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A two-dimensional system with a floating cylinder confined between two parallel vertical
stationary plates partially immersed in an infinite liquid bath in a downward gravity field is
considered. The equilibrium states of the system are investigated using the Young–Laplace
equation in two dimensions. According to the symmetry of menisci at both sides of
the cylinder, the equilibrium states are classified into three types: the equilibria of fully
symmetric menisci, the equilibria of partially symmetric menisci and the equilibria of
asymmetric menisci. The study is then extended to investigate the stabilities of the confined
cylinder with bifurcation theory. Results show that there can be at most two stable regions
in the bifurcation diagram. For different plates’ contact angles, there are five representative
types of bifurcation behaviours for either the case of one stable region or the case of two
stable regions. In comparison with the case of an unconfined cylinder, the confinement by
two hydrophobic plates with a small spacing can assist the stable interfacial floatation of
the confined cylinder with a large weight.

Key words: capillary flows

1. Introduction

Floating solid bodies widely exist in nature and industry (Bush & Hu 2006). Recently,
interfacial machines or robotics (Bowden et al. 1997; Hu et al. 2018; Basualdo et al.
2021), for example, designed for the purposes of assembly, manipulation and multimodal
locomotion, become one of hot study areas. Whether stationary or in motion, one of the
floating solid bodies may be situated in a place between two surface-piercing bodies.
The floating solid body may lose its equilibrium and stability under the effect of surface
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tension when the two surface-piercing bodies are close enough. It is significant to study
the equilibria and the stabilities in this situation.

The floating problem can be dated back to Archimedes’ work. According to
Archimedes’ work, a floating (or sinking) configuration is determined by the magnitude of
the physical density of the object relative to that of the liquid (McCuan & Treinen 2013).
There are possible multiple equilibrium configurations for large-sized symmetric floating
solid bodies when the effect of surface tension is negligible (Erdös, Schibler & Herndon
1992a,b). The equilibria of moments and stabilities are dependent on the position of the
buoyancy centre relative to the centre of gravity (Biran 2003).

For a small enough floating solid body, the surface tension force becomes one of
dominant forces. The equilibrium configurations and stabilities accordingly become more
complex. Under the effect of surface tension, solid bodies heavier than the liquid can
float (see Vella (2015) for a review), or exotic properties occur, i.e. a continuum of
equilibrium menisci exists in a constrained axisymmetric container (Concus & Finn
1991; Concus, Finn & Weislogel 1999) or an axisymmetric tube (Wente 2011; Zhang &
Zhou 2020). The surface tension force is determined by the liquid–gas interface shape,
which can be calculated by solving the nonlinear Young–Laplace equation, which can
be solved for cases having axial symmetry (Concus 1968; Padday 1971; Majumdar &
Michael 1976) or based on the two-dimensional hypothesis for a floating cylinder with
a regular cross-section (Bhatnagar & Finn 2006; Janssens, Chaurasia & Fried 2017) or an
arbitrary convex cross-section (Zhang, Zhou & Zhu 2018). Multiple vertical and rotational
equilibrium configurations and rich stabilities are found for cylinders with various convex
cross-sections (Zhang et al. 2018).

There is attraction or repulsion between two floating solid bodies under the surface
tension (Ho, Pucci & Harris 2019). Recently, researchers conducted studies concerning
the net horizontal force between two vertical plates (Bullard & Garboczi 2009; Finn 2010,
2013; Bhatnagar & Finn 2013; Finn & Lu 2013; Aspley, He & McCuan 2015; Bhatnagar
& Finn 2016b). The hydrostatics of the three-object system is analogous to that of objects
floating on a narrow water bath or floating objects between other floating objects. The
capillary forces of the middle object due to the two-side objects are more complex than
the two-object system.

Only vertical equilibria of a floating cylinder situated on the centre line of a laterally
finite water bath in two dimensions were theoretically investigated by McCuan & Treinen
(2018). A contact angle π/2, at which the equilibrium configurations will never be
non-physical, was chosen to analyse the non-uniqueness of the equilibrium states for the
neutrally wetted cylinder. The three-plate system was theoretically studied by Zhou &
Zhang (2017) based on the nonlinear Young–Laplace equation and rich equilibria and
stabilities of the middle plate were found by setting the three plates to have different
contact angles and continuously changing the horizontal distances among the three plates.
Specifically, five non-trivial qualitative horizontal force profiles were found to possibly
depend on the contact angles and the distances, and for different contact angles, there
were at most eight possible bifurcation diagrams where the distance between the plates
on both sides was chosen as the bifurcation parameter. The number and the stabilities of
horizontal equilibria will change when the bifurcation parameter passes the critical value
(Zhou & Zhang 2017). The actual shape of the middle object is more complex than a
middle vertical plate and should have richer equilibria and stabilities. For example, the
vertical and horizontal equilibria and stabilities of the middle floating object of a shape
other than a vertical plate at different positions when setting the walls of the middle object
and the lateral plates to have different contact angles have not been considered previously.
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Figure 1. Schematic of the capillary system of a floating cylinder confined between two parallel vertical
surface-piercing plates in a downward gravity field. The cylinder with a contact angle θ is located at (xc, yc).
The contact angles of plate PL and plate PR are equal, denoted by γ . The distance between the two plates is
denoted by D.

This paper is structured as follows. In § 2, a mathematical model of the three-object
system with the middle cylinder floating between two parallel vertical stationary plates
is developed based on the nonlinear Young–Laplace equation in two dimensions, and
the forces on the middle cylinder are analysed. By letting the resultant force be equal
to zero, the equilibria of the system can be solved numerically (see details in Appendix C).
According to the symmetry of the equilibrium configuration, three types of equilibria of
the capillary system are discussed in § 3. In § 4, as the wettability of the plates and the
distance between the plates vary, the stabilities of these equilibria are investigated with the
bifurcation theory. In § 5, main conclusions are drawn from the analysis.

2. Model

Consider a two-dimensional horizontally floating cylinder laterally confined between
two parallel vertical stationary plates partially immersed in an infinite liquid bath in a
downward gravity field, as shown in figure 1. The cylinder of radius r can move freely
in the vertical direction and translate horizontally between the two vertical plates (PL and
PR) which are fixed at a distance of D. The origin of Cartesian coordinates (x, y) is located
at the point of intersection of the right surface of the plate PL and the undisturbed liquid
line. The height y of the undisturbed liquid line is kept constant: y = 0. We suppose that
the cylinder is laterally confined in an environment with the uniform property, that is, the
two plates are constructed of the same material. The equal contact angles of the liquid on
the two plates are denoted by γ . A representative contact angle θ = π/2 of the cylinder is
chosen in this paper for simplicity. We find that, as expected, for other values of θ , neither
the equilibrium types nor the stability behaviour of equilibria will be beyond the scope
of the case of θ = π/2. Besides, every possible equilibrium configuration is physical at
θ = π/2 (see non-physical configurations in figure 3 in McCuan & Treinen 2018).

The inclination angles of the liquid surfaces at the four key contact points 1, 2, 3 and 4
are denoted by ψi (i = 1, 2, 3 and 4). At any point on a meniscus with the shape expressed
as y(x), the sign and magnitude of the inclination angle can be determined by ψi =
arctan(dy/dx). For this situation as shown in this figure, ψ1 and ψ2 are negative while
ψ3 and ψ4 are positive. Also, α2 and α3 denote the azimuthal angles of the contact points
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2 and 3 on the cylinder, respectively; α2(α3) is measured clockwise (counterclockwise)
starting from the negative (positive) direction of the x axis, which are both positive for this
figure; S12 (S34) is the meniscus at the left (right) side of the cylinder.

