phosphoinositide 3-kinase
(PI3K)/protein kinase B (also known as AKT; PI3K/AKT) path-
way is a regulator of pivotal cell functions such as cell proliferation
and survival (Ref. 118). Literature showed that ATP modulation of
P2Y2/4 receptors increased BC proliferation via activation of the
PI3K/AKT signalling pathway (Ref. 115). P2Y12 inhibition with
ticagrelor (TIC) reduced spontaneous platelet aggregation/activa-
tion in BC patients and inhibited formation of large tumour
cell-induced platelet–platelet aggregates (Ref. 117).

Expression of P2Y2R and inflammasomes in breast cancer
Findings indicated that P2Y2R expression was higher in tumour
tissues of BC patients compared with normal epithelial tissues
(Ref. 106). In addition, the highly metastatic BC cells
(MDA-MB-231) secreted higher ATP and showed elevated
P2Y2R activity than low metastatic (MCF-7) BC cells (Refs 23,
119, 120) and was associated with tumour progression, invasion
and metastasis (Refs 106, 119, 120, 121). Interestingly, comparing
MDA-MB231, MCF-7 and T47D with their radiotherapy-
resistant BC cells (RT-R-MDA-MB231, RT-R-MCF7 and RT-R-
T47D) showed that the radiotherapy-resistant BC cells released
higher ATP than other BC cells (Ref. 23); whereas RT-R-MDA-
MB231 BC cells showed highest P2Y2R activity and invasiveness
(Ref. 23). Similarly, mRNA levels of NLRP3, NLRC4, ASC,
cleaved caspase1 and IL-1β were higher in radiotherapy-resistant
BC cells and showed enhanced invasiveness compared to MDA-
MB-231 cells (Ref. 122). However, the expression of NLRP1 and
AIM2 was lower in RT-R-MDA-MB231 than MDA-MB231
(Ref. 122).

Inflammasome components regulated by P2Y2R activation in
breast cancer
Treatment with ATP triggered elevation of P2Y2R activity in
MDA-MB231, MCF-7, T47D and their radiotherapy-resistant
BC cells (Ref. 122) leading to increased invasiveness (Refs 23,
122). In MDA-MB231 and RT-R-MDA-MB231 BC cells,
TNF-α or ATP treatment led to a significant increase in
NLRC4, ASC and IL-1β protein levels in a P2Y2R-dependent
manner (Ref. 122). Interestingly, MDA-MB231 and RT-R
MDA-MB231 transfected with siRNA P2Y2R or apyrase
(hydrolyses extracellular nucleotides) significantly lowered the
increased caspase 1 activity, IL-1β and protein expression of
NLRC4 and ASC (Ref. 122) that was triggered by TNF-α or
ATP in both cells (Ref. 23).
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Inflammasome activation induced invasion and angiogenesis in
a P2Y2R-dependent manner in breast cancer
ATP increased the invasiveness in all radiotherapy-resistant BC
cells in a P2Y2R-dependent manner where RT-R-MDA-MB231
showed the highest invasiveness (Ref. 23). Previous literature
showed that IL-1β production would increase constantly until
late time after stimulation with ATP (Ref. 23) for many reasons;
IL-1β is not only produced by inflammasome activation
(Ref. 23). In 1997, Ferrari et al. showed that ATP-induced IL-1β
production (Ref. 123) via activation of nuclear factor-κB
(NF-κB) (Ref. 124) is a critical regulator of fundamental cell func-
tions, such as cell survival and proliferation (Ref. 125). In add-
ition, the released IL-1β was found to promote the production
of pro-IL-1β by binding to IL-1 receptor, which is expressed in
various BC cells including MDA-MB231 (Ref. 126). Literature
reported that matrix metalloproteinase (MMP) promotes tumour
invasion and metastasis by inducing EMT in BC (Ref. 127).
Furthermore, Yokoo et al. reported that the released IL-1β caused
MMP production (Ref. 128), which was supported further by
Amin et al. (Ref. 129). Similarly, Jin et al. supported these find-
ings, where TNF-α and ATP increased MMP-9 activity in
MDA-MB-231 and RT-R-MDA-MB-231 cells (Ref. 23) (Fig. 2).
Similarly, in RT-R-MDA-MB231 and MDA-MB231 BC cells,
ATP treatment markedly induced the secretion of VEGFA
(Ref. 122), which is known to be produced by hypoxic tumour
cells to induce angiogenesis and survival through binding to
VEGFR (Refs 130, 131, 132, 133).

Inflammasome/P2Y2R inhibition lessened invasion, angiogenesis
and tumour progression in BC
Accumulating evidence showed treating MDA-MB231 and
RT-R-MDA-MB231 BC cells with caspase-1 inhibitor or P2Y2R
siRNA abolished the MMP-9 activity (Ref. 23). Moreover, knock-
down of P2Y2R or NLRC4, ASC and caspase-1 by siRNA
decreased VEGFA production and suppressed the enhanced
ATP-induced invasiveness (Ref. 122). Furthermore, addition of
selective irreversible caspase-1 inhibitor (Ac-YVAD-CMK) or
siRNAs of NLRC4, ASC and caspase 1 inhibited the invasiveness

(Ref. 122) and colony formation (Ref. 23). In an in vivo
P2Y2R-knockdown mouse model (RT-R-MDA-MB231-shRNA),
results showed that RT-R-MDA-MB231-shRNA exhibited
decreased tumour volume, increased body weight and signifi-
cantly lowered IL-1β compared to cells transfected with empty
vector (Ref. 23). Nonetheless, cells that transfect with empty vec-
tor showed higher MMP-9 compared to the P2Y2R knocked
down group. From the above-mentioned, it is clear that inflam-
masome causes tumour progression in RT-R BC through
P2Y2R (Ref. 23) (Fig. 2).

A wrap-up and insights
NLRP1 has been shown to promote BC cell proliferation, invasion
and migration through inducing EMT (Ref. 43), but unfortu-
nately, the exact molecular mechanism relating the NLRP1 to
EMT was not elucidated. It would be worth to investigate the
effect of ATP on P2Y2R or NLRP1 activation as well as MMP
levels and its relation to EMT. Moreover, since literature showed
that NLRC4 increased secretion of VEGFA and its knockdown
decreased VEGFA level (Ref. 122), it would be interesting to
examine the impact of P2Y2R or NLRC4 knockdown together
with sorafenib (a multi-kinase inhibitor of tumour-cell prolifer-
ation and angiogenesis), since NLRC4 knockdown might potenti-
ate sorafenib’s anti-angiogenic effect.

