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Can isothermal plane Couette flow in fluid
overlying porous layer be linearly unstable?
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The present study aims to examine the temporal linear stability analysis of isothermal
plane Couette flow over a porous layer using the two-domain approach. The flow in
the porous layer is described by the unsteady Darcy–Brinkman equations, whereas it is
characterised by the Navier–Stokes equations in the fluid layer. In contrast to the Darcy
model, it is observed that the isothermal plane Couette flow becomes unstable for such a
superposed system on the inclusion of the Brinkman term. From the stability analysis,
the two-dimensional mode is found to be least stable, and two modes of instability,
namely porous mode and mixed mode are obtained under the consideration of the
Darcy–Brinkman model along with advection term (DBA model). For Darcy number
(δ) = 0.01, depending on the value of the stress-jump coefficient, mixed mode controls the
instability of the system at small values of depth ratio (d̂), and it disappears for relatively
high values of d̂, where the porous mode dominates. In addition, it has been observed
that when d̂ = 0.1, the critical mode of instability is found to be mixed for δ > 0.02
and porous for δ ≤ 0.02. The stress-jump coefficient destabilises the flow in terms of
energy production through perturbed stresses at the interface. As observed in the case
of isothermal plane Poiseuille flow studied by Chang, Chen & Straughan (J. Fluid Mech.,
vol. 564, 2006, pp. 287–303), here also depth ratio (Darcy number) stabilises (destabilises)
the flow. However, this characteristic does not remain valid when the advection term is
eliminated from the considered momentum equation. For a certain range of d̂(δ), the
destabilising (stabilising) characteristic of the respective parameters are encountered when
the fluid mode of instability prevails.
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1. Introduction

Understanding and exploring the scenarios concerning the instability in one of
Navier–Stokes (NS) equations’ simplest non-trivial solution, i.e. plane Couette flow, is
long overdue amidst the fluid mechanics community. Rayleigh (1914) first suggested the
stable nature of plane Couette flow to infinitesimal disturbances in a channel. The first
scientific proof to the preceding fact was given by Davey (1973). He used a combination
of asymptotic analysis and numerical computation to prove the same. Later on, Romanov
(1973) showed that Couette flow in the channel is stable for all Reynolds numbers using
the linear stability analysis. This result was further supported by Orszag & Patera (1980).
However, Tillmark & Alfredsson (1992) executed the first flow visualisation for transition
in plane Couette flow experimentally and determined the critical Reynolds number for
turbulence as 360 ± 10 based on the half-height of the channel and half-velocity difference
between the walls. Such contrasting results between theoretical and experimental studies
led several researchers to look for possible instability in plane Couette flow in a channel.
Furthermore, wherein the researchers were still finding the Couette flow to be linearly
stable (Lee & Finlayson 1986), following Nield (2003), Shankar, Shivakumara & Kumar
(2020) predicted the hydrodynamic instability of plane Couette flow in a channel filled
with the porous medium by including the Brinkman as well as advection term in Darcy
model.

The study of fluid flow through a channel in which the fluid layer overlies the porous
layer has garnered considerable attention from the scientific world in the late 20th century
in view of its immense applications in various geological and industrial frameworks. We
quote a few notable results: water flow below the surface of the Earth (Ewings & Weekes
1998), the oil flow in subterranean reservoirs (Allen 1984) and the production of composite
materials for the automobile and aircraft industries (Blest et al. 1999). In particular, the
interplay between the injected fluid and the porous layers is very important in enhanced
oil recovery techniques, such as gas injection and water flooding. Stability analysis in
this context provides valuable insight into the flow dynamics, enabling engineers to
determine the optimal injection rates and pressure. By analysing the stability of the flow,
one can predict and address instabilities such as channelling or fingering, which can lead
to inefficient displacement of oil. This ensures that the injected fluid displaces the oil
uniformly and effectively, thereby maximising recovery efficiency. Furthermore, vessel
dynamics in marine engineering requires a sound understanding of the Couette flow in
fluid overlying porous layer to optimise the interaction between fluid flow and a vessel’s
structure (Gourlay 2006; Wang et al. 2018; Mukherjee & Giribabu 2021). This interaction
can significantly affect performance, efficiency and safety by notably influencing drag
through the water and the porous coating on a ship’s hull. Along these lines, a theoretical
understanding of Couette flow in fluid overlying porous layer will be beneficial and,
consequently, in the present study, an attempt has been made in this direction.

As can be seen in literature, the isothermal plane Couette flow is linearly stable
to infinitesimal disturbances under Darcy’s law (Chang, Chen & Chang 2017). Even
the inclusion of media anisotropy and inhomogeneity fails to render instability in this
situation (Barman, Aleria & Bera 2024). In contrast to the linearly unstable nature of
Newtonian fluid (Chang, Chen & Straughan 2006; Chang et al. 2017), the isothermal
plane Poiseuille/Couette–Poiseuille flow in fluid overlying porous layer is linearly stable
for a Bingham fluid (Sengupta & De 2019, 2020). However, using non-modal analysis,
the instability characteristic of the flow has been analysed in such a superposed system.
The instability in plane Couette flow in fluid overlying porous layer was first witnessed by
Chang (2005), in which the author considered a constant temperature difference between
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Isothermal plane Couette flow over a porous layer
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Figure 1. Diagram of the physical problem.

the upper and lower plate, and recent developments in this direction are well-documented
in the recent article of Barman et al. (2024). To the best of the authors’ knowledge, no
literature exists that predicts the existence of instability in isothermal plane Couette flow
through fluid overlying porous layer. Thus, the question that arises from the literature so
far is whether it is possible to have a situation in which one can encounter the instability
of isothermal plane Couette flow in the fluid overlying the porous layer. Answering this
serves as the main objective of the present study.

