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Abstract

Let G be a finitely generated metabehan group whose derived group G' has finite rank. It is
shown that G can be embedded in a finitely presented metabelian group H with H' of finite rank.

Introduction

Baumslag (1973) has shown that each finitely generated metabelian
group can be embedded in a finitely presented metabelian group. Our
objective here is to prove

THEOREM 4.1. Let G be a finitely generated metabelian group whose
derived group G' has finite rank. Then there exists a finitely presented
metabelian group H with H' of finite rank, and an embedding of G into H.

The proof of Theorem 4.1 makes use of the well-known connection
between finitely generated metabelian groups and modules over finitely
generated commutative rings. This relationship is mentioned in Section 1,
along with some basic facts about the notion of rank. In Section 2 a residual
property of certain modules is established. This property is used in Section 3
and Section 4 to prove Theorem 4.1.

1. Preliminaries

We denote the ring of integers by Z and the field of rational numbers
by Q.

If x and y are elements of a group, we use the standard notation

xy = y~lxy;[x, y] = x~'y~'xy.
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If G is a group and R is a commutative ring with unit, RG is the
R -algebra consisting of finite sums 2 r{gi with r, £ R and g, £ G. Addition is
linear, and multiplication is induced by the multiplication of G.

If A is an abelian normal subgroup of a group G, G acts on A by
conjugation: ag = g~*ag. Since A is abelian, this gives A a (G/A )-module
structure. Equivalently, A becomes a module over the integral group ring
Z(G/A) of G/A.

If A is a G-module, the semidirect product A]G of A by G is the group
consisting of elements ag (a £ A, g £ G) under the multiplication

(a,g,)(a2g2) = (a, + a2g7')(gig2).

A group G is metabelian if there is an abelian normal subgroup A of G
with G/A abelian. When G is finitely generated, A satisfies the ascending
chain condition for submodules and hence G satisfies the ascending chain
condition for normal subgroups (Hall, 1954).

DEFINITION 1.1. We say an abelian group A has finite rank g n if each of
its finitely generated subgroups can be generated by n elements.

This notion of rank can be defined for arbitrary groups and has been
called special rank (Mal'cev, 1948) and Prufer rank (Wehrfritz, 1973).

It should perhaps be mentioned that this definition of rank is more
restrictive than the usual definition of rank of an abelian group (where the
rank of A is the dimension of A £§) Q). However, the two notions coincide for
torsion-free abelian groups.

The following proposition is elementary.

PROPOSITION 1.1. Let A and C be abelian groups of finite rank.
(i) If B ^A, B has finite rank.
(ii) // B is a homomorphic image of A, B has finite rank.
(iii) //

is a short exact sequence of abelian groups, B has finite rank.

PROPOSITION 1.2. Let A be an abelian normal subgroup of the finitely
generated group G, and suppose G/A is abelian. If A has finite rank, the torsion
subgroup T of A is finite.

PROOF. Let T = (J)r.i Tt where p,, p2, • • •, pn, • • • are the prime numbers
and Ti consists of those elements of T of order a power of p,. Now, T,• = 0 for
all but finitely many primes ph Otherwise, putting An = @?., T{,
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would be an infinite chain of normal subgroups of G which is proper at
infinitely many places, contradicting (Hall, 1954). Thus T = ®r=i Tt for some
n, and it is enough to show that the pt-primary group Tt is finite ( l i i g n ) .
This can be done by noticing that, again because of (Hall, 1954), there is an
integer N with pNj = 0 for all / in T,-otherwise a properly ascending infinite
chain

A < • • • < A <• A < . . .

could be constructed by letting

A, ={tET,\ P[t = 0}.

Thus T, is a pt -primary abelian group with a finite exponent hence is a
direct sum of cyclic groups (see Kurosh (1955), p. 171). Now T) ̂  A has finite
rank by Proposition 1.1, and since Tt has finite exponent, it must be finitely
generated. This can be seen by noting that a direct sum of m cyclic groups of
order p", p a prime and n fixed, cannot be generated by fewer than m
elements. Thus T, is finite and Proposition 1.2 is proved.

2. Separating subspaces of QT-modules

Throughout this section T is a finitely generated abelian group. In order
to prove Theorem 4.1, we will make use of

THEOREM 2.1. Let A be a finitely generated QT-module and O^S a
subspace of A with dimoS<°°. Then there is a submodule K of A with
dimo (A/K) < oo and K D S = 0.

Note that Theorem 2.1 implies that nonintersecting finite-dimensional
subspaces of A can be separated by a submodule of finite codimension.