In BC, the PI3K/AKT deregulation via mutations in PIK3CA
gene or inactivation of the tumour suppressor phosphatase and
tensin homologue deleted on chromosome 10 (PTEN) have
been common in ER+ and TNBC patients, respectively
(Refs 134, 135). Distinct studies reported that PI3K/AKT
increased levels of MMP (Refs 136, 137). Recently, FDA approved
the use of the oral PI3K inhibitor alpelisib (Piqray) in the treat-
ment of HR+ metastatic BC patients with mutated PIK3CA
(Ref. 138). Literature reported that ATP modulation of P2Y2
and P2Y4 receptors increased BC proliferation via activation of
the PI3K/AKT signalling pathway (Ref. 115). In addition,
NLRP3 knocked out mice showed an inhibition of the PI3K/
AKT/mTOR pathway (Ref. 139). Since literature showed that
P2Y2R signalling activated NLRC4 inflammasome in BC

Figure 2. Impact of purinergic receptors on inflammasome activation in breast cancer and its correlation with angiogenesis, invasion and metastasis. TNF-α
enhances ATP release. The extracellular ATP activates its purinergic receptors via binding either to the P2X7R receptors or P2Y2R provoking activation of inflam-
masome as well as IL-1β release which then elevates the levels of MMP and VEGF-A leading to BC metastasis and angiogenesis. TNF-α, tumour necrosis factor-α;
ATP, adenosine triphosphate; IL-1β, interleukin-1β; MMP, matrix metalloproteinases; VEGF-A, vascular endothelial growth factor A.
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(Ref. 122), there is an urgent need to examine the impact of
P2Y2R/NLRC4 and P2Y2R/NLRP3 on PI3K/AKT pathway. In
addition, the synergistic impact of combining the P2Y2 antagonist
(AR-C118925) or PSB-16133 (P2Y4R antagonist) (Ref. 140)
together with alpelisib should be explored in BC. Mammalian tar-
get of rapamycin (mTOR) is a master regulator of intracellular
metabolism and immune cell activation (Ref. 141) and its sus-
tained activity has been shown to provoke resistance to alpelisib
(Ref. 142) and endocrine treatment in BC (Ref. 143).
Stimulation of the P2Y12R receptor led to the activation of
mTOR via PI3K-AKT in vascular smooth muscle cells
(Ref. 144) highlighting the possible role of P2Y12R signalling in
alpelisib resistance. P2Y12R receptor inhibitors, such as clopido-
grel (CDL) and TIC, were recommended in the treatment of acute
coronary syndromes (Ref. 145). It would be interesting to examine
the impact of TIC/CDL in alpelisib-resistant BC patients.

Interestingly, platelet aggregations have been associated with
tumour evasion, and studies reported that platelets form aggre-
gates with tumour cells creating a ‘cloak’ that shields the tumour
cell from immune detection (Ref. 146). In BC, TIC inhibited the
formation of large tumour cell-induced platelet–platelet aggre-
gates in advanced metastatic BC patients (Ref. 117) and inhibited
metastasis (Ref. 147). Moreover, CDL enhanced the toxicity of
docetaxel and increased antitumour and/or anti-metastatic action
of chemotherapeutics such as cyclophosphamide, 5-fluorouracil
and mitoxantrone (Ref. 148), in contrast it decreased the antican-
cer activity of doxorubicin, cisplatin and tamoxifen (Ref. 148).
Inhibitory impact of CDL and TIC on NLRP3 was investigated
(Refs 149, 150). Oral administration of TIC strongly inhibited
NLRP3 activation in peripheral blood mononuclear cells from
patients with acute coronary syndrome (Ref. 150). In addition,
CDL inhibited NLRP3 activation in rats (Ref. 149). Thus, collect-
ively, these findings suggest the multi-strike clinical use of
P2Y12R inhibitors in BC patients with cardiovascular diseases.

P2X7R and inflammasomes in breast cancer

P2X expression in breast cancer
Literature reported that the expression of P2X7R was elevated in
breast tissue undergoing malignant change (Ref. 151), where all
epithelial cells in all cases of in situ or invasive lobular or ductal
carcinoma showed intense P2X7R while normal epithelium was
devoid of the cytolytic P2X7R (Ref. 151). Interestingly, invasive
epithelial cancer cells showed intense cell surface P2X7R recep-
tors, whereas in situ lobular and ductal cases labelled P2X7R
intracellularly (Ref. 151).

P2X opposing impacts in BC
Silencing of P2X5 receptors inhibited cell proliferation, metastasis
and vimentin (an EMT marker) in MDA-MB-468 BC cells
(Ref. 152). As for P2X7R, various studies have shown that it
was highly expressed in BC tissues rather than normal ones
(Refs 151, 153, 154). P2X7 receptor activation in
MDA-MB-435s BC cell line led to increased migration and metas-
tasis (Ref. 155). ATP released by dying cells activated P2X7R lead-
ing to invasive BC phenotype via AKT phosphorylation and
NF-κB translocation to the nucleus (Ref. 156); which comprises
a family of transcription factors and showed major roles in the
development and progression of various cancers (Ref. 157).
Another study came in accordance and showed that high expres-
sion of P2X7R in T47D BC cells increased invasion, migration
and EMT through AKT phosphorylation (Ref. 158). This was fur-
ther supported; P2X7 receptor downregulated the protein expres-
sion of E-cadherin and upregulated the production of MMP-13
via AKT pathway (Ref. 159). Moreover, treatment of
P2X7R-positive MDA-MB-435s BC cells with the anthraquinone

derivative emodin suppressed invasiveness via antagonising
P2X7R in vivo (Ref. 160). Furthermore, P2X7R inhibition effect-
ively induced apoptosis in MCF-7 BC cells (Ref. 153). Contrarily,
ATP-P2X7R activation inhibited BC cell migration (Ref. 161);
these conflicting impacts of P2X7R in BC require closer
investigation.

P2X/inflammasomes opposing effects in breast cancer
Suppression of P2X7R expression by the natural isoquinoline
alkaloid ‘berberine’ inhibited mRNA and protein levels of
NLRP3 that consequently decreased cell viability, colony forma-
tion and migration of MDA-MB231 cells in a dose-dependent
manner (Fig. 2) (Ref. 47). The role of P2X7R/NLRP3 in bone can-
cer pain was investigated; Walker-256 BC cells were injected into
the tibia of female rats; P2X7R inhibition suppressed the expres-
sion of NF-κB, NLRP3/IL-1β signalling and suppressed bone can-
cer pain in vivo (Ref. 162). On the other hand, Ghiringhelli et al.
demonstrated that P2X7R/NLRP3 activation showed anti-tumour
effects (Ref. 163); the study demonstrated that ATP
stimulated-P2X7R then triggered NLRP3 activation in dendritic
cells (Ref. 163). Furthermore, chemotherapy was inefficient
against tumours with P2X7R (−/−) or NLRP3(−/−) or
Caspase-1(−/−) (Ref. 163). Additionally, BC patients bearing a
loss of function allele of P2X7R treated with anthracycline devel-
oped metastatic disease more rapidly compared to those carrying
the normal allele (Ref. 163).