The article advances as follows. Section 2 comprises the problem geometry and the
governing equations, which is followed by exploring the neutral stability curves for
possible existence of instability in § 3. It also reveals the physical cause behind the
instability through the energy analysis and secondary flow patterns. The article ends with
some concluding remarks in § 4.

2. Physical problem and mathematical formulation

2.1. Governing equations and boundary conditions
Consider a three-dimensional Couette flow in a horizontal fluid layer underlying a
homogeneous and isotropic porous layer saturated with the same viscous, Newtonian and
incompressible fluid (see figure 1). We assume that the physical properties of the fluid,
namely, the density and dynamic viscosity, and the porous media properties, namely, the
porosity and media permeability, are constant. Consider a Cartesian coordinate system
(x, y, z) with the origin at the fluid–porous interface, wherein x, y and z signify the
streamwise, spanwise and cross-stream flow directions, respectively. The depth of the fluid
and porous layers are d and dm, respectively. The upper plate of the fluid layer moves with
a uniform velocity U in the streamwise direction, and the occupying space of the flow is
{(x, y, z) ∈ R

2 × (−dm, d)}. A two-domain approach has been chosen to understand the
role of location of the interface on the stability of the above shear-induced flow.

The flow in the fluid layer is governed by the continuity and the NS equations as follows:

∇ · u = 0, (2.1)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + μ∇2u, (2.2)

where u = (u, v, w), p, ρ and μ denote velocity vector, pressure, density and viscosity,
respectively. The operator ∇ is defined as ∇ = (∂/(∂x), ∂/(∂y), ∂/(∂z)).

Note that flow in a porous layer can also be governed by continuity and NS equations
along with no-penetration and no-slip conditions at the fluid–solid interfaces. In general,
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a porous medium’s structure is either a sponge-like porous foam (e.g. metal-foam) or
porous bed of packed particles (e.g. sand, gravel and aloxite). In the porous layer, several
length scales are present: (i) average pore diameter (lf ); (ii) average particle diameter (ls);
and (iii) thickness of the porous layer (dm). The first two are on a small scale, whereas
the last is on a large scale. Due to the different length scales and complex boundary
conditions, solving the boundary value problem governed by continuity and NS equations
becomes very difficult. In this situation, the volume averaging method simplifies the issue
by considering only the large-scale behaviour of the flow in the porous region (Tilton &
Cortelezzi 2008). There are two types of volume averages: the superficial and intrinsic
averages used in the volume averaging method. For a field variable φf in the fluid phase,
the superficial and intrinsic averages are defined as

〈φf 〉 = 1
V

∫
Vf

φf dVf , (2.3)

and

〈φf 〉 f = 1
Vf

∫
Vf

φf dVf , (2.4)

respectively, and they are related by 〈φf 〉 = χ〈φf 〉 f , where χ is the porosity. Here, Vf < V
is the volume of fluid contained in the averaging volume, V and Vf /V = χ . Following the
convention of Whitaker (1996), i.e. for an incompressible viscous flow, the velocity vector
has to satisfy solenoidal characteristics but not pressure, one can derive the following
continuity and volume-averaged NS equations:

∇ · 〈u〉 = 0, (2.5)

ρ

[
1
χ

∂〈u〉
∂t

+ 1
χ2 〈u〉 · ∇〈u〉 + cF

K1/2 |〈u〉|〈u〉 + ∇ · 〈û û〉
]

= −∇〈p〉 f + μ∇2〈u〉 − μ

K
〈u〉, (2.6)

where 〈u〉 is the superficial volume-averaged velocity, which is also called the Darcy
velocity, 〈p〉 f is the intrinsic volume-averaged pressure, cF is the form drag coefficient and
K is the permeability of the porous medium. In this equation, the Darcy term (μ〈u〉/K)

represents a volume-averaged viscous drag, the Brinkman term (μ∇2〈u〉) represents a
volume-averaged viscous diffusion, the Forchheimer term (ρcFK−1/2|〈u〉|〈u〉) represents
form-drag due to inertial effects and the advection term (ρ〈u〉 · ∇〈u〉/χ2) represents
another drag that arises from inertial effects.

It is important to mention that when the difference between the velocity of the fluid
and the volume-averaged velocity of the fluid (〈û〉) is negligible, the advection term
in the NS equation generates the terms ρ〈u〉 · ∇〈u〉/χ2 and ρcFK−1/2|〈u〉|〈u〉 that are
of order of O(ρ|〈u〉|2/χ2dm) and O(ρcF|〈u〉|2/lf ), respectively. This indicates that the
contribution of advection term ρ〈u〉 · ∇〈u〉/χ2 is negligible in comparison with the
dominant Forchheimer term, ρcFK−1/2|〈u〉|〈u〉. Note that the appropriate value of cF for
a given porous medium depends on experimental data. Due to insufficient experimental
data, in practice, the inertia effects via form drag are generally dropped (Hill & Straughan
2009; Lasseux, Valdés-Parada & Bellet 2019). Furthermore, without a advection term,
there is no mechanism for developing the flow field, which leads to a physically flawed
and unrealistic situation (Vafai & Kim 1995). The present study concerns the flow
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Isothermal plane Couette flow over a porous layer

through porous materials whose permeability is relatively low, so the inertial effect
is expected to be low. Accordingly, the flow in porous medium is modelled by the
Darcy–Brinkman equation along with time derivative ((ρ/χ)(∂〈u〉/∂t)) and advection
term (ρ〈u〉 · ∇〈u〉/χ2). This model will be referred to as the DBA model from here
onwards.