2.1. Young–Laplace equation in two dimensions
It is assumed that the menisci in the capillary system are in equilibrium. The height
y(x) of the liquid surface is governed by the well-known Young–Laplace equation in two
dimensions, which is given by

(
yx√

1 + y2
x

)
x

= κy. (2.1)

In (2.1), the subscript x represents the derivative with respect to the coordinate x (i.e.
(·)x ≡ d(·)/dx), κ is the capillary constant equal to ρlg/σ , where ρl is the density
difference between liquid and gas (while we neglect the density of gas in this paper),
g is the gravitational acceleration and σ is the surface tension coefficient. Bhatnagar &
Finn (2016a) proposed a parametrization form of the Young–Laplace equation in two
dimensions

dx
dψ

= cosψ
κy

,
dy
dψ

= sinψ
κy

, (2.2a,b)

where the parameter ψ denotes the inclination angle of the interface (tanψ = dy/dx). A
first integral of (2.2b) gives (Bhatnagar & Finn 2016a; Zhou & Zhang 2017)

κ

2
y2 + cosψ = c ≡ const. (2.3)

For a prescribed point (x∗, y∗) at a meniscus, the integration constant c of the meniscus
can be uniquely determined from (2.3) if the inclination angle ψ∗ of the meniscus at the
prescribed point is also known. By explicitly integrating the terms of (2.2a,b), the solution
curves of the Young–Laplace equation in two dimensions are given parametrically by

x − x∗ = ± 1√
2κ

∫ ψ

ψ∗

cosτ dτ√
c − cosτ

, ψ ∈
[
ψ∗,

π

2

]
, (2.4a)

y = ±
√

2(c − cosψ)
κ

. (2.4b)

From (2.4), it can be inferred that there are two corresponding solution curves for one
integration constant c, as is shown in figure 12 in Appendix A. While the contact angle
boundary conditions can be satisfied for only one of the two curves. After the integration
constant c of a meniscus is obtained, the meniscus profile y(x) can be determined uniquely
(see Appendix A).

The integration constants of the menisci S12 and S34 in figure 1 are denoted by c12
and c34, respectively. From (2.3), c12(c34) can be expressed in terms of the height and the
inclination angle of the interface at contact point 2 (contact point 3). Also, we give c12(c34)
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in terms of the height yc of the cylinder centre and the azimuthal angle α2 (α3)

c12 = κ

2
(yc + r sinα2)

2 + cos
(
−α2 − θ + π

2

)
, (2.5a)

c34 = κ

2
(yc + r sinα3)

2 + cos
(
α3 + θ − π

2

)
. (2.5b)

For two arbitrary points I and II on a meniscus, the horizontal distance d = |xII − xI|
can be obtained from (2.4a). Zhou & Zhang (2017) proposed that the horizontal distance
d can be expressed in a unified form with the elliptical integrals. Based on the inclination
angles rather than the contact angles as used in Zhou & Zhang (2017), the horizontal
distance d can be rewritten as a function about the integration constant c of the menisci
from (2.4a)

d(c;ψI, ψII) =
∣∣∣∣ 1√
κ

{a[E(βII, k)− E(βI, k)] − b[F(βII, k)− F(βI, k)]}
∣∣∣∣ , (2.6)

where ψI and ψII denote the inclination angles of the meniscus at the two arbitrary points
I and II, respectively, E and F are elliptical integrals of the first kind and the second kind,
respectively, k represents the elliptical modules, βI and βII are the amplitudes for the two
points I and II, respectively, and the parameters a, b, k, βI and βII are all given in table 1
in Appendix B.

2.2. Geometric constraints
For the contact points 1 and 4 on the plates, the inclination angles ψ1 and ψ4 are related
to the plates’ contact angle γ , while for the contact points 2 and 3 on the cylinder, the
inclination angles ψi (i = 2 and 3) are related to the cylinder’s contact angle θ and the
azimuthal angles αi (i = 2 and 3). The four inclinations are expressed as

ψ1 = γ − π

2
, ψ4 = −γ + π

2
, (2.7a,b)

ψ2 = −α2 − θ + π

2
, ψ3 = α3 + θ − π

2
. (2.7c,d)

In this work, we set −π/2 ≤ ψi ≤ π/2 (i = 1, 2, 3 and 4) and −π/2 ≤ αi ≤ π/2 (i = 2
and 3).

With the cylinder located at (xc, yc), the horizontal distance between the contact points 1
and 2 and the horizontal distance between the contact points 3 and 4 can both be expressed
in terms of the function (2.6), which gives d(c12;ψ1, ψ2) and d(c34;ψ3, ψ4). Substituting
(2.7a–d) into d(c12;ψ1, ψ2) and d(c34;ψ3, ψ4), the two horizontal distances satisfy the
following relations:

d
(

c12; γ − π

2
,−α2 − θ + π

2

)
= xc − r cosα2, (2.8a)

d
(

c34;α3 + θ − π

2
,−γ + π

2

)
= D − xc − r cosα3, (2.8b)

where c12(c34) can be expressed in terms of yc and α2(α3) from (2.5a,b). We set D > 2r
and r < xc < D − r to ensure that the cylinder will not touch either plate.
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2.3. Forces of the cylinder
For the floating cylinder with static menisci, the forces acting on it are the surface tension
force T 2 at the contact point 2, the surface tension force T 3 at the contact point 3, the
pressure force P (due to hydrostatic pressure) and the weight force f g. The net force f
exerted on the cylinder is given by

f = T 2 + T 3 + P + f g. (2.9)

The sum of the two horizontal components of the surface tension forces T 2 and T 3 is
given by

T2h + T3h = σ cos
(
α3 + θ − π

2

)
− σ cos

(
−α2 − θ + π

2

)
. (2.10)

The pressure force P can be calculated by integrating the hydrostatic pressure over the
wetted cylinder surface (Keller 1998). We have the horizontal component of P as

Ph = 1
2ρlg(yc + r cosα3)

2 − 1
2ρlg(yc + r cosα2)

2. (2.11)

The horizontal resultant force fh is the sum of T2h, T3h and Ph. From (2.5), fh can be
expressed in terms of the integration constants c12 and c34

fh = σ(c34 − c12). (2.12)

For an unconfined cylinder floating in an infinite bath (without plates), the horizontal
balance is satisfied automatically for c12 = c34 = 1 (Bhatnagar & Finn 2016a; Zhang et al.
2018). Accordingly, the formula (2.12) of the horizontal resultant force can be generalized
to the floating object of any shape whether it is confined or not.

Zhang et al. (2018) proposed that the pressure force P can be decomposed into the
buoyancy force and the compensating pressure force, which makes the calculation of the
vertical resultant force fv convenient. The formula of fv is given by (Zhang et al. 2018)

fv = −ρlg
2

r(cosα2 + cosα3)(2yc + r sinα2 + r sinα3)

− σ [cos(α2 + θ)+ cos(α3 + θ)] + ρlg
π + α2 + α3 + sin(α2 + α3)

2
r2 − fg,

(2.13)
where fg denotes the norm of the weight force vector f g.

Provided that the liquid, the air and the cylinder (solid) are all homogeneous, the
resultant moment exerted on the cylinder about its centre is always zero regardless of the
position and shape of the contact line (Singh & Hesla 2004; Janssens et al. 2017). Thus the
rotational equilibrium of the cylinder is reached automatically. Equilibrium of the cylinder
can be attained as long as both of the net force components fh and fv vanish

σ(c12 − c34) = 0, (2.14a)

−ρlg
2

r(cosα2 + cosα3)(2yc + r sinα2 + r sinα3)− σ [cos(α2 + θ)

+ cos(α3 + θ)] + ρlg
π + α2 + α3 + sin(α2 + α3)

2
r2 − fg = 0.

(2.14b)

2.4. Scaling
To facilitate the analysis below, a scaling is adopted in which lengths are measured relative
to the capillary length

√
1/κ , and forces are measured relative to πr2ρlg, i.e. the weight
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of the cylinder if its density equals ρl. The following dimensionless lengths and force
components are used:

{x̄, ȳ, r̄, D̄, x̄c, ȳc, d̄(c;ψI, ψII)} = {x, y, r,D, xc, yc, d(c;ψI, ψII)}/
√

1/κ, (2.15a)

{f̄h, f̄v, f̄g} = {fh, fv, fg}/πr2ρlg. (2.15b)

In this scaling, the dimensionless weight f̄g is actually the ratio of the cylinder density ρs
to the liquid density ρl.

For the solution curves (2.4a,b) of the Young–Laplace equation in two dimensions, the
dimensionless counterparts give

x̄ − x̄∗ = ± 1√
2

∫ ψ

ψ∗

cos τ dτ√
c − cos τ

, ψ ∈
[
ψ∗,

π

2

]
, (2.16a)

ȳ = ±
√

2(c − cosψ). (2.16b)

For (2.5a,b) determining the integration constants c12 and c34, the dimensionless
counterparts give

c12 = 1
2
(ȳc + r̄ sinα2)

2 + cos
(
−α2 − θ + π

2

)
, (2.17a)

c34 = 1
2
(ȳc + r̄ sinα3)

2 + cos
(
α3 + θ − π

2

)
. (2.17b)

For the distance function (2.6), we obtain the dimensionless form as

d̄(c;ψI, ψII) = |a[E(βII, k)− E(βI, k)] − b[F(βII, k)− F(βI, k)]|, (2.18)

where the parameters a, b, k, βI and βII (given in table 1 in Appendix B) are all
dimensionless. For the geometric relationship (2.8a,b), we obtain

d̄
(

c12; γ − π

2
,−α2 − θ + π

2

)
= x̄c − r̄ cosα2, (2.19a)

d̄
(

c34;α3 + θ − π

2
,−γ + π

2

)
= D̄ − x̄c − r̄ cosα3. (2.19b)

For the horizontal resultant force (2.12) and the vertical resultant force (2.13), we obtain

f̄h = c34 − c12, (2.20)

f̄ v = − 1
2πr̄

(cosα2 + cosα3)(2ȳc + r̄ sinα2 + r̄ sinα3)

− [cos(α2 + θ)+ cos(α3 + θ)]
πr̄2 + π + α2 + α3 + sin(α2 + α3)

2π
− f̄ g.