Wrap-up and future insights
NF-κB played a critical role in endocrine resistance (Ref. 125),
promoted human BC proliferation and migration via MMP-9
production in vivo (Ref. 125). It is worth mentioning that
NF-κB is pivotal in the transcription and priming step of
NLRP3 activation (Ref. 164). On the other hand, NLPR3 also acti-
vated NF-κB where its knocking down reduced NF-κB activation
in both sterile and microbially induced inflammation (Ref. 165).
Since P2X7R inhibition suppressed the expression of NF-κB
and NLRP3 in rats (Ref. 162), it would be interesting to examine
the impact of P2X7R/NF-κB/NLRP3 in BC as their concomitant
inhibition might be eminent in counteracting BC resistance and
progression. ATP-P2X4 signalling mediated NLRP3 inflamma-
some activation: a novel pathway of diabetic nephropathy
(Ref. 166). Suramin is an old drug that is still being used to
treat the first stage of acute human sleeping sickness (Ref. 167)
and has been shown to be an antagonist of ATP at P2X purinergic
receptors (Ref. 168). Recent literature reported that it inhibited
ATP-induced NLRP3 complex formation, caspase-1 and IL-18
expression in mice mesangial (Ref. 169). It would be advanta-
geous to examine the impact of P2X4/NLRP3 in BC. In addition,
the potential role of suramin on P2X/NLRP3 inhibition should be
investigated in BC.

Simvastatin (SIM), a hypocholesterolemic drug, was shown to
inhibit P2X7 receptor, NLRP3 inflammasome, IL-1β and IL-18 in
rats (Ref. 170). Studies reported that SIM showed cytotoxic effects
against MDA-MB231 and MCF-7 BC cell lines (Ref. 171). Recent
literature stated that SARS-CoV-2 infection triggered extracellular
ATP elevation, P2X7 receptors stimulation and NLRP3 inflamma-
some hyperactivation causing neurological complications in
Covid-19 patients (Ref. 172). Thus collectively, SIM might show
beneficial impacts in SARS-CoV2-infected BC patients. P2X7R
showed opposing effects in cancer. Literature reported that
P2X7R showed anti-tumour effects and was required for priming
of tumour antigen-specific CD8 + T cells via activation of NLRP3,
Caspase 1 and the subsequent release of Il-1β (Ref. 173).
Furthermore, in fibrosarcoma cells, antineoplastic mitoxantrone-
treated mice triggered a protective immune response preventing
tumour growth, but this protective effect was abolished in
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P2X7R-deficient mice (Ref. 173); these conflicting effects require
closer investigation. A study demonstrated that released ATP had
a biphasic effect on invasion and metastasis of MDA-MB-231 BC
cell line; where low ATP doses induced inhibition, while high
doses induced promotion (Ref. 174); this might be an explanation
for the aforesaid conflicting impacts of P2X receptors in BC.
Literature reported that, ATP-high MDA-MB-231 BC cells pos-
sessed a dramatic increase in their ability to metastasise in a pre-
clinical model in vivo (Ref. 175). In addition, metastasis was
largely prevented by treatment with an FDA-approved mitochon-
drial ATP-synthase inhibitor, (bedaquiline) (Ref. 175). These
results give a hint on investigating the impact of bedaquiline on
purinergic receptors/inflammasome/MMP in BC patients and
its possible use as an anti-metastatic agent in BC

Inflammasome pathway and immune check points in breast
cancer

Under normal physiological conditions after tumour destruction
and clearance, immune checkpoints act as ‘brakes’ that are
involved in maintaining immune homeostasis and also protect
against tissue damage and auto-immunity (Ref. 176). The expres-
sion of immune checkpoint proteins can be dysregulated by
tumours as an important immune resistance mechanism that
ease tumour evasion from anti-tumour immunity and subse-
quently leading to cancer progression (Refs 177, 178). In 2018,
Dr James P Allison and Dr Tasuku Honjo were awarded Nobel
Prize in Physiology or Medicine for their respective discoveries
of the immune checkpoint proteins cytotoxic-T-lymphocyte-
associated antigen 4 (CTLA-4) and PD-1 (Refs 179, 180). The
PD-1 binds to its ligand; PD-L1 then delivers inhibitory signals
to T cells leading to T-cell exhaustion and deactivation
(Ref. 181). Interestingly, immune check points inhibition (ICI)
by monoclonal antibodies (mAb) have led to a surge in the treat-
ment of solid tumours (Refs 179, 180). However, many patients
can acquire resistance and immune-related adverse events
(irAE) over time (Refs 182, 183). There is now an urgent need
to investigate mechanisms of resistance and irAE. Several studies
showed that inflammasome pathway led to immunosuppression
(Refs 184, 185, 186).

Immune check points in BC

PD-1/PD-L1 and CTLA-4 expression in BC
Generally speaking in BC, the expression of PD-L1 has been asso-
ciated with large tumour size, high proliferation, high-grade,
ER-negative status and HER2-positive status (Ref. 187). In light
of the fact that BC is highly heterogeneous, PDL-1/PD-1 expres-
sion may vary among different molecular subtypes (Refs 188,
189). Interestingly, several studies reported that PD-L1 expression
is more commonly found in the more immunogenic subtypes
including TNBC and HER2 positive BC (Refs 188, 189). On the
contrary, a study of 1091 BC patients, the expression rate of
PD-L1 in luminal A was higher than that of the other BC subtypes
(Ref. 190). As for PD-1, its highest expression was higher in the
basal-like subtype compared to luminal A with lowest PD-1
expression (Ref. 191). Another study showed that in TNBC, the
expression rates of PD-L1 and PD-1 were significantly higher
than the expression in other subtypes (Ref. 192). CTLA-4 expres-
sion in blood of BC patients was seven folds higher than that of
healthy donors (Ref. 193). High expression of CTLA-4 was fre-
quently identified in TNBC and HER2+ (Ref. 194).

Inflammasomes and PD-1/PD-L1 in BC
Literature showed that high peripheral levels of polymorpho-
nuclear myeloid-derived suppressor cells (PMN-MDSC) correlate

with increased tumour angiogenesis, higher tumour grade,
tumour promotion and T-cell-mediated suppression by blocking
the development of an effective antitumour immunity
(Ref. 195). A recent study reported that genetic and pharmaco-
logic inhibition of NLRP3 blocked PMN-MDSC accumulation
in the lung in response to anti-PD-1 therapy and inhibited meta-
static progression in preclinical BC models (Ref. 196). Under hyp-
oxic conditions in MDA-MB231 PD-L1 translocated to the
nucleus (nPD-L1) upon TNF-α treatment. nPD-L1 enhanced
the transcription of the gasdermin C (GSDMC) and its cleavage
by caspase 8 causing non-canonical pyroptosis which was asso-
ciated with BC poor prognosis in nude mice (Ref. 197). Since
cleavage of the pore-forming protein GSDMD triggered a second-
ary activation of the canonical inflammasome (Ref. 41), the
involvement of PD-L1/GSDMC/canonical inflammasome activa-
tion warrants investigation. Another study demonstrated that
AIM2 inflammasome upregulated PD-L1 via IL-1β leading to
immunosuppression in BC whereas neutralisation of IL-1β sig-
nificantly suppressed PD-L1 (Ref. 26) (Fig. 3). Similarly, blocking
IL-1β in mouse BC reversed immuno-suppression and synergised
the effect of anti PD-1 (Ref. 27). In TNBC cells, tumour-derived
IL-18 induced PD-1 expression on immunosuppressive NK and
in B cells (Refs 198, 199).