Furthermore, representing spatial volume-averaged velocity, 〈u〉, and intrinsic
volume-averaged pressure, 〈p〉 f , as um and pm, respectively, the governing equations in
porous layer are transformed as follows:

∇ · um = 0, (2.7)

ρ

χ

∂um

∂t
+ ρ

χ2 um · ∇um = −∇pm − μ

K
um + μ

χ
∇2um, (2.8)

where um = (um, vm, wm).
The dimensional no-slip and no-penetration conditions are considered at the upper and

lower layers of the system, which are as follows:

u = U, v = w = 0 at z = d, (2.9)

um = 0 at z = −dm. (2.10)

With respect to interface conditions, we assume the continuity conditions, i.e. continuity
of velocity,

u = um (2.11)

and normal stresses,

p − 2μ
∂w
∂z

= pm −
(

2μ

χ

)
∂wm

∂z
. (2.12)

The continuity of velocity at the interface ensures mass conservation, preventing any
unrealistic accumulation or depletion of mass. In addition, the forces exerted by the
fluid and the porous medium on each other must be balanced. Further conditions
related to tangential stresses must also be considered, which are given by the following
equations:

∂u
∂z

= 1
χ

∂um

∂z
− β√

K
um,

∂v

∂z
= 1

χ

∂vm

∂z
− β√

K
vm, (2.13a,b)

where β is the stress-jump coefficient Ochoa-Tapia & Whitaker (1995a). However, Hill &
Straughan (2009) have utilised the generalisation of the condition of Jones (1973)

∂u
∂z

+ ∂w
∂x

= 1
χ

(
∂um

∂z
+ ∂wm

∂x

)
− β√

K
u, (2.14)

∂v

∂z
+ ∂w

∂y
= 1

χ

(
∂vm

∂z
+ ∂wm

∂y

)
− β√

K
v, (2.15)

to include the shear stress at the interface, but in this study, we use the approach of
Ochoa-Tapia & Whitaker (1995a), as it has shown better agreement with experimental
observations. Furthermore, we have compared the effects of these two different interface
conditions on the instability point and found that the results between the two remain largely
consistent (table 7). A thorough and detailed discussion on the interface condition can be
found in the work of Ochoa-Tapia & Whitaker (1995a,b).
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To proceed with the linear stability analysis of the plane Couette flow, we
non-dimensionalise the above governing equations (2.1)–(2.2) for fluid layer, (2.7)–(2.8)
for porous layer, boundary conditions (2.9)–(2.10) and interface conditions (2.11)–(2.14).
For the same, in the fluid layer, the lengths are non-dimensionalised by d, velocity
components by U, time by d/U and pressure by μU/d. Thus, the non-dimensional
governing equations for the fluid layer become

∇ · u = 0, (2.16)

Re
(

∂u
∂t

+ u · ∇u
)

= −∇p + ∇2u. (2.17)

Here, Re = Ud/ν is the Reynolds number, where ν represents the kinematic viscosity
of the fluid.

For the porous layer, lengths are non-dimensionalised by dm, velocity components by
Um, where Um is the basic velocity component along the horizontal direction in the porous
layer at zm = 0, time by dm/Um and pressure by μUm/dm. Hence, the non-dimensional
governing mass and momentum equations for the porous layer are

∇m · um = 0, (2.18)

Rem

χ

(
∂um

∂tm
+ 1

χ
um · ∇mum

)
= −∇mpm − 1

δ2 um + 1
χ

∇2
mum, (2.19)

where ∇m is defined as ∇m = (∂/(∂xm), ∂/(∂ym), ∂/(∂zm)). In the above equations, δ =√
K/dm is the Darcy number. The Reynolds number in the porous layer is defined as

Rem = Umdm/ν.
The non-dimensional boundary conditions are as follows:

u = 1, v = w = 0 at z = 1, (2.20)

um = 0 at zm = −1. (2.21)

At the interface of fluid and porous layers, i.e. at z = 0 = zm:

Re u = Remd̂um, p − 2
∂w
∂z

=
(

d̂2Rem

Re

)
pm −

(
2d̂2

χ

)(
Rem

Re

)
∂wm

∂zm
, (2.22)

(
Re

d̂2Rem

)
∂u
∂z

= 1
χ

∂um

∂zm
− β

δ
um,

(
Re

d̂2Rem

)
∂v

∂z
= 1

χ

∂vm

∂zm
− β

δ
vm, (2.23)

where d̂ = d/dm is the depth ratio.

2.2. Basic state
We are interested in studying the linear stability analysis of the base flow to
infinitesimal disturbances. For this, we assume that the flow is steady, unidirectional and
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Isothermal plane Couette flow over a porous layer

fully developed. The non-dimensional base flow in the fluid and porous layers is given by

Ū = d̂(1 + e2
√

χ/δ) + β
√

χ d̂(1 − e2
√

χ/δ)

d̂(1 + e2
√

χ/δ) − δ
√

χ(1 − e2
√

χ/δ) + β
√

χ d̂(1 − e2
√

χ/δ)
z

− δ
√

χ(1 − e2
√

χ/δ)

d̂(1 + e2
√

χ/δ) − δ
√

χ(1 − e2
√

χ/δ) + β
√

χ d̂(1 − e2
√

χ/δ)
, (2.24)

V̄ = W̄ = 0, (2.25)

and

Ūm = − e2
√

χ/δ

(1 − e2
√

χ/δ)
e(

√
χ/δ)zm + 1

(1 − e2
√

χ/δ)
e−(

√
χ/δ)zm, V̄m = W̄m = 0, (2.26)

respectively.
As can be seen from (2.24), the fluid velocity is linear in nature. In contrast to a Darcy

porous layer (Chang et al. 2017), (2.26) gives the non-zero basic velocity, and the profile
for the same is concave downwards. This might be the potential behind the instability of
the plane Couette flow in the Darcy–Brinkman layer.