(2.21)

For the equilibrium conditions (2.14a,b) of the cylinder, we obtain

c12 = c34, (2.22a)

− 1
2πr̄

(cosα2 + cosα3)(2ȳc + r̄ sinα2 + r̄ sinα3)− 1
πr̄2 [cos(α2 + θ)+ cos(α3 + θ)]

+ π + α2 + α3 + sin(α2 + α3)

2π
− f̄ g = 0.

(2.22b)
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3. Equilibrium analysis

For an unconfined cylinder horizontally floating in equilibrium in an infinite bath (without
plates), the menisci at the two sides of the cylinder are symmetric about the vertical
symmetry axis of the cross-section. The integration constants of the two menisci are both
equal to 1 (Bhatnagar & Finn 2006; Chen & Siegel 2018). However, this is not the case
for the floating cylinder confined between the two plates. From the horizontal balance
condition (2.22a), the integration constant c12 of the meniscus S12 and the integration
constant c34 of the meniscus S34 are equal but not necessarily equal to 1, which may lead
to different equilibrium states.

All the equilibrium states including meniscus profiles can be obtained by solving (2.19)
and (2.22) numerically (see Appendix C). According to the symmetry (or asymmetry) of
the two menisci S12 and S34 at the two sides of the cylinder, the equilibrium solutions
are classified into three types: the equilibrium solutions of fully symmetric menisci, the
equilibrium solutions of partially symmetric menisci and the equilibrium solutions of
asymmetric menisci. For the equilibrium of fully symmetric menisci, the two menisci
S12 and S34 are fully symmetric about the vertical symmetry axis of the cross-section of
the cylinder (see figure 2a,b). For the equilibrium of partially symmetric menisci, one
meniscus is symmetric to part of another meniscus about the vertical symmetry axis of
the cross-section of the cylinder (see figure 2c,d). For the equilibrium of asymmetric
menisci, the two menisci S12 and S34 are asymmetric about the vertical symmetry axis
of the cross-section of the cylinder (see figure 2e).

3.1. Equilibria of fully symmetric menisci
Intuitively, there exists an equilibrium that the floating cylinder is located centrally
between the two plates and the menisci at the two sides (S12 and S34) are fully symmetric
about the vertical symmetry axis of the cylinder’s cross-section (see figure 2a,b). From
the symmetry, it can be inferred that the azimuthal angles of the contact points 2 and 3 are
equal. For the equilibria of fully symmetric menisci, we have x̄c = D̄/2 and α2 = α3 = α.

With fully symmetric menisci at the two sides, the resultant vertical force profiles of the
unconfined cylinder floating in an infinite bath and the confined cylinder floating between
two parallel vertical plates are shown in figure 3(a). We assume that all states in figure 3(a)
are in equilibrium for there can exist an extra vertical body force (not the weight) to
counteract the vertical unbalance with f̄y /=0. A good agreement of force profiles can
be found between the unconfined case (in Zhang et al. 2018) and the confined case with
D̄ = 20r̄. Letting the vertical resultant force f̄y = 0 in figure 3(a), these equilibria can be
reached spontaneously (without the extra body force), the menisci of which are depicted
in figure 3(b). The weight f̄g = 0.5 of the cylinder is chosen in order that the weight force
f g balances the pressure force P alone at the equilibrium of the unconfined case. At this
equilibrium state, the cylinder is half-immersed and the menisci at the two sides are flat,
which can be expressed as ȳ(x̄) = 0 (see dashed line with red circles in figure 3b). For
the confined cases, as the distance D̄ between the two plates increases, the menisci in the
vicinity of contact points on the cylinder get flat and the effect of plates on the cylinder
diminishes gradually.

There are at most two equilibria for an unconfined cylinder floating in an infinite
bath (Chen & Siegel 2018). However, for a confined cylinder floating between two
parallel vertical plates, there are possibly more than two equilibria. An example of three
equilibria of fully symmetric menisci for a two-dimensional cylinder floating in a lateral
finite container with a liquid volume constraint is shown by McCuan & Treinen (2018).
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Figure 2. Different types of equilibrium states: (a,b) the equilibria of fully symmetric menisci, (c,d) the
equilibria of partially symmetric menisci and (e) the equilibria of asymmetric menisci. Red solid curves
represent parts of menisci symmetric to each other. Dashed curves demonstrate the equivalent equilibrium
states. Physical parameters in (a-d) are the same, and are given by D̄ = 3, r̄ = 0.5, γ = π/3, θ = π/2
and f̄g = 3.714. There is no equilibrium of asymmetric menisci for the parameters given in (a–d). Physical
parameters in (e) are the same as those in (a–d) except f̄g = 0.595.

While, in this paper, there is no liquid volume constraint for the capillary system. The
Young–Laplace equation of volume constraint is given by (Finn 1986)(

Yx√
1 + Y2

x

)
x

= κY + λ, (3.1)

where Y denotes the meniscus height with volume constraint and λ is a constant related to
the volume constraint. Comparing (2.1) and (3.1), we can obtain the relation that

Y(x)− y(x) = λ/κ. (3.2)

For the capillary system with volume constraint, λ/κ denotes the height variation of the
reference point where the hydrostatic pressure is zero. Apparently, the volume constraint
may bring a vertical translation for the whole equilibrium configuration but it will
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γ

π/2π/3π/6

Unconfined (Zhang et al. 2018)

α

D̄/2

f̄ y = 0

D̄ = 9r̄

D̄ = 5r̄
D̄ = 7r̄

D̄ = 20r̄

D̄ = 3r̄

r̄

(a)

(b)

Figure 3. (a) Resultant vertical forces f̄y of confined and unconfined cases for different azimuthal angles
α2 = α3 = α, and (b) right menisci of confined and unconfined cases for f̄y = 0 in (a). The meniscus of the
unconfined case (dashed line with red circles) is in a horizontal line across the centre of the cylinder. Each of
the other menisci in (b) corresponds to the force profile in (a) with the same colour. The following parameters
are given: r̄ = 0.553, f̄g = 0.5, θ = π/2 and θ = π/4.

not change the meniscus shape. After an equilibrium configuration without volume
constraint (not necessarily with fully symmetric menisci) is determined, the equilibrium
configuration with volume constraint can be obtained by finding the distance between the
cylinder and the bottom of the container to satisfy the specific volume.

To validate our numerical method, the relation of the weight f̄g and the azimuthal angle
α at the equilibria of fully symmetric menisci is depicted in figure 4(a). For f̄g = 0.99, the
three equilibrium solutions about the azimuthal angle α (i.e. α = 0.013, 0.215 and 0.613)
are in a good agreement with those by McCuan & Treinen (2018).

Here and hereinafter, there can exist some equilibrium states of negative weight f̄g (see
negative values of α in figure 4a), these are equivalent to cases in which there exists an
extra upward body force on the cylinder, pulling the cylinder out of the bath (Benilov
& Oron 2010). Further, we find that there can be at most four equilibrium solutions
for f̄g = 1.06 in figure 4(a), the menisci of which are depicted in figure 4(b). Based on
a comprehensive study, we find that three or four equilibria may occur only when the
distance satisfies 2r̄ < D̄ <∼ 2.01r̄ and the radius satisfies r̄ >∼ 3. The floating cylinder can
hardly move horizontally when 2r̄ < D̄ <∼ 2.01r̄, and the capillary effect is relatively weak
with the radius much larger than the capillary length. As a result, the cases with more
than two equilibrium solutions of fully symmetric menisci will not be focused on in the
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1.5
0.013 0.215 0.613
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1.06

α
0

f̄ g
0.95r̄

0.161r̄

0.2r̄

0.997r̄

0.0165r̄

0.02r̄

Plate

α

r̄
r̄

r̄

(a) (b)

Figure 4. (a) Weight f̄g versus azimuthal angle α in the equilibria of fully symmetric menisci. The three blue
circles correspond to the three equilibrium solutions for f̄g = 0.99 in McCuan & Treinen (2018). It should
be noted that the dimensionless weight f̄g is equivalent to the density ratio in McCuan & Treinen (2018).
The red, orange, purple and green triangles represent four equilibrium states of f̄g = 1.06. Panel (b) shows
the four equilibrium states of f̄g = 1.06. Each of the menisci (denoted by red, orange, purple or green curves,
respectively) corresponds to the triangle with the same colour in (a). The following parameters are used: D̄ = 8,
r̄ = 3.996, θ = π/2 and γ = π/2.

following sections. The cases of D̄ = 1.1 ∼ 3 and r̄ = 0.5 with at most two equilibrium
solutions of fully symmetric menisci will be mainly taken as examples to conduct further
analysis.