Inflammasomes and CTLA-4 in BC
Little is known about the impact of inflammasomes on CTLA-4.
However, in May 2022, Khandekar et al. demonstrated that
BC-bearing mice in high salt diet cohort coupled with
anti-CTLA-4 mAb showed upregulated NLRP3 complex activity
leading to irAE while downregulated NLRP3 diminished irAE
in low salt diet cohort plus anti-CTLA-4 mAb, suggesting the
involvement of NLRP3 pathway in irAE which is a major clinical
challenge in the treatment with ICIs (Ref. 200).

Wrap-up and insights
TNF-α led to the stabilisation of PD-L1 via NF-κB in BT549
TNBC cell line (Ref. 201). In addition, TNF-α enhanced ATP
release in MDA-MB231/RT-R-MDA-MB231 (Ref. 23) and acti-
vated P2Y2R/NLRC4 leading to enhanced invasiveness
(Ref. 122). Moreover, TNF-α blockade synergised with
anti-PD-1 (Ref. 202). Thus, there might be a link between the
effects of NF-κB/TNF-α/ATP release, P2Y2R/NLRC4 and
PD-L1 immunosuppression to be urgently investigated. Also,
the effects of apyrase, or P2Y2R antagonist/siRNA or caspase 1
inhibitor and their impacts on PD-1 expression in BC cells are
quite promising to be explored. Examining the effects of the
above-mentioned players in TNBC cells treated with atezolizumab
is also tempting since inhibition of ATP/P2Y2R/NLRC4 pathway
might possess a synergistic effect. Thus, development of a new
combination therapy, lowering the needed concentration of atezo-
lizumab and consequently, ameliorating irAEs.

Several studies showed that inflammasome pathway led to
immunosuppression (Refs 184, 185, 186). In addition, NLRP3
inflammasome promoted the expression of PD-1 in head and
neck squamous cell carcinoma (Ref. 184) and PD-L1 in pancreatic
cancer (Ref. 203). Interestingly, not only NLRP3 promoted the
expression of PD-1 or PD-L1 but also tumour PD-L1 activated
NLRP3 inflammasome leading to resistance in response to
PD-1 blockade in advanced melanoma (Ref. 185). Surprisingly,
PD-1/or PD-L1 immunotherapy blockade also activated NLRP3
inflammasome that recruited myeloid-derived suppressor cells
(MDSCs) causing immunotherapy resistance (Ref. 185). In
asymptomatic multiple myeloma, these results were further sup-
ported in human DCs where PD-L1 blockade activated NLRP3
and increased caspase-1 (Ref. 186) (Fig. 4). Collectively, NLRP3
and PD-1/PD-L1 create an immunosuppressive loop leading to
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immunotherapy resistance that warrant closer investigation in BC.
Activation of AIM2 led to PD-L1 upregulation and immunosup-
pression in BC (Ref. 26). In addition, cisplatin increased the
expression levels of PD-L1 (Ref. 204). Thus, it would be interest-
ing to investigate the effect of siRNA AIM2 in combination with
cisplatin and PD-1/PD-L1 blockade in BC since it might be a
promising solution to immune checkpoint resistance and the
tumour-associated immunosuppressive effects.

Studies showed that inflammasome activation increased the
secretion of IL-1β that subsequently elevated MMP-9 (discussed
in purinergic part) (Ref. 23). Furthermore, MMP-9 inhibition
coupled with anti-PD-L1 increased TCR diversity and TH-1
response in tumours (Ref. 205). Interestingly, tumour cells not
only express PD-L1 on its surface but also can secrete a soluble
form of PD-L1 with an immunosuppressive function (Ref. 206)
that can be generated by cleavage from cell surface by MMP

(Ref. 207). In 2020, a study reported that secreted PD-L1 could
be used as a non-invasive biomarker for evaluating the malig-
nancy of TNBC and predicting the response to nCT (Ref. 208).
In addition, there was a significant correlation between tumoural
PD-L1 and the soluble PD-L1 in the serum of BC patients
(Ref. 209). Furthermore, high levels of soluble PD-L1 in periph-
eral blood were associated with poor prognosis (Ref. 209).
Hence, it would be tempting to explore the impact of inflamma-
some/MMP and soluble PD-L1 in BC.

Blocking IL-1β in mouse BC reversed immunosuppression and
synergised the effect of anti PD-1 (Ref. 27). Similarly, IL-18
induced PD-1 expression in BC (Refs 198, 199). Thus, targeting
inflammasome complex and its downstream cytokines might
counteract metastasis and PD-1/PD-L1 immunotherapy resist-
ance. It has been noticed that cells treated with IL-12/15/18 cyto-
kines induced cell surface expression of CTLA-4 on

Figure 3. Activation of AIM2 inflammasome led to PD-L1 upregulation and immunosuppression in BC. Phagocytosed tumour DNA activated AIM2 inflammasome
leading to IL-1β secretion that upregulated PD-L1 and enhanced immunosuppression. AIM2, absent in melanoma 2; PD-L1, programmed death ligand 1; IL-1β,
interleukin-1β.

Figure 4. Immunosuppressive loop of NLRP3/PD-L1. NLRP3 promoted immunotherapy resistance via expression of PD-1/PD-L1. On the other hand, tumoural PD-L1
and even PD-1/PD-L1 blockade activated NLRP3 leading to immunotherapy resistance and immunosuppression. Thus, NLRP3 pathway and PD-1/PD-L1 are key
characteristic for immunotherapy resistance. PD-1, Programmed death1; PD-L1, programmed death ligand 1; NLRP3, NOD-like receptor (NLR) family, pyrin domain-
containing protein 3.
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mucosal-associated invariant T independent of TCR signal
(Ref. 210). Since NLRP3 activation and irAE occurred post
CTLA-4 mAb in BC-bearing cohort (Ref. 200), NLRP3/IL-18/
CTLA-4 and irAE warrant closer investigation in BC.

Adipokines and inflammasomes in breast cancer

Obesity is a risk factor for developing different types of cancers
including BC and is associated with a worse clinical outcome
(Ref. 211), especially in postmenopausal women (Refs 212, 213,
214). Obesity symbolises a chronic low-grade inflammatory con-
dition, which causes elevation in the circulating pro-inflammatory
cytokines that recruit macrophages into adipose tissue, subse-
quently leading to dysregulated secretion of adipokines (cytokines
derived from adipose tissue) (Ref. 215).

Adipokines include leptin and adiponectin, their plasma ratio
is considered a biomarker for initial cancer development and pro-
gression (Ref. 216). Leptin is principally secreted by adipocytes to
suppress appetite, food intake and regulate body weight by acting
on hypothalamus (Refs 217, 218). It is associated with obesity
since the higher the adipose tissue mass, the more secreted leptin
levels (Refs 217, 218). On the other hand, adiponectin and adipos-
ity are inversely correlated, where adiponectin levels decrease in
obese subjects (Ref. 219). Interestingly, adiponectin and leptin eli-
cit opposing effects, where leptin showed pro-inflammatory prop-
erties inducing the production of IL-6 and TNF-α (Refs 220, 221),
while adiponectin is an anti-inflammatory agent (Ref. 222). In
addition, adiponectin markedly suppressed mRNA of leptin and
its receptor. On the other hand, leptin also markedly downregu-
lated adiponectin receptor 1 (adipoR1) mRNA expression in BC
(role of adipoR will be discussed in adiponectin part) (Fig. 5).