2.3. Perturbed state
The temporal linear stability analysis of the above base flow is performed by decomposing
the flow variables into the base flow and infinitesimal perturbation as q = Q̄ + q′, where
Q̄ and q′ stand for the basic quantities and the perturbation quantities, respectively. The
perturbed variables are considered in normal mode form as

q′ = Q(z) exp(iax + iby − iσ t), (2.27)

q′
m = Qm(zm) exp(iamxm + ibmy − iσmtm), (2.28)

for both fluid and porous layers, respectively, with the relation a = d̂am, b = d̂bm and
σ = (Remd̂2/Re)σm. Here, a and b are wavenumbers in x and y directions in the fluid
layer, respectively, and am and bm are the corresponding wavenumbers in the porous layer.
In the present article, we have focused on the temporal linear stability analysis where
wavenumbers are real, and wave speeds σ = σ r + iσ i and σm = σ r

m + iσ i
m are complex

(Sengupta & De 2021; Zou et al. 2023). Depending on whether σ i < 0, σ i = 0, or σ i > 0,

the perturbations are categorised as stable, neutrally stable or unstable, respectively.
Since it is observed that two-dimensional disturbances are least stable (see table 6 in
Appendix A), it is sufficient to study the stability analysis of isothermal plane Couette flow
by considering two-dimensional disturbances. Consequently, the spanwise components of
wavenumber b and bm are considered as zero.

After substituting (2.27)–(2.28) in (2.16)–(2.25) and neglecting the nonlinear terms in
the resulting equations, the perturbed governing equations and boundary conditions are as
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follows:
(D2 − a2 − ia Re Ū)(D2 − a2)W = −iσ Re(D2 − a2)W, (2.29)

(
D2

m − a2
m

χ
− 1

δ2

)
(D2

m − a2
m)Wm − iamRem

χ2 (D2
m − a2

m − D2
mŪm)Wm

= − iσmRem

χ
(D2

m − a2
m)Wm, (2.30)

W(1) = DW(1) = 0, (2.31)

Wm(−1) = DmWm(−1) = 0, (2.32)

Re W(0) = Remd̂Wm(0), Re DW(0) = Remd̂2DmWm(0), (2.33a,b)

D3W(0) − ia Re Ū(0)DW(0) + ia Re DŪ(0)W(0) − 3a2DW +
(

d̂4Rem

Re δ2

)
DmWm(0)

−
(

d̂4Rem

χ Re

)
D3

mWm(0) +
(

Remd̂4

χ Re

)
a2

mDmWm(0) −
(

d̂4Re2
m

χ2 Re

)
iamŪmDmWm

+
(

d̂4Re2
m

χ2Re

)
iamDmŪmWm = −iσ Re DW(0) + iσm

(
d̂4Re2

m

χ Re

)
DmWm(0), (2.34)

Re

d̂3
D2W(0) = Rem

χ
D2

mWm(0) − β

δ
RemDmWm(0), (2.35)

where D = d/dz and Dm = d/dzm.

2.4. Kinetic energy budget
An immediate way to check whether the given flow can be unstable or not under linear
theory is by looking at the sign of the rate of change of the disturbance kinetic energy
(i.e. the sign of growth rate of kinetic energy). For the flow to be unstable, the rate of
disturbance kinetic energy (δKE) of the system must change its sign from negative to
positive. Thus, to check the instability of the isothermal plane Couette flow as well as
the mechanism of instability, the help of the energy budget analysis is taken.

The kinetic energy balance equations are obtained by multiplying the disturbed velocity
vector to both sides of the linear disturbance momentum equations and then integrating
the equations over ([0, 1] × [0, 2π/a]) for fluid layer and ([−1, 0] × [0, 2π/am]) for
porous layer (Boomkamp & Miesen 1996; Sharma, Aleria & Bera 2024). Combining
the equations for fluid and porous layers, the kinetic energy balance equation takes the
standard form:

δKE = ∂(KE)

∂t
+ ∂(KEm)

∂tm
= Es + Ed + EI + Edm + EDm . (2.36)

In (2.36), the transfer of kinetic energy via Reynolds stress from or to the basic flow
is represented by Es, and energy dissipation via viscosity effects is represented by Ed
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Isothermal plane Couette flow over a porous layer

Material Porosity χ Pore size dp [m] Permeability K [m2] Darcy number δp = √
K/dp

Aloxite 1 0.58 3.30 × 10−4 6.45 × 10−10 7.70 × 10−2

Aloxite 2 0.52 6.86 × 10−4 1.60 × 10−9 5.83 × 10−2

Foametal A 0.78 4.06 × 10−4 9.68 × 10−9 2.42 × 10−1

Foametal B 0.78 8.64 × 10−4 3.93 × 10−8 2.29 × 10−1

Foametal C 0.79 1.14 × 10−3 8.20 × 10−8 2.51 × 10−1

Aluminium foam 1 0.92 2.50 × 10−3 2.35 × 10−7 1.93 × 10−1

Aluminium foam 2 0.95 4.95 × 10−3 2.48 × 10−7 1.006 × 10−1

Table 1. Geometrical characteristics of some porous materials (Paek et al. 2000; Goyeau et al. 2003;
Kamath, Balaji & Venkateshan 2011).

and Edm for fluid and porous layer, respectively. The energy loss against surface drag is
denoted by EDm . The disturbance kinetic energy due to work done by the perturbed stresses
at the interface between the porous and fluid layers is represented by EI . Here KE and
KEm denote the perturbed kinetic energy in the fluid and the porous layers, respectively.
The expressions of each term in (2.36) are given in Appendix B. The Gauss–Chebyshev
quadrature formula is used to compute the integrals in (2.36). The instability mechanism
of the flow and the type of mode are determined by the kinetic energy balance equation.
The contribution of Ed, Edm and EDm in the kinetic energy budget is used in this study
to define the type of mode. If the contribution of Ed (Edm + EDm) is greater than 70 % in
balancing the contribution of Es, the instability is said to be dominated by fluid (porous)
mode.