The stability analysis is performed for the equilibrium points of f̄g = 0.99 and 1.06
(denoted by circles and triangles, respectively, in figure 4a) in advance with the method in
§ 4. Under the effect of plates, the vertical stabilities of the equilibria of fully symmetric
menisci are enhanced (see § 4.2), with the result that all points except the rightmost point of
f̄g = 1.06 are vertically stable, while only the second equilibrium points (from left) of f̄g =
0.99 and f̄g = 1.06 are vertically stable and horizontally stable. Although the existence of
a liquid volume constraint will not influence the equilibrium configuration, it can influence
the stabilities of the equilibria, especially for the sensitive case D̄ ≈2r̄. The equilibrium
point of (α, f̄g) = (0.215, 0.99) is vertically stable for the case without volume constraint
in this paper, while this point is vertically unstable for the case with volume constraint as
also shown in McCuan & Treinen (2018).

3.2. Equilibria of partially symmetric menisci
For the equilibrium of partially symmetric menisci, the meniscus at one side is symmetric
to part of the meniscus at the other side (see figure 2c,d). From symmetry, the azimuthal
angles at the contact points 2 and 3 are also equal. Strictly speaking, the floating cylinder
should not be located centrally between the two plates, otherwise this state belongs to the
equilibria of fully symmetric menisci. For the equilibria of partially symmetric menisci,
we have x̄c /=D̄/2 and α2 = α3 = α.

At the equilibria of partially symmetric menisci, the horizontal position x̄c varies with
the weight f̄g of the cylinder. The solution curves of f̄g versus x̄c at these equilibria are
shown in figure 5, supposing that the radius r̄, the contact angle θ of the cylinder and the
distance D̄ between the two plates are all fixed. Several equilibrium points for x̄c = D̄/2 on
curves in figure 5 correspond to the equilibria of fully symmetric menisci rather than the
equilibria of partially symmetric menisci, although we do not distinguish them particularly.
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ȳ = 0 ȳ = 0

γ = 50°

γ = 55°

γ = 60°

γ = 90°
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Figure 5. Solution curves of f̄g versus x̄c at the equilibria of partially symmetric menisci: (a) discontinuous
distribution mode (γ = 50◦, 55°, 60° and 120°) and continuous distribution mode (γ = 90◦), and (b) transition
from the discontinuous distribution mode (γ = 65◦) to the double-continuous mode (γ = 66◦ and 67°) and
the continuous distribution mode (γ = 68◦). The following parameters are used: D̄ = 3, r̄ = 0.5 and θ = π/2.

From the solution curves for f̄g versus x̄c in figure 5, it can be concluded that there
exist four distribution modes: the continuous distribution mode, the double-continuous
distribution mode, the discontinuous distribution mode and the no-distribution mode. For
the continuous distribution mode (for example, γ = 90◦ in figure 5(a) and γ = 68◦ in
figure 5(b)), there is only one solution curve which is continuous between r̄ and D̄ − r̄.
For the double-continuous distribution mode (for example, γ = 66◦ and 67° in figure 5b),
there is a lower, long solution curve and an upper, short solution curve. The longer solution
curve is continuous between r̄ and D̄ − r̄. For the discontinuous distribution mode (for
example, γ = 50◦, 55°, 60° and 120° in figure 5(a), and γ = 65◦ in figure 5(b)), there are
two solution curves symmetric to each other about the line x̄c = D̄/2. In this mode, the
equilibria of partially symmetric menisci cannot appear for a medium value of x̄c between

954 A22-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1009


Equilibria and stabilities of a confined floating cylinder

r̄ and D̄ − r̄. While for the no-distribution mode, the equilibria of partially symmetric
menisci can never be reached and there is no such solution curve for f̄g versus x̄c, which
occurs when γ < 40◦ with other parameters being the same as in figure 5(a).

On the solution curve of the double-continuous distribution mode or the discontinuous
distribution mode, there can be two equilibrium points for one horizontal position x̄c,
such as points A and B in figure 5(a). Interestingly, parts of the meniscus profile of the
equilibrium point A are the same as those of the equilibrium point B, which is illustrated
in the corresponding inset. The solution curve for γ = 90◦ is the line f̄g = 0.5. At the
equilibrium points on the line f̄g = 0.5, the menisci are flat and the horizontal displacement
will not change the equilibrium, which is shown in the corresponding inset of γ = 90◦.
For two supplementary contact angles, such as γ = 60◦ and 120° in figure 5(a), the two
corresponding solution curves are symmetric about the line f̄g = 0.5. Two equilibrium
points symmetric about the line f̄g = 0.5 correspond to two equilibrium configurations
that are symmetric about the undisturbed liquid surface ȳ = 0 (see the points C and
C’, and the corresponding inset in figure 5a). In fact, for any equilibrium configuration
with a given plates’ contact angle γ = γ ∗, no matter what type this equilibrium is (i.e.
not limited to the equilibrium of partially symmetric menisci), there must be another
equilibrium configuration with plates’ contact angle γ = π− γ ∗ symmetric to this
configuration about the line ȳ = 0, only if θ = π/2. The reason is because the two
symmetric configurations can both satisfy the geometry relation (2.19).

For the equilibria of partially symmetric menisci, the distribution mode depends on not
only the plates’ contact angle γ but also the distances D̄ between the plates. The phase
diagram of the four distribution modes in the parameter space (γ, D̄) is shown in figure 6,
assuming that the radius r̄ and the contact angle θ of the cylinder are both fixed. The whole
phase diagram is symmetric with respect to the line γ = π/2 in figure 6. This is attributed
to the symmetry of the two equilibrium solution curves for γ = γ ∗ and γ = π− γ ∗(for
example, γ = 60◦ and 120° in figure 5a). As the plates’ contact angle γ increases (or
decreases) from γ = π/2, the continuous distribution mode (black point) turns into the
double-continuous distribution mode (grey point), the discontinuous distribution mode
(circle) and then, finally, the no-distribution mode (triangle). The continuous distribution
mode (black point) is more likely to occur when the distance D̄ between the two plates
is small. The double-continuous distribution mode (grey point) is a transition of the
continuous distribution mode (black point) and the discontinuous mode (circle), which
occurs in a very small range of γ values.

3.3. Equilibria of asymmetric menisci
The above two types of equilibrium states are both based on the precondition that the
menisci at the two side of the cylinder are (partially) symmetric to each other. However,
there can be equilibrium states with asymmetric menisci at the two sides of the cylinder
(see figure 2e). For the equilibria of asymmetric menisci, we have α2 /=α3.

For the equilibria of asymmetric menisci, the horizontal position x̄c also varies with
the weight f̄g of the cylinder. The solution curves of f̄g versus x̄c at the equilibria of
asymmetric menisci are shown in figure 7. Also, the equilibrium points for x̄c = D̄/2 on
curves in figure 7 correspond to the equilibria of fully symmetric menisci rather than
the equilibria of asymmetric menisci, while there is no need to distinguish these points
particularly. The points on the solution curve for γ = π/2 (i.e. f̄g = 0.5, blue dashed line)
actually correspond to the equilibria of partially symmetric menisci (see also γ = π/2 in
figure 5a). Strictly speaking, there are no equilibria of asymmetric menisci for γ = π/2.
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Figure 6. Phase diagram of distribution modes for the equilibria of partially symmetric menisci in a parameter
space (γ, D̄). The continuous distribution mode, the double-continuous distribution mode, the discontinuous
distribution mode and the no-distribution mode are denoted by black points, grey points, circles and triangles,
respectively. The double-continuous distribution mode lies near the grey dashed curves. The following physical
parameters of the cylinder are used: r̄ = 0.5 and θ = π/2. The distribution modes in figure 5(a,b) can be
checked by letting D̄ = 3 in this figure.