Collectively, adiponectin and leptin can antagonise each other
at the transcriptional level of their receptors or at the level of adi-
pokines production (Ref. 223). Notably, the reduced expression of
adiponectin receptors or low plasma levels of adiponectin has
been linked to increased risk of certain types of cancers
(Refs 224, 225). It has been reported that adiponectin exerts anti-
tumour activities, while leptin promotes tumour growth (Refs 226,
227, 228) and it was correlated with hypertension, angiogenesis,
atherosclerosis and ROS generation (Ref. 229). Interestingly, ER
signalling plays an important role in proliferation and survival
of BC cells through ROS production (Ref. 230). Leptin activates
ER signalling without ligand via a process called transactivation,
where leptin activates ERα through mitogen-activated protein
kinases pathway (Ref. 231).

Leptin and inflammasomes in breast cancer

Impact of leptin on NLRP3 in ER+/ER– breast cancer subtypes
In ER + BC cells (T47D and MCF-7), leptin upregulated NLRP3,
ASC expression as well as ASC speck formation, caspase-1 and
IL-1β generation (Ref. 24). Literature showed that ER played a
pivotal role in survival and proliferation of BC cells through
ROS production (Ref. 230). In MCF-7 BC cells, leptin rapidly
increased ROS production that caused NLRP3 activation
(Ref. 24). Nevertheless, pre-treatment with N-acetyl cysteine
(a ROS scavenger) significantly inhibited leptin-induced NLRP3
and ASC overexpression, as well as IL-1β and caspase-1 activation
(Ref. 24). Furthermore, pre-treatment of MCF-7 cells with tam-
oxifen (a selective oestrogen receptor modulator) or siRNA
against ERα significantly decreased leptin-induced ROS, IL-1β
maturation, caspase-1 production, as well as ASC speck formation
and returned growth to almost normal levels (Ref. 24). On the
other hand, treating MCF-7 cells with oestradiol increased
leptin-induced growth and IL-1β maturation (Ref. 24). NADPH
oxidase (NOX) is a membrane-bound enzyme that is responsible

for the production of ROS in response to specific physiological
stimuli (Ref. 232). NOX is an enzyme complex composed of mul-
tiple subunits. In MCF-7 BC cells, NOX1 and NOX2 subunits are
mainly expressed (Ref. 233) where leptin was found to induce
NOX activation. Nonetheless, pretreatment with diphenyleneio-
donium (a pharmacological NOX inhibitor) inhibited
leptin-induced ROS production and reduced leptin-induced
increase in NLRP3, caspase 1 activation, ASC expression and
speck formation (Ref. 24). Notably, leptin did not cause a remark-
able change on NOX2 expression; however, it dramatically
increased NOX1 mRNA and protein expression in a time- and
dose-dependent manner (Ref. 24). Adding to that, NOX1 knock-
down prevented leptin-induced ROS production and suppressed
IL-1β maturation in MCF-7 BC cells. In addition, gene silencing
of ERα markedly abolished leptin-induced NOX1 expression
(Ref. 24). Moreover, oestradiol treatment increased NOX1 expres-
sion in MCF 7 cells (Ref. 24) (Fig. 5).

The ER-deficient MDA-MB231 BC and SK-BR-2 cells treated
with leptin showed no significant effects on NLRP3, ASC or IL-1β
protein expression (Ref. 24). MDA-MB231 BC cells treated with
leptin showed non-significant changes in ROS generation or in
IL-1βmaturation. In addition, the ER-negative SK-BR-3 cells trea-
ted with leptin showed no significant effects on NLRP3 protein
expression or on ASC protein expression (Ref. 24). Collectively,
this proves that ER plays a pivotal role in ROS and inflammasome
activation induced by leptin in BC cells.

Impact of leptin-induced NLRP3 activation on apoptosis and cell
cycle progression in breast cancer
In BC, leptin increased the number of viable cells, suppressed
caspase-7 and pro-apoptotic Bcl-2 associated X-protein (BAX),
and increased expression of anti-apoptotic B cell lymphoma 2
(Bcl2) (Ref. 24). Thus, it collectively inhibited apoptosis.
Furthermore, it induced the expression of cyclin D1 and
enhanced cell cycle progression (Ref. 24). In BC cells, addition
of selective NLRP3 inhibitor or transfection with siRNA against
NLRP3 prevented the leptin stimulated tumour growth, restored
caspase 7, abolished suppression of BAX and prevented
leptin-induced Bcl2 expression. In addition, it also significantly
decreased the populations of cells in S and G2-M phase and
enhanced cell populations in G0–G1 phase of cell cycle and sig-
nificantly reduced leptin-induced cyclin D1 expression (Ref. 24).

Leptin-induced inflammasome activation via ROS in vivo
Similarly, in MCF-7 tumour xenograft mice, treatment with leptin
led to increased tumour growth, volume, size and weight
(Ref. 24). Leptin also led to increased IL-1β, Bcl2 and cyclin D1
expression, and finally decreased the expression of BAX.
Furthermore, treatment with tamoxifen prevented leptin-induced
IL-1β, caspase 1 maturation, as well as ASC and NLRP3 inflam-
masome expression (Ref. 24). Moreover, in xenograft model,
co-administration of Ac-YVAD-CMK; a capasase-1 inhibitor,
with leptin has remarkably decreased leptin-induced tumour
growth, IL-1β maturation, Bcl2 and cyclin D1 expression, and sig-
nificantly restored BAX expression (Ref. 24). Collectively, in vivo
and in vitro observations showed that obesity increases plasma
levels of leptin that transactivates ER receptor leading to activa-
tion of NOX, increase in NOX1 expression and ROS generation
leading to activation of inflammasome, tumour growth via modu-
lating apoptosis and cell cycle progression (Ref. 24).

Wrap-up and insights
It would be beneficial to dig for the exact mechanism by which
NLRP3 inflammasome affected the expression of apoptosis-
related genes. Inflammasome activation subsequently led to
IL-1β maturation and secretion, increased tumour growth and
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decreased apoptosis (Ref. 24). Literature stated that IL-1β acti-
vated NF-κB pathway (Ref. 234) that increased survival and
decreased apoptosis (Ref. 157). Recent studies showed that
NLRP3 expression can be regulated at the transcriptional level
through NF-κB-dependent pathway (Ref. 235) (Fig. 5). From all
of the above-mentioned, it would be worth investigating the
inflammasome/NF-κB pathway in BC and clarifying the exact
mechanism of modulating the expression of apoptosis-related
genes.