3. Numerical results and discussion

The Chebyshev spectral collocation method is used to solve the governing equations
(2.29)–(2.30) and boundary conditions (2.31)–(2.35). Since, the Chebyshev polynomials
are defined in [−1, 1], the fluid layer [0, 1] and porous layer [−1, 0] are transformed into
[−1, 1] by using the transformation η = 2z − 1 and ηm = −2zm − 1, respectively (Canuto
et al. 1988; Anjali, Khan & Bera 2022). Thus, (2.29)–(2.30) together with boundary
conditions (2.31)–(2.35) results in a generalised eigenvalue problem.

The flow is controlled by four parameters: depth ratio (d̂), porosity (χ), Darcy number
(δ) and stress-jump coefficient (β). In general, the porosity value for natural porous
media is < 0.6, where the Darcy model is normally used. However, for man-made porous
media (e.g. metallic foam), the same may be close to 1, in which the non-Darcy model
is preferred. A compilation of the porosity of some common porous materials is also
given in table 1, in which the Darcy number (δp) is defined based on the pore size. In
the present study, the Darcy number (δ) is defined based on the depth of the porous layer.
The porous layer in our study primarily consists of either foametal A or foametal B. As
mentioned in table 1, the Darcy number based on pore diameter (δp) for foametal A is
2.42 × 10−1, where porous diameter is 4.06 × 10−4 m. Darcy number based on the depth
of the porous layer (δ) can be given as δ = δp × dp/dm. For example, when the thickness
of the porous layer is 2.5 cm, δ will be approximately 0.004, whereas when the thickness
is 1 cm, δ will be around 0.01. In the case of foametal B with a porous layer thickness of
1 cm, δ is estimated to be about 0.02. Similarly, for aluminum foam with a porous layer
thickness of 0.5 cm, the value of δ will be approximately 0.1. Accordingly, δ is taken in
the range 0.005 ≤ δ ≤ 0.1 and χ is fixed at 0.78 for most of the analysis. The selection of
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N σ i σ r

30 −0.12848629 0.54461030
40 −0.12815094 0.54487819
50 −0.12816974 0.54486524
60 −0.12816926 0.54486506
70 −0.12816934 0.54486492
80 −0.12817038 0.54486537

Table 2. Convergence of the least-stable eigenvalue by Chebyshev spectral collocation method for a = 2,
Re = 500, d̂ = 0.12, χ = 0.78, δ = 0.009 and β = 0.

d̂ Re σ i σ r

3 1000 −0.06197180 0.24591209
10 000 −0.02240795 0.10421233

10 0000 −0.00706574 0.08622590
5 1000 −0.06036383 0.24873108

10 000 −0.03033481 0.11157825
100 000 −0.00728164 0.05335407

Table 3. Eigenvalues with largest imaginary part for different values of d̂ at a = 0.5, χ = 0.78, δ = 0.1 and
β = 0.

the range of the depth ratio is based on the fact that for 0.005 ≤ δ ≤ 0.01, the maximum
value of d̂ for which the flow will be linearly unstable is found to be around 0.2, in fact for
δ/d̂ < 10−1/2 the flow is linearly stable. To cover most of the range of δ, the upper limit
of d̂ is fixed at 0.2. On the other hand, decreasing d̂ beyond 0.01, the flow characteristics
remain almost the same on any further decrement of d̂. Thus, the lower limit of d̂ is fixed
at 0.01. Therefore, to understand the role of the location of interface on the stability of flow
d̂ has been considered in the range 0.01 ≤ d̂ ≤ 0.2. The effect of stress-jump coefficient
on the same is emphasised by taking two different values of 0 and 0.7 of β (Ochoa-Tapia
& Whitaker 1995b; Hill & Straughan 2009).

Before discussing the stability of the considered flow, the numerical code is verified
in three different stages: first, the independence of solution on the order of polynomial;
second, the comparison with existing results; and, third, whether the total rate of change
of kinetic energy at the critical point is zero or not. The convergence of the numerical
method is examined by varying the degree of Chebyshev polynomial, N, and is shown in
table 2. It can be seen that N = 70 is sufficient to perform the numerical calculations. It is
well known that plane Couette flow in a purely fluid channel is linearly stable (Romanov
1973; Orszag & Patera 1980). The similar characteristic is also observed for the present
problem when the value of depth ratio is large (see table 3). For verifying our results
with those of Chang et al. (2017), Darcy’s law is chosen to model the porous media
instead of the present model, and the Beavers–Joseph condition is used at the fluid–porous
interface. The comparison between present and existing results for χ = 0.3, δ = 0.001,
α = 0.1 (Beavers–Joseph constant) and a = 1.0 are listed in table 4 and a good agreement
between the results is found. Finally, it has been checked that the total rate of change
of kinetic energy at the critical point is zero (shown in the subsequent result section).
All the above analyses support the verification of the present numerical code. To check
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Isothermal plane Couette flow over a porous layer

d̂ Re ci (Chang et al. 2017) ci (present study)

0.5 104 −5.20861 × 10−2 −5.21074 × 10−2

106 −2.31748 × 10−3 −2.10192 × 10−3

1.0 104 −5.25143 × 10−2 −5.25325 × 10−2

106 −1.06924 × 10−2 −1.06896 × 10−2

10.0 104 −5.28401 × 10−2 −5.28577 × 10−2

106 −1.07809 × 10−2 −1.07802 × 10−2

Table 4. The largest imaginary parts of the leading eigenvalues obtained by Chang et al. (2017) and present
study for different values of d̂ and Re at χ = 0.3, δ = 0.001, α = 0.1 and a = 1.0.