PROOF OF THEOREM 2.1. We shall prove Theorem 2.1 by a sequence of
lemmas. Following Hall (1959), we say a QT-module A is monolithic with
monolith M if the intersection M of the nonzero submodules of A is itself
nonzero.

LEMMA 2.1. Let R be a noetherian algebra over a field F and let I be an
ideal of R with Im = 0 for some positive integer m. If dimF (R /I) < oo, then
dimFR <°°.

PROOF. The lemma is clearly true when m = 1. Let m ^ 2 and suppose it
is true for m — \. Then there is a short exact sequence

0^. /"•->-> R
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of i?-modules. Since (7//m"')m ' = /"•"', dimF (R/Im~')<oo by induction.
Now Im~' is finitely generated because R is noetherian, and I(T" ') = 0. Thus
I"1"1 is a finitely generated /?//-module, so that the finite dimensionality of
R/I implies that of /"""'. Thus

dimFR = dimF/m ' + dimF (R/Im~l) < oo

and Lemma 2.1 is proved.

LEMMA 2.2. Let R be a homomorphic image of QT and suppose R is
monolithic with monolith M. Then each element of I = {r G R | rM = 0} is
nilpotent.

PROOF. Let u G I and suppose u is not nilpotent. Then the elements

u, u2, • • • , « " , • •

are all nonzero and hence each Ru" (n = 1,2, • • •) is a nonzero ideal of R and
so must contain M If 0 / a £ M is fixed, we must have

in R with ynu" = a.
Now let An = {r E. R \ ru" = 0} so that

(2.1) A,CA2C---QAnCAn+lC---

is an infinite ascending sequence of submodules of R. Now ynu"+> = au = 0
since « G /. Thus y,, G An+i — An and hence (2.1) is a properly ascending
infinite chain, a contradiction since each finitely generated QT-module
satisfies the ascending chain condition for submodules (Hall, 1959, Theorem
4). Thus Lemma 2.2 is proved.

LEMMA 2.3. Let R be a homomorphic image of QT. If R is monolithic,
dimo7? < so.

PROOF. Let M be the monolith of R and let / = {r G R | rM = 0}. By

Lemma 2.2 each element of / is nilpotent. Since / is finitely generated, there
is an integer m with /"" = 0.

Now M, being the monolith of R, is irreducible, so that M ~ R/I and / is
a maximal ideal of R. By the Hilbert Nullstellensatz (see Atiyah-MacDonald
(1969), p. 67), dimo (R/ / )<°° . Invoking Lemma 2.1 completes the proof of
Lemma 2.3.

LEMMA 2.4. Let A be a finitely generated monolithic QT-module. Then
dimoA < oc.
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PROOF. Let M be the monolith of A and let ai,---,ak be a set of

nonzero generators for A. If R = QT, then each Rat (1 ̂  f 3= &) is a nonzero
submodule of A and so must contain M. It follows that each Ra, is monolithic
with monolith M. By Lemma 2.3,

But A is a homomorphic image of ®,k,, J?a,-, so that

A S ^ dimo

LEMMA 2.5. Lef A be a finitely generated QT-module and let 0 ̂  a G A.
Then there is a submodule K of A with a@. K and dimo (AIK) < =».

PROOF. Let K be a submodule of A maximal with respect to a £ K. Then
each nonzero submodule of A IK contains a + k, so that A IK is monolithic.
By Lemma 2.4, dimo (AIK)<*> and Lemma 2.5 is proved.

PROOF OF THEOREM 2.1. Let A be a finitely generated QT-module and S
a nonzero subspace of A with basis x,, • • •, JC,,. We argue by induction on n.

If n = 1, the result follows from Lemma 2.5.
Assume n > 1 and that the theorem holds for subspaces of dimension less

than n. Let

Then there is a submodule Ka with Ko n So = 0 and dimo (A/Kn)< °°. If
S n Ko = 0, we're done. If not, let

O ^ y = a,x, + -- • + anxn E S (1 Kn (a , , - - - ,a n G Q).

Then an/ 0, so that z = ya;1 lies in S D Ko and

X , , • • -,Xn-i,Z

is a basis for S. It follows that 5 D Ka = Oz.
Invoking Lemma 2.5 again, let K, be a submodule with z £ K , and

dimo (A//C,)<a>. Putting K = KnH Ku we have

dimo (A/AT) S dimo (A/.K0)+dimo (A/A:,) < so

and

s n A: = s n (A:0 n A:,) = Oz n A:, = o.