It has been stated that leptin-induced production of TNF-α
(Refs 220, 221) and TNF-α induced an increase in extracellular
ATP (Ref. 23), which in turn, activated purinergic receptors and
led to invasion and metastasis via inflammasome activation
(check purinergic part). In addition, literature reported that
TNF-α was able to stabilise PD-L1 contributing to immunosup-
pression (Ref. 201). TNF-α blockade synergised with anti-PD-1
(Ref. 202). Therefore, it is promising to investigate the effects of
leptin/TNF-α release and its correlation with PD-L1 immunosup-
pression. Blocking this pathway in obese ER-positive BC patients
might give a promising synergistic effect in combination with
anti-PD-1 or anti-PD-L1 immunotherapy. In addition, further
investigation of the effect of leptin-induced ATP release and the
subsequent purinergic/inflammasome activation, as well as its
effect on MMP and VEGFA in BC cells is interesting; since this
pathway might highlight targets that might counteract invasion
and angiogenesis in BC. Furthermore, leptin showed pro-tumour
effects and LDFI (a leptin antagonist) markedly decreased tumour

growth in xenograft models, thus LDFI might be very beneficial to
investigate its effect if used in combination with chemotherapy,
especially in obese patients (Ref. 236). Literature reported that lep-
tin directly stimulated IL-18 expression and promoted migration
and invasion of BC cells. Surprisingly, these effects were abolished
by the co-incubation of Bay11-7082 (a pharmacological NF-κB
inhibitor) (Ref. 76). Since IL-18 induced PD-1 expression in BC
(Refs 198, 199), it would be worth to investigate the effect of com-
bining Bay11-7082 and leptin on inflammasome/PD-1 expression
and whether Bay11-7082 would give a synergistic effect if
co-administered with anti-PD-1.

Globular adiponectin

Adiponectin exists as a full-length protein of 30 kDa (Ref. 237). It
is the most abundant adipokine in the circulation where it
accounts for approximately 0.01% of total plasma proteins
(Refs 238, 239). Adiponectin’s anticancer activities are mediated
through different mechanisms including cell cycle arrest, induc-
tion of apoptosis and inhibition of migration/invasion of cancer
(Refs 240, 241, 242). In addition to the full-length form, globular
adiponectin can be generated through proteolytic cleavage, which
is a fragment containing the globular domain of adiponectin.
Despite the low circulating concentration of globular adiponectin,
it possessed potent diverse physiological activities and inhibited
LPS primed inflammasomes activation through autophagy induc-
tion and AMPK signalling in macrophages (Refs 243, 244, 245)

Figure 5. The antagonising effects of leptin and adiponectin on inflammasome in breast cancer. Leptin and adiponectin are adipokines (cytokines) secreted from
adipocyte. Leptin transactivates ER-α and activates NADPH oxidase specifically NOX1 which is responsible for ROS production which then activates NLRP3 and IL-1β
maturation. The latter activates NF-κB that regulates NLRP3 transcription. Globular adiponectin produces inhibitory actions on NLRP3 and ROS via two mechan-
isms. The first one through activation of its receptor (AdipoR1), elevation of the anti-oxidant ‘HO-1’and downregulation of ER-α protein expression via ubiquitina-
tion and finally lowering the levels of NOX1. The second mechanism is SESN2/LKB1 upregulation and AMPK phosphorylation. It also decreases ER stress markers
PERK, its downstream EIF2α and CHOP expression levels. It is worth mentioning that adiponectin and leptin antagonise each other on the transcription level of
their receptors; adiponectin suppressed mRNA of leptin’s receptor whereas leptin also suppressed adipoR1 mRNA expression in BC. ER-α, oestrogen receptor-α;
NOX1, NADPH oxidase 1; ROS, reactive oxygen species; NLRP3, NOD-like receptor (NLR) family; pyrin domain-containing protein 3; IL-1β, interleukin-1β; NF-κB,
nuclear factor κ B cells; AdipoR1, adiponectin receptor 1; HO-1, haeme oxygenase 1; SESN2, sestrine2; LKB1, liver kinase B1; AMPK, AMP-activated protein kinase;
ER stress, endoplasmic reticulum stress; PERK, protein kinase RNA-like endoplasmic reticulum kinase; CHOP, C/EBP homologous protein.
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Globular adiponectin opposed leptin-induced NLRP3
inflammasome activation and breast cancer growth
In MCF-7 BC cells, globular adiponectin showed suppressive
effects on inflammasomes activation, where it significantly
decreased the levels of IL-1β, caspase 1, NLRP3, ASC speck for-
mation and ASC (Refs 227, 246). Similarly, globular adiponectin
opposed leptin-induced growth of cancer cells and inhibited the
leptin-induced NLRP3 inflammasome activation and suppressed
the elevated ASC, caspase-1 and IL-1β. Furthermore, it sup-
pressed leptin viability, restored cell cycle and apoptosis to normal
levels (Refs 227, 246).

Globular adiponectin antagonises leptin-induced breast cancer
growth via ER-α ubiquitination and HO-1 induction
A pre-proof literature reported that globular adiponectin exerted
its inhibitory action on leptin-induced inflammasome activation
via upregulation of haeme oxygenase-1 (HO-1) in a dose- and
time-dependent manner (Ref. 246); which has been reported to
exhibit anti-oxidant activities that reduced ROS (Ref. 247).
Moreover, addition of SnPP (a pharmacological inhibitor of
HO-1) or siRNA HO-1 abrogated the suppressive effects of globu-
lar adiponectin on NLRP3 and ASC (Ref. 246). The biological
effects of adiponectin are initiated by binding with its specific
transmembrane receptors; adipoR1 or adipoR2 (Ref. 248). In
MCF-7 BC cells, SiRNAs of adipoR1 or adipoR2 significantly
inhibited the upregulation of HO-1 expression and abolished
the suppressive effects of globular adiponectin on inflammasome.
Notably, adipoR1 SiRNAs showed higher preventative effect
(Ref. 246). Furthermore, globular adiponectin significantly attenu-
ated leptin-induced ROS and NOX activation (Ref. 246). All these
effects were abolished with SnPP or gene silencing of HO-1.
Interestingly, globular adiponectin markedly downregulated tran-
scriptional activity of ER-α receptor which was enhanced by lep-
tin. Moreover, results showed that globular adiponectin
significantly downregulated protein expression of ER-α receptor
through increasing ER-α ubiquitination (this explains why it
affected its protein level and not its mRNA) (Ref. 246) (Fig. 5).
Similar to in vitro effects, globular adiponectin inhibited
NLRP3, ASC, enhanced apoptosis, decreased Ki67 and decreased
tumour volume in vivo (Ref. 246).

Globular adiponectin decreased ER stress markers and viability
of ER-positive breast cancer cells via suppression of
inflammasomes through SESN2/AMPK/ER stress signalling
pathway
Accumulation of unfolded proteins in the ER lumen, occurring
during ER stress, is sensed by protein kinase RNA-like endoplas-
mic reticulum kinase (PERK) that induces the activation of
unfolded protein response pathways and phosphorylates its
downstream eukaryotic initiation factor 2 alpha (eIF2α)
(Refs 249, 250, 251). In addition, it subsequently activates the
transcription factor C/EBP homologous protein (CHOP); a
marker for ER stress that propagates ROS signals, contributing
to apoptosis (Refs 249, 250, 251). Sestrine 2 (SESN2) is known
to provide cytoprotection against ER stress and reduces levels of
cellular ROS (Ref. 252). It is one of the critical regulators of 5′

AMP-activated protein kinase (AMPK) activation and was
found to decrease ROS and oxidative stress (Ref. 252) via its
upstream liver kinase B1 (LKB1), that functions as a tumour sup-
pressor gene (Refs 253, 254). Literature reported that LKB1/
AMPK boosted Nrf2 and increased HO-1 expression that further
decreased ROS and oxidative stress (Ref. 255).