Re

δKE

100 200 300 400 500 600 700 800
–0.2

–0.1

0

0.1

0.2

β = 0

β = 0.7

Figure 2. Growth rate of kinetic energy as a function of Re for a = 0.5, d̂ = 0.1, δ = 0.01 and χ = 0.78.

the possible existence of instability of the present problem, we have investigated whether
the δKE will change its sign from negative to positive or not as a function of Reynolds
number. It can be seen from figure 2 that the δKE changes its sign from negative to positive
for Re ∈ (100, 800), thus indicating that isothermal plane Couette flow in a superposed
fluid–porous system will be unstable under the consideration of present model.

Figure 3(a,b) shows the neutral stability curve for different values of depth ratio at β = 0
and β = 0.7, respectively, wherein the neutral curve has either a single or dual lobe. From
figure 3(a), for small values of depth ratio in the range (0.01 ≤ d̂ ≤ 0.05), the neutral curve
has a single lobe. As d̂ increases to 0.1, two lobes of the neutral stability curve appear and
Rec is observed in the left lobe. Whereas for d̂ = 0.2, Rec shifts to the right lobe of the
neutral stability curve. In the case of β = 0.7, single lobe of the neutral curve is obtained
for all considered values of d̂. Here, for increasing the value of the stress jump coefficient,
Rec decreases, which implies that the stress jump at the fluid–porous interface destabilises
the flow. For both values of β, Rec increases on increasing the depth of the fluid layer, i.e.
d̂ stabilises the flow.

The value of different terms of the kinetic energy balance equation as a function of d̂,
at the critical point obtained from figure 3, are plotted in figure 4(a,b) for β = 0 and 0.7,
respectively. It can be seen from figure 4(a), that the positive-definite term Es is mainly
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Figure 3. Neutral stability curves in (a, Re) plane for different values of d̂ at δ = 0.01 and χ = 0.78:
(a) β = 0; (b) β = 0.7.
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Figure 4. Different terms of kinetic energy balance as a function of d̂ at (ac, Rec) for δ = 0.01 and χ = 0.78:
(a) β = 0; (b) β = 0.7.

balanced by EDm for d̂ ≥ 0.05, whereas, for d̂ < 0.05, Es is balanced by Ed, Edm and EDm .
Along these lines, the mode of instability is defined as porous for d̂ ≥ 0.05, and mixed
for d̂ < 0.05. Similar characteristics can also be seen in figure 4(b). In this case, porous
and mixed mode dominate the instability for d̂ ≥ 0.04 and for d̂ < 0.04, respectively. It
is important to mention here that in contrast to β = 0, here, the instability of flow is due
to the combined effect of Es and EI . The destabilising nature of β in figure 3(b) is a
consequence of the sizable contribution of EI . Furthermore, a close look at figure 4(a)
discloses that there exists a threshold value of d̂(≈ 0.165), beyond which the contribution
of EDm suddenly decreases and corresponding Edm increases, which causes the shifting of
Rec from left to right lobe in figure 3(a).

As can be seen in the literature (Chang et al. 2017; Samanta 2020), the neutral curve
displays a bimodal form and then a unimodal form as the depth ratio increases where the
left lobe corresponds to the porous mode and the right lobe corresponds to the fluid mode.
In the present study, two lobes for d̂ ≥ 0.1 are obtained, and both lobes correspond to
porous mode only. Here, the porous mode also becomes more stable for increasing values
of d̂.
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Figure 5. The streamfunction pattern at δ = 0.01, χ = 0.78 and β = 0: (a) (ac, Rec) = (0.651, 140.913),
d̂ = 0.02; (b) (ac, Rec) = (0.551, 556.605), d̂ = 0.1.
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Figure 6. (a) Neutral stability curves for different values of δ and (b) energy components as a function of δ at
d̂ = 0.1, χ = 0.78 and β = 0.

The pattern of streamfunction at the critical states for d̂ = 0.02 and 0.1, obtained from
figure 3(a), are shown in figure 5(a,b), respectively, which allows for a deeper examination
of the primary instability mode and aids in visualising the flow dynamics. The fluid layer
extension from 0 to 1 and the porous layer extension from −1 to 0 are represented by
the vertical axis. The critical wavelength, which is scaled by d̂ for the porous layer, is
depicted on the horizontal axis. As we can see, streamfunction patterns occupy both layers,
however for d̂ = 0.1, the penetration in porous layer is more in comparison with the same
for d̂ = 0.02, thus representing the porous and mixed mode, respectively. These findings
support the results obtained from the energy budget analysis.

In order to understand the role of media permeability on the instability mechanism,
the neutral stability curve in the (a, Re)-plane for different values of Darcy number and
the corresponding energy budget spectrum at critical points are displayed in figure 6(a,b),
respectively. It is observed that at δ = 0.005, the neutral stability curve has two lobes,
both correspond to porous mode, and the critical value is obtained at (2.741, 4634.666).
The characteristic of the neutral stability curve remains the same for δ = 0.008 and 0.01,
but Rec decreases to 1794.759 and 556.605, respectively. On further increasing the value of
δ, the neutral stability curve with a single lobe is observed. Similar to figure 4, figure 6(b)
also displays porous and mixed mode for δ ≤ 0.02 and δ > 0.02, respectively. In addition,
also similar to figure 4, a jump in Edm and EDm can be seen at δ ≈ 0.007, which causes the
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Figure 7. (a) Neutral stability curves for different values of d̂; (b) energy components as a function of d̂
eliminating advection term at δ = 0.01, χ = 0.78 and β = 0.

shift in Rec from right to left lobe of neutral stability curve in figure 6(a). As mentioned
in Chang et al. (2006), wherein the Darcy model is considered, an increase in δ causes the
system to become more unstable. In the present study, the similar characteristic is observed
for the considered range of δ.