0.5 1.0 1.5 2.0 2.5
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Figure 7. Solution curves of f̄g versus x̄c at the equilibria of asymmetric menisci. The plates’ contact angle
γ gets larger from 0 to π with an increment of π/18. The curve f̄g = 0.5 (dashed blue line) is exactly the
curve for γ = π/2 in figure 5(a). The points on f̄g = 0.5 correspond to the equilibria of partially symmetric
menisci. Symmetric about f̄g = 0.5, the equilibrium points A and A’ are on the two curves for γ = 5π/18 and
γ = 13π/18, respectively. The following parameters are used: D̄ = 3, r̄ = 0.5 and θ = π/2.

Two solution curves with plates’ contact angles supplementary to each other (such as the
curves for γ = 0 and γ = π in figure 7) are symmetric about the line f̄g = 0.5. The two
equilibrium points symmetric about the line f̄g = 0.5 correspond to the two equilibrium
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states that are symmetric about the undisturbed liquid surface ȳ = 0 (see the points A and
A’, and the corresponding inset). On a solution curve with a prescribed γ , there can be only
one equilibrium point for an arbitrary horizontal position x̄c between r̄ and D̄ − r̄, which
is similar to the continuous distribution mode of the equilibria of partially symmetric
menisci.

4. Stability

Based on the equilibrium states of the confined floating cylinder, the stabilities are
discussed. In § 4.1, the two-dimensional stability conditions of the capillary system
are presented, and the relation between the two-dimensional stability conditions and
the one-dimensional (horizontal or vertical) stability condition is discussed. In § 4.2,
comparing with the vertical stabilities in the unconfined cases (without plates), a new
vertical stability mechanism of the equilibria of fully symmetric menisci in the confined
cases is found. In § 4.3, the two-dimensional stabilities of the confined floating cylinder
are studied, including the effect of the new mechanism (discussed in § 4.2) on the
two-dimensional stabilities.

4.1. Stability conditions
A stable cylinder floating between two parallel vertical stationary plates means that the
cylinder can resist infinitesimal disturbance of any direction (not limited to the horizontal
direction and the vertical direction) in the two-dimensional plane. From the principle of
virtual work, neglecting dissipation, the energy functional E of the whole capillary system
in equilibrium satisfies δE = 0. The floating cylinder in equilibrium is stable if the second
variation of the energy functional E is positive, i.e. the energy functional reaches a local
minimum as (Erdös et al. 1992a)

δ2E =
n∑

i=1

n∑
j=1

(
∂2E
∂qiqj

)
δqiδqj > 0, (4.1)

where qi(qj) denotes the degree of freedom in the system and n denotes the number of
degrees of freedom. Degrees of freedom of the capillary system in this paper are the
cylinder’s horizontal position x̄c, and vertical position ȳc. The inequality (4.1) is equivalent
to the condition that the Hessian matrix [∂2E/∂qi∂qj] is positive–definite. The leading
principal minors of the positive–definite matrix are positive, which gives the stability
conditions as

∂2Ē
∂ x̄2

c
> 0, (4.2a)

∂2Ē

∂ x̄c
2
∂2Ē

∂ ȳc
2 −

(
∂2Ē
∂ x̄c∂ ȳc

)2

> 0, (4.2b)

where Ē = E/(πr2ρlg
√

1/κ), denoting the dimensionless energy of the capillary system.
To obtain the energy Ē directly in (4.2a,b) is feasible but laborious, and it can be

circumvented by the relation of energy and force. The relation between surface energy
and surface forces can be seen in Finn (2006). The first variations of Ē with respect to
the horizontal position x̄c and the vertical position ȳc of the cylinder are related to the net
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forces f̄h and f̄v on the cylinder (Kralchevsky et al. 1993; Zhou & Zhang 2017; Chen &
Siegel 2018), respectively,

∂Ē
∂ x̄c

= −f̄h,
∂Ē
∂ ȳc

= −f̄v. (4.3a,b)

The validity of (4.3a) and (4.3b) has been shown for the one-dimensional capillary system
in Kralchevsky et al. (1993) and in Chen & Siegel (2018), respectively. This implies that,
from the aspect of statics, the capillary system is conservative when the viscous dissipation
and the contact angle hysteresis are neglected. The total energy Ē is the sum of all the
potential energies (free surface energy, wetting energy and gravitational potential energy),
and only related to the position of the cylinder. Regarding the net forces f̄h and f̄v as the
potential forces, (4.3a,b) can also be derived for the two-dimensional conservative system
(Hand & Finch 1998). Thereby, the Hessian matrix to predict two-dimensional stability of
the floating cylinder can be expressed as

H =

⎛
⎜⎜⎝

−∂ f̄ h

∂ x̄c
−∂ f̄ h

∂ ȳc

−∂ f̄ v
∂ x̄c

−∂ f̄ v
∂ ȳc

⎞
⎟⎟⎠ . (4.4)

For the symmetry of the Hessian matrix, we have ∂ f̄h/∂ ȳc = ∂ f̄v/∂ x̄c = ∂2Ē/∂ x̄c∂ ȳc.
The relation of ∂ f̄h/∂ ȳc = ∂ f̄v/∂ x̄c has been verified numerically. The stability conditions
(4.2a,b) can be expressed as

∂ f̄ h

∂ x̄c
< 0, (4.5a)

∂ f̄ h

∂ x̄c

∂ f̄ v
∂ ȳc

−
(
∂ f̄ h

∂ ȳc

)2

> 0. (4.5b)

If the cylinder is at an equilibrium of fully symmetric menisci with f̄h = 0 and f̄v = 0, it
is clear that a vertical displacement disturbance δȳc will bring a vertical force variation δf̄v
but the horizontal resultant force f̄h stays zero, i.e. ∂ f̄h/∂ ȳc = 0. Substituting ∂ f̄h/∂ ȳc = 0
into (4.5a,b), the stability conditions for the equilibria of fully symmetric menisci can be
simplified into

∂ f̄ h

∂ x̄c
< 0, (4.6a)

∂ f̄ v
∂ ȳc

< 0. (4.6b)

For the capillary system with only the degree of freedom in the horizontal position
x̄c (Zhou & Zhang 2017), the stability condition is reduced to the horizontal stability
condition (4.6a). For the capillary system with only the degree of freedom in the vertical
position ȳc (Chen & Siegel 2018; Zhang et al. 2018), the stability condition is reduced to
the horizontal stability condition (4.6b). In particular, the equilibria of fully symmetric
menisci, if the cylinder is both horizontally stable and vertically stable, are stable in two
dimensions, while for the equilibria of partially symmetric menisci or asymmetric menisci,
a horizontally stable and vertically stable cylinder can still be unstable in two dimensions
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when the energy of the whole system reaches a saddle point rather than a minimum point
(Seydel 2009).

For an arbitrary equilibrium state with f̄h = 0 and f̄v = 0 in the confined case, it is
feasible to calculate the Hessian matrix in (4.4) numerically. With a small horizontal
displacement disturbance δx̄c or a small vertical displacement disturbance δȳc, the
corresponding force variations δf̄h and δf̄v can be calculated from (2.20) and (2.21),
respectively. Therefore, the elements in the Hessian matrix (4.4) can all be obtained. With
the Hessian matrix known, stability of this equilibrium can be predicted by (4.5a,b). The
bifurcation theory (Seydel 2009) is applied to predict the stabilities of equilibria in this
paper, and with the bifurcation theory, there is no need to calculate the Hessian matrix for
every equilibrium point.

4.2. New mechanism of vertical stability
For the equilibrium of fully symmetric menisci, its vertical stability is decoupled from
its horizontal stability because a vertical displacement will not break the horizontal force
balance. Before studying the two-dimensional stabilities of all three types of equilibria,
the vertical stabilities of the equilibria of fully symmetric menisci are discussed in this
section. Comparing with the vertical stabilities in the unconfined case (without plates), a
new vertical stability mechanism is found (figure 8). This mechanism has an important
effect on the two-dimensional stabilities of equilibria in the confined case, which we will
discuss in the next section.

For a cylinder at the equilibrium of fully symmetric menisci, the cylinder is vertically
stable if it can resist an infinitesimal vertical force disturbance δf̄v (i.e. δf̄v/δȳc < 0). We
regard the vertical force disturbance δf̄v as the weight disturbance δf̄g. Therefore, the
relation of the weight f̄g and the vertical height ȳc at equilibria can also be used to predict
the vertical stability. For the equilibria of fully symmetric menisci, the vertical stability
condition (4.6b) is equivalent to df̄g/dȳc < 0, where f̄g is the equilibrium weight of the
cylinder at the vertical position ȳc.