Globular adiponectin decreased ER stress markers PERK, its
downstream EIF2α and CHOP expression levels (Ref. 227)
(Fig. 5). Addition of the classical ER stress inhibitor (TUDCA)
resulted in a significantly reduced level of mature IL-1β and

caspase 1 in a dose-dependent manner (Ref. 227). On the con-
trary, addition of the pharmacological ER stress inducer tunica-
mycin markedly increased mature IL-1β and caspase 1 in
MCF-7 BC cells (Ref. 227). Globular adiponectin treatment
induced a marked increase in protein expression of SESN2 and
phosphorylation of AMPK and increased complex formation of
SESN2/AMPK and SESN2/LKB1 in MCF-7 BC cells (Ref. 227).
Results showed that SESN2 acted as a scaffold for AMPK and
LKB-1 (Ref. 227). Treatment with compound C (pharmacological
inhibitor of AMPK) or gene silencing of AMPKα and SESN2
abolished the inhibitory effects of globular adiponectin on
NLRP3 inflammasome (Ref. 227) and restored the ER stress mar-
kers (PERK, EIF2 and CHOP). In addition, in MCF-7 cells, trans-
fection with SESN2 siRNA inhibited the globular
adiponectin-mediated AMPK phosphorylation and completely
abolished LKB1/AMPK complex formation (Ref. 227). In
ER-positive cells (MCF-7 or T47D), inflammasome activation
was observed to contribute to their growth, but not in
ER-negative MDA-MB231 cells (Refs 24, 227). Similarly, pharma-
cological inhibitors of inflammasome (Ac-YVAD-cmk, MCC950
and interleukin 1 receptor antagonist ‘IL-1Ra’) or globular adipo-
nectin significantly decreased the cell viability of MCF-7 and
T47D cells but not MDA-MB231 and upregulated the negative
modulators of cell cycle: P27kip and P53, downregulated cyclin
D1 and induced cell cycle arrest at G0/G1 phase (Ref. 227).

In MCF-7, tumour xenograft model established in BALB/c
nude mice globular adiponectin, inhibitor of NLRP3 (MCC950)
or IL-1Ra, inhibited tumour growth (Ref. 227), suppressed mar-
kers of cell proliferation including Ki67 and cyclin D1, increased
the expression of p27kip1 and enhanced apoptosis (Ref. 227).
In addition, globular adiponectin decreased the expression levels
of inflammasome components, increased phosphorylation of
AMPK, expression of SESN2 but decreased CHOP expression
(Ref. 227). All of the above results revealed that adiponectin
decreased the growth of BC cells via suppression of inflamma-
somes through SESN2/AMPK/ER stress signalling pathway
(Fig. 5).

Wrap-up and insights
Globular adiponectin was shown to decrease ER stress, inhibit
inflammasome activation in BC cells (Ref. 227) and exert anti-
tumour activities (Refs 227, 228), and low plasma levels of adipo-
nectin have been linked to increased risk of certain types of can-
cers (Refs 224, 225). In addition, a recent study stated that
globular adiponectin exerted its inhibitory effect through
AdipoR1 (Ref. 246). It is also worth mentioning that AdipoRon
(AdipoR agonist that binds to AdipoR1 and AdipoR2) induced
apoptosis and decreased proliferation in human ovarian cancer
cells; in addition, it inhibited the proliferation of myeloma cells
and human osteosarcoma (Refs 256, 257, 258). Therefore, it
would be beneficial to investigate the effect of AdipoRon in ER
+ BC patients and can be investigated further to be used in com-
bination with chemotherapy as it might be a promising drug that
decreases BC growth especially in obese patients.

Interestingly, it has been reported that leptin induced produc-
tion of TNF-α (Refs 220, 221) that led to stabilisation of PD-L1.
Literature reported the antagonising effect of adiponectin on lep-
tin mRNA and receptor (Ref. 223). Therefore, AdipoRon’s effect
on PD-1 and PD-L1 expression should be investigated.

Molecular pathways relating globular adiponectin and leptin in
BC should be investigated. It has been noticed that leptin acti-
vated NLRP3 inflammasome causing increased BC growth via
ER-α activation (Ref. 24). On the contrary, globular adiponectin
enhanced HO-1 expression and SESN2/LKB1/AMPK complex
formation (Refs 227, 246). Literature reported that AMPK acti-
vated Nrf2 that increased the expression of HO-1 (Ref. 255).
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This might explain how globular adiponectin enhanced HO-1
expression and subsequently inhibited inflammasome (since the
exact mechanism in cancer cells was unclear) (Ref. 246). From
all the above-mentioned, the effect of adiponectin-induced
AMPK/nrf2/HO-1/ER-α ubiquitination and suppression of
leptin-induced inflammasome activation and BC growth should
be further investigated.

Non-coding RNA and inflammasomes in breast cancer

Initially, non-coding RNAs (ncRNAs) were viewed as ‘transcrip-
tional noise’ (Ref. 259). Later on, studies showed that ncRNAs
are regulators of crucial biological processes such as cell prolifer-
ation, differentiation and invasion (Refs 260, 261). According to
their length, ncRNAs are divided into long non-coding RNAs
(lncRNAs) and short non-coding RNAs (Ref. 259). The latter
comprises small interfering RNAs, small nucleolar RNAs,
microRNAs (miRNAs) and PIWI-interacting RNAs (Ref. 259).
miRNA and lncRNA represent the most-studied family classes
and their deregulation was correlated with BC (Ref. 260).

MiRNA and inflammasomes in breast cancer

MiRNAs are 17–25 nucleotides in length and can function as
tumour suppressor miRNAs or as oncogenes (oncomiRs)
(Ref. 262). For instance, in the aggressive TNBC, miR-21 and
miR-221 significantly overexpressed while miR-205, miR-145
and miR-122a were downregulated (Ref. 263). In addition,
miRNA-107 was associated with BC progression (Ref. 264).

MiRNA-223 has been shown to dampen neutrophilic inflam-
mation via NF-κB suppression (Ref. 265). In BC, the only inves-
tigated miRNA inhibiting inflammasomes, till date, is miR
223-3p. Intended overexpression of miR-223-3p in human BC
cells attenuated the NLRP3 over-expression (wild type), decreased
protein expression levels of ASC, IL-1β and IL-18 (Ref. 25), while
increased protein expression of IL-10 (Ref. 25). Furthermore, it
lowered tumour volume, increased survival and apoptotic rate.
In addition, it decreased the number of ki67 and VEGF-positive

cells compared to negative control group. Snail gene is a well-
known inducer of EMT and has been associated with BC poor
prognosis and metastasis via increasing the expression of
MMP-9 (Ref. 266). In the light of the fact that NLRP3 showed
opposing impacts in cancer (Ref. 267), a recent study in August
2022 showed that overexpression of snail-regulated miRNA-21
significantly suppressed cisplatin-induced NLRRP3 activation
of TAMs leading to chemo-resistance in murine 4T1 BC cells.
In addition, miR-21 has been shown to suppress PTEN causing
NLRP3 inactivation (Ref. 267).