Now, we are curious to know whether the instability of Couette flow can be seen or not
when the inertial effect in terms of advection term is ignored in the considered model (from
here onwards, called the DB model). If it appears, how does the advection term influence
the instability mechanism? A comparative study between DB and DBA models is required.
To do so, we have eliminated the advection term (1/χ2)(um · ∇m)um in the momentum
equation (2.19) and a thorough analysis in terms of d̂, χ and δ is made. Figure 7(a)
represents the neutral stability curves for different values of d̂ and 7(b) displays the energy
budget spectrum as a function of d̂ at critical point. Here, the values of all other parameters
are kept the same as in figure 3(a). Similar to the DBA model, two lobes of neutral stability
curve for d̂ = 0.1, 0.13 and 0.2 are observed, and the least-stable Re moves from the left to
right lobe on increasing the value of d̂. The critical value, Rec, appears in the right lobe for
d̂ = 0.13 and 0.2. Furthermore, in contrast to the DBA model, for d̂ = 0.1, the instability
is observed for the entire range of a. Interestingly, as d̂ is increased from 0.01 to 0.05,
the critical value of Re decreases, i.e. increasing fluid layer thickness destabilises the flow.
However, further increasing of d̂ causes the flow to be more stable, i.e. Rec increases as
d̂ increases within the range, 0.05 ≤ d̂ ≤ 0.2. Thus, the stabilising nature of d̂, under the
DBA model, is not strictly followed when the advective term is dropped in the momentum
equation (see table 5). From figure 7(b), the transfer of kinetic energy via Reynolds stress
to the basic flow in fluid and porous layers (i.e. Es) is primarily balanced by Ed (EDm) when
d̂ < 0.055 (d̂ > 0.055). However, in the vicinity of d̂ = 0.055, both Ed and EDm contribute
equally. These result in fluid, porous and mixed modes for d̂ < 0.055, d̂ > 0.055 and in
the neighbourhood of 0.055, respectively. Note that in the range of d̂ where the fluid mode
prevails, the destabilising nature of d̂ can be seen.

The streamfunction patterns at the critical point for d̂ = 0.01, 0.055 and 0.2 are shown
in figure 8(a–c), respectively. It can be pointed out that, in the fluid mode, the patterns
are primarily confined to the fluid layer. In the mixed mode, the patterns extend into both
layers, but the penetration into the porous layer is minimal. In contrast, the porous mode
exhibits patterns distributed almost equally between both layers.

999 A61-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

94
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.944


Isothermal plane Couette flow over a porous layer

d̂ Rec (DB) Rec (DBA)

0.01 599.361 101.216
0.02 341.804 140.913
0.05 300.316 246.680
0.10 534.743 556.605
0.13 1519.994 1980.078
0.20 3515.223 4633.445

Table 5. The value of critical Reynolds number for different values of d̂ at δ = 0.01, χ = 0.78 and β = 0.
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Figure 8. The streamfunction pattern at δ = 0.01, χ = 0.78 and β = 0: (a) (ac, Rec) = (0.42, 599.361),
d̂ = 0.01; (b) (ac, Rec) = (0.77, 310.850), d̂ = 0.055; and (c) (ac, Rec) = (2.33, 3515.223), d̂ = 0.2.
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Figure 9. Variation of Rec as a function of χ for d̂ = 0.1 and β = 0: (a) δ = 0.005 and (b) δ = 0.01.

The effect of the advection term on flow instability for different porosity and
permeability is analysed in figure 9. A comparative study on instability boundary in
the (χ, Rec)-plane for DB as well as DBA models at δ = 0.005 and 0.01 is made in
figure 9(a,b), respectively. In contrast to a negligible change in Rec as a function of χ

for δ = 0.01, a significant change in the same at δ = 0.005 under the consideration of the
DBA model is observed. In addition, the change in Rec as a function χ under the DB
model is negligible. For both values of δ, the flow becomes more (less) unstable under the
DB model for χ > 0.62 (<0.62). It is also seen that porosity stabilises the flow under the
DBA model but under the DB model it first destabilises and then stabilises the flow. As we
have already seen, increasing media permeability (depth ratio) destabilises (stabilises) the
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Figure 10. (a) Variation of Rec and (b) energy components (DB model) as a function of δ at d̂ = 0.1,
χ = 0.78 and β = 0.

flow under the DBA model, but the influence of d̂ on the flow stability under the DB model
is not straightforward. A natural question that arises is whether the influence of δ under
the DB model will remain straightforward or not. To shed more light in this direction,
variation of Rec as a function δ is analysed in figure 10. It reveals that, for the DBA model,
the critical Reynolds number (Rec) decreases as the parameter δ increases. In contrast,
when considering the DB model, Rec initially decreases with increasing δ, followed by an
increase as δ increases, which may be the consequence of mode change from porous to
fluid.

It is worth mentioning here that the above theoretical prediction can be helpful in
different engineering applications wherever Couette flow in a fluid overlying porous
medium is encountered, specifically, the movement of ships in a port or shallow ocean.
For example, the ship’s propeller-induced flow mimics a scenario of Couette flow in fluid
overlying a sedimented porous bottom (Kadir et al. 2024). To avoid damage to the aquatic
ecosystem and sediment erosion, the ship’s operator has to know the ship’s appropriate
maximum velocity, depth of water and nature of the seabed, i.e. quality of permeable sea
bed, so that the fluid layers at the fluid–porous interface do not mix, i.e. the flow remains
stable and smooth. This information will further optimise the pressure gradient at sediment
and, thus, will help in preventing the erosion of sediment.