The relation of f̄g and ȳc at the equilibria of fully symmetric menisci is depicted in
figure 8(a). On every curve for f̄g versus ȳc, an equilibrium point is stable if df̄g/dȳc < 0.
For plates’ contact angle γ = π/2, only the region with a medium value of ȳc (black
curve) is vertically stable. For plates’ contact angle γ = π/18 or 17π/18, there exists
a second vertical stability region (blue curve) satisfying df̄g/dȳc < 0. In the confined
cases, there can be at most two vertical stability regions for the equilibrium solutions
of fully symmetric menisci, which is due to the capillary effect of the plates, while in the
unconfined cases, there can be only one vertical stability region (see the thick curve in
figure 8).

For an unconfined cylinder floating in an infinite bath, it was proven by Chen &
Siegel (2018) that the azimuthal angle α of contacts points on the cylinder monotonically
decreases as the height of the cylinder ȳc increases. As a result, the condition for vertical
stability df̄g/dα > 0 is equivalent to df̄g/dȳc < 0 in the unconfined case. However, the
condition df̄g/dα > 0 may not work for a confined floating cylinder (at the equilibria of
fully symmetric menisci). For curves in figure 8(a), the azimuthal angle α keeps increasing
from the right endpoints (corresponding to α = − π/2, see the inset of point A) to the
left endpoints (corresponding to α = π/2, see the inset of point B). From (2.21), the
equilibrium state of α = π/2 or α = − π/2 corresponds to a constant value of f̄g no
matter what value the contact angle γ is. Obviously, α is still monotonically decreasing
for ȳc in the cases with only one vertical stability region. However, in the cases with two
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Figure 8. (a) Relation of f̄g and ȳc at the equilibria of fully symmetric menisci. The black curves and the
blue curves denote vertically stable equilibria, while the red curves denote vertically unstable equilibria. The
point A denotes the state of α = − π/2, the point B denotes the state of α = π/2 and the point O denotes
the states of the half-immersed cylinder with flat menisci. The two solution curves with plates’ contact
angles supplementary to each other (such as γ = π/18 and γ = 17π/18) are symmetric about the point O
where (x̄c, ȳc, f̄g) = (D̄/2, 0, 0.5). The following parameters are used: D̄ = 2, r̄ = 0.5 and θ = π/2. (b) Phase
diagram of the equilibrium solutions of fully symmetric menisci with the first and the second vertical stability
regions (denoted by pentagrams) and with only the first vertical stability region (denoted by squares), in a
parameter space (γ, D̄) for r̄ = 0.5 and θ = π/2. The occurrence of the second stability region for different γ
in (a) can be checked by letting D̄ = 2 in (b).

vertical stability regions, α is not monotonically decreasing for ȳc and there can be two
azimuthal angles α corresponding to one ȳc (see the inset of points C and D).

From the point of view of bifurcation theory, we can also deem figure 8(a) as the
bifurcation diagram of (2.22b) which can be used to predict the stabilities. Slightly
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Equilibria and stabilities of a confined floating cylinder

different from much of the literature (Seydel 2009; Karasslanli 2012), the bifurcation
parameter f̄g here is set on the longitudinal axis. The relation of f̄g versus ȳc depicted
in figure 8(a) can be expressed as an implicit function f̄g(ȳc). There is in general a change
of stability at the bifurcation where the solution number of the equation f̄g(ȳc) = const.
changes (Seydel 2009). At the point with a maximum or minimum value of f̄g, the stability
changes with the solution number changing from 0 to 2. At the intersection of the unstable
region (red curve) and the second stable region (blue curve), the stability changes but the
solution number remains 2. The reason lies in the singularity at the intersection point.
At the intersection point (ȳ∗

c , f̄ ∗
g ), we have df̄g/dȳc|(ȳ∗

c ,f̄ ∗
g )

= ∞. From implicit function

theorem (Seydel 2009), the implicit function f̄g(ȳc) can be extended until a singular point.
Therefore, the singular point (ȳ∗

c , f̄ ∗
g ) splits the whole solution curve into two branches,

whose bifurcation behaviours are independent of each other.
Supposing that the radius r̄ and the contact angle θ of the cylinder are both fixed, for the

equilibrium solutions of fully symmetric menisci, the occurrence of the second vertical
stability region for (ȳc, f̄g) depends on the plates’ contact angle γ and the distance D̄
between the two plates. The phase diagram of two vertical stability regions (denoted by
pentagrams) and only one vertical stability region (denoted by squares) in a parameter
space (γ, D̄) is shown in figure 8(b). The second vertical stability region (blue curves in
figure 8a) is more likely to occur when the contact angle γ is far from π/2 or the distance D̄
is small. We find that the distance D̄ is more vital for the occurrence of the second vertical
stability region. At a small enough D̄ (D̄ < 1.56 in figure 8b), the second vertical stability
region occurs for an arbitrary γ . While at a large enough D̄ (D̄ > 2.51 in figure 8b), the
second vertical stability region will never occur.

4.3. Two-dimensional stability
In practice, the floating cylinder in the confined case is stable only if it can resist
infinitesimal disturbance of any direction (not limited to the horizontal direction
and vertical direction) in two dimensions. For the three types of equilibria, their
two-dimensional stabilities are predicted by the bifurcation theory in this section.
Supposing that the plate’s contact angle γ , the cylinder’s contact angle θ , the distance
D̄ between the two plates and the radius r̄ of the cylinder are all fixed, the weight f̄g of the
cylinder is selected as the bifurcation parameter. From § 3, it is clear that f̄g can influence
not only the vertical balance but also the horizontal balance, which makes f̄g a proper
bifurcation parameter in the two-dimensional system. As f̄g varies, the equilibrium position
(x̄c, ȳc) of the cylinder can be determined by solving (2.19) and (2.22). The bifurcation
diagrams of (x̄c, ȳc) versus f̄g for different values of D̄ and γ are illustrated in figure 9.

Every panel in figure 9 is formed by the three types of equilibrium solutions, i.e. the
equilibrium solutions of fully symmetric menisci (black curves), the equilibrium solutions
of partially symmetric menisci (red curves) and the equilibrium solutions of asymmetric
menisci (green curves). The bifurcation points (the extreme points or intersection points)
split the solution curves in a bifurcation diagram into different branches, where the
stabilities of all the points on a branch are the same (Seydel 2009; Zhou & Zhang 2017).

Solid curves and dashed curves in figure 9 denote two-dimensional stable equilibria
and two-dimensional unstable equilibria, respectively. The bifurcation behaviour in the
diagrams is similar to the subcritical pitchfork bifurcation for one-dimensional stability
problems (Seydel 2009), where only the trivial solutions can be stable. Here, the trivial
solutions are the equilibrium solutions of fully symmetric menisci with x̄c = D̄/2 (black
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ȳc

f̄g

x̄c

ȳc
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ȳc

(a) (b)

(c) (d )

(e) ( f )

Figure 9. Bifurcation diagrams for (x̄c, ȳc) versus f̄g: (a–e) with only one two-dimensional stability region,
and ( f ) with two two-dimensional stability regions. The main bifurcation behaviour in ( f ) is the same as
in (a). The other four diagrams with two stable regions whose main bifurcation behaviour is the same as in
(b–e) are not given here. Solid (dashed) curves denote that the cylinder at equilibrium is stable (unstable) in
two dimensions. Black, red and green curves represent the equilibrium solutions of fully symmetric menisci,
partially symmetric menisci and asymmetry menisci, respectively. The two plates’ spacing is given by: (a–e)
D̄ = 3, and ( f ) D̄ = 2. The plates’ contact angle is given by: (a) γ = 2π/9, (b) γ = π/3, (c) γ = 11π/30, (d)
γ = 4π/9, (e) γ = π/2 and ( f ) γ = π/6. The other parameters used in (a–f ) are: r̄ = 0.5 and θ = π/2.

954 A22-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1009


Equilibria and stabilities of a confined floating cylinder

curve). In the three types of equilibrium solutions, only the equilibrium solutions of fully
symmetric menisci could be stable in two dimensions.