LncRNA and inflammasomes in breast cancer

LncRNAs are more than 200 nucleotides in length and their dys-
regulation was associated with BC (Ref. 268), for example, the
lncRNA BCRT1 was significantly upregulated in BC tissues and
was correlated with BC poor prognosis (Ref. 269). A recent
study provided a theoretical reference and reported eight pyroptosis-
related lncRNAs in BC model including AC004585.1, DLGAP1-AS1,
TNFRSF14-AS1, AL606834.2, Z68871.1, AC009119.1, LINC01871
and AL136368.1. Furthermore, mRNAs of AIM2, CASP1,
CASP4, IL-18 and NLRP1 were co-expressed with AL606834.2,
AC004585.1 and LINC01871 (Ref. 268). The aforesaid lncRNAs
require practical investigation.

A wrap-up and insights
It would be very beneficial to investigate the effect of combining
miR-223-3p synthetic nucleotides with chemotherapy in BC cells
(luminal B) that have high ki67, since miR-223-3p inhibited
NLRP3 and decreased the expression of ki67 and proliferation
(Ref. 25). In addition, miR223-3p might give a synergistic effect
if used with sorafenib, since it decreased the expression of
VEGF in BC (Ref. 25). Literature showed that IL-18 caused
immunosuppression by inducing PD-1 expression in cancer
(Ref. 270), and since miR223-3p overexpression decreased IL-18
(Ref. 25), then it might be a promising adjuvant with
anti-PD-1/PD-L1 blockade immunotherapy ameliorating
immunotherapy resistance in BC. Moreover, further investigation

Figure 6. Tumour-promoting effects of inflammasomes in BC. Inflammasomes contributed to therapy failure in BC since it enhanced radiotherapy, chemotherapy
and immunotherapy resistance. It led to immune system dysfunction and increased expression of PD-1/PD-L1. In addition, it enhanced cell cycle progression, BC
growth and viability through increasing Cyclin D, KI67 and anti-apoptotic BCl2 while lowering pro-apoptotic BAX. Invasion and angiogenic markers such as MMP,
EMT and VEGF-A were increased by inflammasomes leading to BC metastasis, invasion and angiogenesis, respectively. Thus, collectively inflammasomes inhibition
is a promising multi-strike in BC. IL-1β, interleukin-1β; IL-18, interleukin 18; MMP, matrix metalloproteinases; VEGF-A, vascular endothelial growth factor A; EMT,
epithelial mesenchymal transition; ER, oestrogen receptor; BC, breast cancer; KI67, proliferative index; BAX, Bcl-2 associated X-protein; Bcl2, B-cell lymphoma 2.
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should be done on ADAMTS9-AS2’s effect on miR-223-3p in BC.
Most importantly, more miRNAs targeting inflammasome should
be investigated in BC, for example, miR-144 that has been exten-
sively studied and was reported to regulate BC invasion, migration
and proliferation (Refs 271, 272). In addition, it was involved in
the regulation of radiotherapy sensitivity (Ref. 273). Thus,
miR-144 is a worth examining candidate to unravel if it can
impact inflammasome pathway in BC cells and correlate its
expression with ATP/purinergic receptors, especially in
ER-positive BC cells.

In a recent study reported by Ren et al. (Ref. 274), lncRNA
ADAMTS9-AS2 sponged and inhibited miR-223-3p leading to
increased NLRP3 expression and triggered pyroptotic cell death
in cisplatin-treated gastric cancer cells. These effects were reversed
by miR-223-3p overexpression (Ref. 274). LncRNA XIST has been
extensively studied by our research group (Refs 275, 276).
LncRNA XIST acted as a tumour suppressor where it was down-
regulated in BC tissues (Ref. 275) and was able to suppress PD-L1
expression in MDA-MB231 cells (Refs 275, 276). In addition,
PD-L1-overexpressing BC patients as well as TNBC cell lines
showed an inverse correlation with low levels of XIST, where
XIST was described as non-invasive cancer immune biomarker
for anti-PD-L1 personalised therapy (Ref. 276). Surprisingly,
downregulation of lncRNA XIST activated NLRP3 inflammasome
and increased caspase1, IL-1β and IL-18 in lung cancer cells
(Ref. 277). Furthermore, overexpression of lncRNA GAS5
induced a time-dependent activation of ASC, caspase-1 and
IL-1β in ovarian cancer (Ref. 278). In mouse macrophages, the
lncRNA NEAT1 promoted pyroptosis and enhanced assembly
of several inflammasomes (NLRP3, NLRC4 and AIM2) and sub-
sequently increased caspase 1 and IL-1β (Ref. 279). Another study
reported that NEAT1 increased the expression of NLRP3 via tar-
geting miR3076-3p (Ref. 280). Moreover, knockdown of lncRNA
Gm4419 ameliorated inflammation in diabetic nephropathy
through NF-κB/NLRP3 inflammasome (Ref. 281). In addition,
Gm4419 led to an increase in the transcription of TNF-α, IL-1β
and IL-6 through NF-κB (Ref. 282). Thus collectively, it would
be worth investigating the effects of the above-mentioned
lncRNAs on inflammasomes in BC, and its correlation with BC
progression and immunotherapy resistance.

Conclusion

In spite of dramatic advances in BC diagnosis, personalised
treatments and recently approving immunotherapy against
aggressive BC unfortunately, therapy failure occurs in many
BC patients because of resistance, tumour recurrence and ser-
ious side effects. Unluckily, many BC patients were obliged to
discontinue the newly approved immunotherapy treatment due
to serious irAE and low response rates. There is an urge to dig
for new molecular targets to lessen these obstacles and improve
overall therapy response. In this review, we have hoped to shed
the light on the inflammasome pathway in BC as it might
unravel the hidden molecular contributors to therapy failure,
tumour progression and immune dysfunction. Additionally,
this review highlights several novel molecules targeting the
inflammasome pathway, thereby ameliorating tumour progres-
sion, therapy resistance and potentiating the effect of immuno-
therapy that is recently approved in the treatment of BC. It has
been shown throughout numerous studies that inflammasomes
and the subsequent IL-1β and IL-18 enhanced invasion, metas-
tasis and angiogenesis. Second, it increased proliferation,
decreased apoptosis and increased viability of BC, thereby pro-
moted tumour progression and therapy resistance.
Additionally, inflammasomes led to immune system dysfunc-
tion, increased PD-L1 and PD-1 expression in BC. Figure 6

summarises the tumour-promoting effects of inflammasomes
in BC. Finally, there is an urge to target inflammasome pathway
in clinical trials against BC, since studies showed that counter-
acting this pathway synergised PD-L1 blockade, decreased
chemotherapy resistance, angiogenesis and tumour growth of
BC. Altogether, inflammasome targeting is a promising molecu-
lar multi-strike that might win the battle against BC.
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