4. Conclusion

The current study examines the instability of isothermal Couette flow through a
superposed fluid–porous system. The flow in the fluid layer is governed by the NS
equation, whereas, in the porous layer, it is governed by the volume-averaged NS equation.
Two situations have been considered: first, considering the inertial effect due to the
advection term; and, second, ignoring the inertial effect due to the advection term. Using
the Chebyshev spectral collocation method, the Orr–Sommerfeld eigenvalue problem is
solved numerically. Even though it is known that the plane Couette flow in fluid overlying
Darcy porous layer is always stable, its unstable behaviour is found for both the situations
mentioned above. Three different modes are identified on the basis of the energy budget
spectrum, and they are named as porous, fluid and mixed modes.

For the DBA model, the mode of instability changes at d̂ ≈ 0.05 and δ ≈ 0.02 when
β = 0. A single lobe of the neutral curve corresponding to mixed mode is observed for δ =
0.01 and 0.01 ≤ d̂ ≤ 0.05. On further increasing the value of d̂, two lobes of the neutral
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d̂ b Rec

0.02 0.0 140.918
0.1 142.608
0.3 157.203

0.13 0.0 1980.200
0.1 2065.627
0.3 3353.320

Table 6. The values of Rec for different values of b at χ = 0.78, δ = 0.01 and β = 0.

stability curve are seen and both lead to porous mode. It has been also noted that the critical
value of Re shifts from left to right lobe on increasing (decreasing) values of d̂ (δ). In this
situation, a sudden increase of the contribution of Edm and decrease of the same on Ed in
the energy balance are seen. The stress-jump coefficient changes instability characteristic
significantly and reduces the critical value of Re via energy production through stresses
and velocities at the interface. Similar to plane Poiseuille flow (Deepu, Anand & Basu
2015), decreasing d̂ (increasing δ) increases the instability of the flow.

It has been found that in contrast to the DB model, for a relatively low permeable porous
layer the critical value of Re changes significantly as a function of χ under the DBA model.
However, there exists a threshold value of 0.62 of χ at which the instability boundary under
both models remains the same. Beyond this threshold value, the inertial effect delays the
onset of instability. Furthermore, whenever the fluid mode of instability is encountered in a
certain range of d̂ (δ) under the DB model, the respective parameter acts as a destabilising
(stabilising) factor.

Due to the lack of experimental work in this direction, the findings from the present
study will also act as a stepping stone for experimentalists working in this direction.
Furthermore, to have a deeper understanding of the flow mechanics that includes
transitions to turbulence, a nonlinear stability analysis via cubic Landau theory (Sharma,
Khandelwal & Bera 2018; Aleria, Khan & Bera 2024) or direct numerical simulations is
required. These works are left for future study.

Acknowledgements. One of the authors, P.B. dedicates this work to Prof. K. Muralidhar, Indian Institute
of Technology Kanpur, India, on his 66th birth anniversary. N.B. expresses gratitude to the Ministry of
Human Resource Development (MHRD), India for providing financial support during, and the National
Supercomputing Mission (NSM) for providing computing resources on ‘PARAM Ganga’ at IIT Roorkee. The
authors acknowledge Mr Ajay Sharma, PhD Scholar, IIT Roorkee, for his valuable suggestion.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
N. Barman https://orcid.org/0000-0002-0355-1268;
A. Aleria https://orcid.org/0000-0002-7802-6855;
P. Bera https://orcid.org/0000-0002-9030-984X.

Appendix A. Least-stable mode

Considering three-dimensional perturbation, table 6 indicates that the least-stable mode is
always two-dimensional.
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d̂
Rec (Ochoa-Tapia &

Whitaker 1995a)
Rec (Jones 1973; Hill &

Straughan 2009)

0.01 101.216 100.289
0.02 140.913 140.408
0.05 246.680 247.878
0.10 556.605 558.753
0.13 1980.078 1980.620
0.20 4633.445 4746.314

Table 7. The value of critical Reynolds number for different values of d̂ at δ = 0.01, χ = 0.78 and β = 0.

Appendix B. Expressions in the kinetic energy balance

The expressions in the kinetic energy balance are as follows:

KE = 1
2λ

∫ 1

0

∫ λ
0

(u′2 + w′2) dx dz, (B1)

KEm = 1
2λmχ

∫ 0

−1

∫ λm

0
(u′2

m + w′2
m) dxm dzm, (B2)

Es = −1
λ

∫ 1

0

∫ λ
0

u′w′
(

dŪ
dz

)
dx dz − 1

λmχ2

∫ 0

−1

∫ λm

0
u′

mw′
m

(
dŪm

dzm

)
dxm dzm, (B3)

Ed = − 1
λRe

∫ 1

0

∫ λ
0

[(
∂u′

∂x

)2

+
(

∂u′

∂z

)2

+
(

∂w′

∂x

)2

+
(

∂w′

∂z

)2
]

dx dz, (B4)

Edm = − 1
λmRemδ2

∫ 0

−1

∫ λm

0

[(
∂u′

m

∂xm

)2

+
(

∂u′
m

∂zm

)2

+
(

∂w′
m

∂xm

)2

+
(

∂w′
m

∂zm

)2
]

dxm dzm,

(B5)

EDm = − 1
λmRemδ2

∫ 0

−1

∫ λm

0
(u′2

m + w′2
m) dxm dzm, (B6)

EI = 1
λRe

∫ 1

0

[
w′p′ −

(
u′ ∂u′

∂z
+ w′ ∂w′

∂z

)]
z=0

dx

− 1
λmRemχ

∫ 0

−1

[
χw′

mp′
m −

(
u′

m
∂u′

m

∂zm
+ w′

m
∂w′

m

∂zm

)]
zm=0

dxm, (B7)

where λ = 2π/a and λm = 2π/am.

Appendix C. Comparison of stress conditions at the interface

In this Appendix, we present a comparison of the results obtained using two different
tangential stress conditions at the interface of a two-layer system: one suggested by
Ochoa-Tapia & Whitaker (1995a) and the other being the generalised Jones condition
(Jones 1973). Table 7 summarises the critical Reynolds numbers for different values
of d̂.
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