The equilibrium solutions of asymmetric menisci (green curves) and the equilibrium
solutions of partially symmetric menisci (red curves) influence the bifurcation points
in a bifurcation diagram. For the curve of the equilibrium solutions of asymmetric
menisci, there is always a bifurcation point (green point) at the intersection with the
curve of equilibrium solutions of fully symmetric menisci. However, for the curve of the
equilibrium solutions of partially symmetric solutions, the corresponding bifurcation point
depends on the distribution mode. Judging from the relation of x̄c and f̄g (see the examples
in figure 6), the equilibrium solutions in figure 9(a–d) correspond to the no-distribution
mode, the discontinuous distribution mode, the double-continuous distribution mode
and the continuous mode, respectively. Also, the equilibrium solutions in figure 9(e, f )
correspond to the continuous distribution mode and the no-distribution mode, respectively.

Five representative types of bifurcation diagrams with only one stable region are shown
in figure 9(a–e). For a small value of γ (in figure 9a), the equilibrium solutions of
partially symmetric menisci correspond to the no-distribution mode. The corresponding
bifurcation point (black point) is the maximum point of fg on the curve of the equilibrium
solutions of fully symmetric menisci. As γ gets larger, the discontinuous distribution
mode, the double-continuous distribution mode and the continuous distribution mode
appear in figure 9(b–d), respectively. The corresponding bifurcation point changes from
the maximum point of fg (black point) to the intersection point (red point). The shorter
solution curve of the double-continuous distribution mode (shorter red curve in figure 9c)
has no effect on the bifurcation behaviour. For γ = π/2 (in figure 9e), strictly speaking,
there are no equilibrium solutions of asymmetric menisci, and the equilibrium solutions
of partially symmetric menisci correspond to the line f̄g = 0.5 (see also γ = π/2 in
figures 5a and 7). Visually, the green curve overlaps with the red curve in figure 9(e),
meaning that there is no stable region remaining between the green curve and the red
curve. As for γ > π/2, there is no new type of bifurcation diagram beyond the five distinct
types as shown in figure 9(a–e).

Looking back to figure 8(b), for D̄ = 3 (in figure 9a–e), there is always only one vertical
stability region on the equilibrium solutions of fully symmetric menisci. However, for
D̄ = 2 and γ = π/6 (in figure 9f ), there are two vertical stability regions. The equilibrium
solution curves of fully symmetric menisci for (ȳc, f̄g) in figure 9(a, f ) are plotted in
figure 10. If an equilibrium point is stable in two dimensions (on solid curves in figure 9
or 10), it must be vertically stable (i.e. satisfying df̄g/dȳc < 0, see also figure 8a). It is
evident that the two-dimensional stability region is part of the vertical stability region of
the equilibrium solutions of fully symmetric menisci, because the vertical stability is the
precondition of the two-dimensional stability.

Similar to figure 9(a), the equilibrium solutions of partially symmetric menisci in
figure 9( f ) also correspond to the no-distribution mode. The main bifurcation behaviour
in figure 9( f ) is the same as in figure 9(a), except that the second vertical stability region
(shorter solid black curve in figure 9f or 10b) is also stable in two dimensions. With
further calculation of other parameters, we find that the second vertical stability region of
the equilibrium solutions of fully symmetric menisci is always stable in two dimensions,
while the main bifurcation behaviour will not get beyond the five types in figure 9(a–e). A
significant conclusion is drawn that the second vertical stability region is also the second
two-dimensional stability region.

From the bifurcation diagrams in figure 9, only the cylinder located centrally between
the plates (at the equilibria of fully symmetric menisci) could be stable in two dimensions
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Figure 10. Equilibrium solution curves of fully symmetric menisci for (ȳc, f̄g): (a) a side view of figure 9(a),
and (b) a side view of figure 9( f ). Solid (dashed) curves denote that the cylinder is stable (unstable) in two
dimensions. The coloured points are exactly the points with the same colour in figures 9(a) and 9( f ).
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Figure 11. Stable range of f̄g at the equilibria of fully symmetric menisci: (a) the case with one
two-dimensional stability region for D̄ = 3, and (b) the case with two two-dimensional stability regions for
D̄ = 2. Black points, grey points, circles and triangles on the curves represent the four distribution modes
of the equilibria of partially symmetry menisci, i.e. the continuous distribution mode, the double-continuous
distribution mode, the discontinuous distribution mode and the no-distribution mode, respectively (see also
figure 6b). The horizontal dashed lines f̄g = −2.88 and f̄g = 3.88 represent the lower and upper stable limits
of the unconfined case, respectively. The parameters are used: r̄ = 0.5 and θ = π/2.

and its weight f̄g determines whether it is stable or not. The two-dimensional stability
range of f̄g with different plates’ contact angles γ is shown in figure 11. This range of
f̄g is symmetric about the point (γ, f̄g) = (π/2, 0.5), resulting from the symmetry of two
equilibrium solutions with γ = γ ∗ and γ = π− γ ∗ (see example for γ = 60◦ and 120°
in figure 5).

The centrally located cylinder is stable in two dimensions if its weight f̄g is between
those for the two corresponding bifurcation points in the bifurcation diagrams (black point
and green point in figure 9a). Green curves, red curves (with black points and grey points)
and black curves (with triangles and black circles) in figure 11 correspond to the green, red
and black bifurcation points in figure 9, respectively. An equilibrium state can be stable
if the corresponding point (γ, f̄g) is between the green curve and the red curve (or black
curve). For example, by letting γ = 2π/9, π/3, 11π/30, 4π/9 and π/2 in figure 11(a),
we can obtain the two-dimensional stability range of f̄g in figure 9(a–e), respectively. The
orange curves in figure 11(b) correspond to the orange bifurcation point in figure 9( f ). The
blue curves in figure 11(b) correspond to the blue endpoint in figure 9( f ). An equilibrium
state can also be stable if the corresponding point (γ, f̄g) is between the orange curve and
blue curve. For another example, by letting γ = π/3 in figure 11(b), we can obtain the
two-dimensional stability range of f̄g in figure 9( f ), where there are two stability regions.
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Figure 12. Solution curves of the capillary equation in two dimensions (see also figures 2 and 4 in Bhatnagar
& Finn (2016a), and figure 2 in Zhou & Zhang 2017): (a) solution family of c> 1, and (b) solution family of
c< 1. Every meniscus in two dimensions can be viewed as part of a solution curve of the capillary equation.
The dimensionless coordinates from (2.15) are used.

The distribution modes of the equilibrium solutions of partially symmetric menisci have
a distinct effect on the stability range of f̄g. In figure 11, for the continuous distribution
mode (denoted by black points on red curves) and the double-continuous distribution mode
(denoted by grey points on red curves), the value of f̄g on the red curve decreases rapidly as
γ increases. For the discontinuous distribution mode (denoted by circles on black curves)
and the no-distribution mode (denoted by triangles on black curves), the value of f̄g on the
black curve stays almost unchanged. For a relatively small value of D̄ in figure 11(b), there
can be a second two-dimensional stability region of f̄g between the orange curve and the
blue curve. As γ increases, the value of f̄g on the orange curve increases while the value
of f̄g on the blue curve stays unchanged. The points on the blue curve correspond to the
equilibrium states for α = π/2 and α = −π/2 (see points A and B in figure 8a). From
(2.21), if α = π/2 or − π/2, f̄g remains constant no matter what value the contact angle
γ has.

For a relatively large distance D̄ between the two plates (see figure 11a), there is only
one two-dimensional stability region for a fixed value of γ . The cylinder with a large value
of f̄g is more likely to be stable between the two plates with γ < π/2. The maximum (or
minimum) stable value of f̄g will not exceed that of the unconfined case (see the horizontal
dashed lines f̄g = −2.88 and f̄g = 3.88) because the capillary effect of plates results in the
horizontal instability of the cylinder (i.e. the centrally located cylinder will be attracted
to one of the plates). For a relatively small distance D̄ between plates (see figure 11b),
there can be a second two-dimensional stable region for a fixed value of γ , where the
maximum (or minimum) stable value of f̄g can exceed that of the unconfined case. For γ
larger than approximately 2π/3 in figure 11(b), the centrally located cylinder with a small
value of fg (between the green curve and the black curve) or a large value of fg (between
the orange curve and the blue curve), is stable in two dimensions, while, for a medium
value of fg (between the green curve and the orange curve), the centrally located cylinder is
horizontally unstable. The capillary effect of the plates can lead to the horizontal instability
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of the cylinder and can also assist stable floatation for a cylinder with a large weight. This
mechanism may be applicable to the selection of floating particles with a specific weight.

5. Conclusions

In this paper, a model to obtain the equilibrium states for a floating cylinder confined
between two parallel vertical stationary plates is presented. Combined with the geometry
relations of the system, the Young–Laplace equation is satisfied for the equilibrium
menisci. The resultant horizontal force and the resultant vertical force can both be obtained
from the meniscus profiles. The equilibrium state can be reached when the forces are
balanced. Compared with the unconfined case (without plates), there are more types of
equilibrium states for the confined cylinder. The equilibrium menisci at both sides can be
fully symmetric, partially symmetric and even asymmetric. With fully symmetric menisci
at the two sides, there can be at most four equilibria for a confined cylinder floating
between two parallel vertical stationary plates (only when the cylinder is relatively large
and the plates are both very close to the cylinder), while there are at most two equilibria for
an unconfined cylinder floating in an infinite bath. In addition, with partially symmetric
menisci or asymmetric menisci at the two sides, the horizontal equilibrium position of the
cylinder changes with the weight.

The study is then extended to investigate the stabilities of these equilibria. Compared
with the vertical stability of an unconfined floating cylinder, a new mechanism is found
for the equilibria of fully symmetric menisci, which leads to the second vertical stability
region. Furthermore, the two-dimensional stabilities of the confined floating cylinder are
studied. Only the equilibria of fully symmetric menisci can be stable in two dimensions. In
general, the vertical stability is the prerequisite for the two-dimensional stability, while for
the equilibrium point on the second stability region, the vertically stable cylinder must be
also stable in two dimensions. We find the two plates may attract the cylinder, resulting in
a horizontal instability. Two hydrophobic plates with a small spacing can be benefit stable
floatation for a cylinder with a large weight.

This paper focuses on the cases in which the contact angle of the cylinder is π/2 and
the contact angles of the plates are equal. For other values of the contact angle of the
cylinder, the equilibrium types and the stability behaviours will not be different from what
is discussed in this paper, while, especially for unequal contact angles of the two plates, the
bifurcation behaviour of the stabilities is very complicated, which may be an interesting
topic in future studies.
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Appendix A

With the integration constant c of a meniscus determined, the meniscus profile ȳ(x̄) can
be obtained from (2.16a,b) in dimensionless form. The possible solution curves ȳ(x̄) for
c> 1 and c< 1 are shown in figure 12(a,b). For the case of c = 1, ȳ(x̄) can be analytical
(see (2.9) in Zhou & Zhang (2017), and (9) in Bhatnagar & Finn 2016a). It can be found

954 A22-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-0306-9030
https://orcid.org/0000-0003-0306-9030
https://orcid.org/0000-0001-6340-5273
https://orcid.org/0000-0001-6340-5273
https://doi.org/10.1017/jfm.2022.1009


Equilibria and stabilities of a confined floating cylinder

that one integration constant corresponds to two solution curves symmetric to each other
about the line ȳ = 0, and only one of the two solution curves can satisfy the boundary
conditions.

For two arbitrary points I and II on a meniscus, their position relation can be classified
into three types: (A), (B) and (C). For the type (A), two contact points can be at any
position of the meniscus with c> 1. For the type (B), two contact points can be at any
position of the meniscus with c = 1, or two contact points are on the same side of the
inflection point of the meniscus with c< 1 (see points B1 and B2 in figure 12b). For the
type (C), two contact points are on different sides of the inflection point of the meniscus
with c< 1 (see points C1 and C2 in figure 12b). The rule to judge the three types is seen in
table 1 in Appendix B. The horizontal position, the height and the inclination angle of the
interface at the point j (j = I or II) are denoted by x̄j, ȳj and ψj (j = I or II), respectively.
Assuming, without loss of generality, that x̄II ≥ x̄I , it can be concluded that the signs of
the heights of the contact points ȳI and ȳII are determined by the contact points’ position
relation types (A), (B) and (C), and the inclination angles of the menisci at the two contact
points

sign(ȳI,II) = sign(ψII − ψI) for type (A) and x̄II ≥ x̄I,

sign(ȳI,II) = sign(ψI,II)sign(ψII − ψI) for type (B) and x̄II ≥ x̄I,

sign(ȳI) = −sign(ψI,II), sign(ȳII) = sign(ψI,II) for type (C) and x̄II ≥ x̄I,

⎫⎪⎬
⎪⎭ (A1)

where sign(ȳI,II) denotes sign(ȳI) = sign(ȳII) and sign(ψI,II) denotes sign(ψI) =
sign(ψII).

With c, ψI and ψII determined, the absolute values with the signs of the two heights ȳI
and ȳII can be obtained from (2.16b) and (A1). Thus, the meniscus profile is determined
uniquely from the two possible solution curves.

Appendix B

Type Rule a b k βI βII

(A) c > 1
√

2c + 2
√

2c√
c+1

√
2

c+1
π− ψI

2
π− ψII

2

(B) d1 ≤ d < d2 2 1 cosψc
2 arcsin

(
cos ψI

2
cos ψc

2

)
arcsin

(
cos ψII

2
cos ψc

2

)

(C) d ≥ d2 2 1 cosψc
2 π − arcsin

(
cos ψI

2
cos ψc

2

)
arcsin

(
cos ψII

2
cos ψc

2

)

Table 1. Parameters in (2.6) and (2.18) for three types of position relation (see also table 1 in Zhou & Zhang
(2017), with a slight difference). The three types of position relation (A), (B) and (C) have been introduced in
Appendix A. In this table, ψc = arccos c, d1 = d(1;ψI, ψII) and d2 = d(cosψm;ψI, ψII) in which cosψm is
the lager one between cosψI and cosψII . For the rule c> 1, it can be judged as follows: if −π/2 ≤ ψI < 0 and
0 < ψII ≤ π/2 (or 0 < ψI ≤ π/2 and −π/2 ≤ ψII < 0), there must be c> 1; otherwise, whether c> 1 can be
judged by checking 0 < d < d1.

Appendix C

With prescribed contact angle parameters (γ and θ ) and prescribed length parameters
(r̄ and D̄), (2.19) and (2.22) are solved. If the weight f̄g is given, the four variables
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(x̄c, ȳc, α2, α3) are difficult to obtain because of the complexity in the vertical balance
condition (2.22b). Thus, in our method, the horizontal position x̄c is given (r̄ < x̄c <
D̄ − r̄), and the four variables (f̄g, ȳc, α2, α3) are obtained by solving (2.19) and (2.22).
For x̄c between r̄ and D̄ − r̄, the equilibrium states with all possible values of f̄g can be
determined.

From (2.22a), the integration constants c12 and c34 are both denoted by c. With x̄c given,
there is a relation between c and α2 from (2.19a), which can be expressed as an implicit
function α2(c). Similarly, from (2.19b), there is an implicit function α3(c). From (2.17a,b),
the height ȳc can be expressed in terms of c

sign(ȳ2)

√
2c − 2 cos

(
−α2(c)− θ + π

2

)
− r̄ sinα2(c)

= sign(ȳ3)

√
2c − 2 cos

(
α3(c)+ θ − π

2

)
− r̄ sinα3(c), (C1)

where sign(ȳ2) and sign(ȳ3) denote the signs of the heights at the contact points 2 and 3,
respectively. sign(ȳ2)can be determined from (A1) with ψ1, ψ2 and c while sign(ȳ3) can
be determined with ψ3, ψ4 and c.

With a combination of bisection and secant methods (Forsythe, Moler & Malcolm
1997; Zhou & Zhang 2017), the implicit functions α2(c) and α3(c) can be determined
numerically, and (C1) can be solved for the only variable c. Our solution procedure
follows: firstly, for a guessed α∗

2∈[−π/2, π/2] with a known x̄c, the corresponding c∗
is solved from (2.19a) numerically with the bisection and secant method. Secondly, with
c∗ determined, the corresponding α∗

3 can also be obtained from (2.19b). It should be noted
that there can be more than one set of (c∗, α∗

3). When x̄c /= D̄/2, there can be only one
set of (c∗, α∗

3) with α∗
2 /=α∗

3 and zero, one or two set(s) of (c∗, α∗
3) with α∗

2 = α∗
3 . When

x̄c = D̄/2, arbitrary values of α∗
3 = α∗

2 satisfy (2.19b). Thirdly, substituting the values of
(α∗

2 , c ∗, α∗
3) into (C1), we can calculate the values of the left-hand side and the right-hand

side of the equal sign of (C1), the difference of which is denoted by . There can be
more than one value for the function (α∗

2) because of the possibility of multiple sets of
(c∗, α∗

3). Finally, plot the curve(s) of (α∗
2) for different values of α∗

2 from −π/2 to π/2
(with the above three steps) and approximate zero points of (α∗

2) with the bisection and
secant method. All the four variables (f̄g, ȳc, α2, α3) together with the meniscus profiles
can be obtained from (2.22b) and (2.17).
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