This completes the proof of Theorem 2.1.
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3. Embedding torsion-free groups

In this section we begin the process of deducing Theorem 4.1 from
Theorem 2.1. At this point it is convenient to introduce the theorem of
Baumslag (1973) mentioned in the introduction. We state this result in the
following form.

THEOREM 3.1 (Baumslag, 1973). Let A be an abelian normal subgroup of
a finitely generated group G with G/A abelian. Then there is a finitely presented
semidirectproduct H = B]U with B and Uabelian, and an embedding 4> of G
into H. <f> may be chosen so that <f>(A)C. B.

We now use Theorems 2.1 and 3.1 to deduce

THEOREM 3.2. Let G be a finitely generated metabelian group. Suppose G
has a normal subgroup A which is maximal with repect to A and G/A both
being abelian, and which is torsion free and of finite rank. Then there is a
finitely presented group L = C]U, with both C and U abelian and of finite rank,
and an embedding if/ of G into L. We may choose L so that C is torsion -free and
4>{A)QC.

PROOF. Let A and G be as in the statement of the theorem and let <f>:
G —* B]U = UH be given by Theorem 3.1. In particular, <f> \A : A —* B is an
embedding. Tensoring with the field of rational numbers, we obtain maps

A^>A (g) Q^—> B(g)Q

where i(a)= a (g) 1. Because A is torsion-free and Q is a flat Z-module, the
mapping )3 = (<t> |A 0 1) °» is an embedding of A into B (g)Q.

Let y: B]U-*(B (g) Q)]U be defined by

y(bu) = (b®\)u (b<EB,u&U)

Now f3(A)CA (g)Q and since A has finite rank, A®Q is a finite
dimensional subspace of B 0 Q. By Theorem 2.1, there is a submodule K of
B<g)Q with

^ and KTl/3(A) =

Let

be defined by

S((b (g) q)u) = ((b (g) q) + K)u.
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Then 8y4> is a map of G into 8yH. By the constructions above, 8yH = D]U,
where D = 8yB and 8y4>A C D. Now, D has finite rank since it is a subgroup

of the finite rank group (—^j-—). Since A is a maximal abelian subgroup of

G, ct>(G)DB = <t>(A) and 8y<t>G DD = 8y<t>A. It follows that 8y<f> is an

embedding of G into D]U, with D having finite rank.
Now since D has finite rank, it torsion part F is finite by Proposition 1.2.

Since A is torsion-free, 8y(j>A Pi F = 0. Thus 8yct>G embeds in \-^)\ U.

Let

j bedefinedby r](du) = (d + F)u.

Now putting

C=D/F L = C]U ijj = -n8y<t>

we see that the conclusion of Theorem 3.2 is satisfied: the fact that L is finitely
presented follows from its being a factor group of the finitely presented
metabelian group H. Because of the maximum condition for normal sub-
groups, any factor group of a finitely presented metabelian group is finitely
presented. This completes the proof of Theorem 3.2.

4. Conclusion of proof of Theorem 4.1

Let G be a finitely generated metabelian group whose derived group G'
has finite rank. Let GIG' = T and let F be the torsion subgroup of G', which
is finite by Proposition 1.2. Let G(l = GIF and let AJF be a normal subgroup
of G<> containing G'/F and maximal with respect to being abelian. Let F\IF be
the torsion subgroup of AJF. Now let G, = G/F, and iterate this process to
obtain sequences

F = F , , C F , C - - C F , C F , . , C ' - -

A' = A,, C A , C - • - C A,C A^,C • • •

of normal subgroups of G with F^JFi finite and At/F,-, maximal in
G,--i = G/Fi-i with respect to being abelian (i = 1,2, • • •). Since G satisfies the
ascending chain condition for normal subgroups, there is an integer n with
Fn — Fn + i and An = An^. Then Gn has a torsion-free normal subgroup An/Fn

which is maximal with respect to being abelian. Since G'Q An, An/Fn has
finite rank by Proposition 1.1. By Theorem 3.2, there is an embedding \p of Gn

into a finitely presented metabelian group L = C]U with C of finite rank.
Since L'C C, L' also has finite rank.
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that finitely generated metabelian groups are residually finite, there is a
normal subgroup N of G with N D Fn = 1 and G/N finite. The map £:
G-^LxG/N defined by £(g) = (^(gFn),gN) has kernel N D FB = 1 and so
is an embedding into LxG/N, which is clearly finitely presented and
metabelian. Since £,' has finite rank and G/N is finite, (LxG/N)' =
L'x(G IN)' clearly has finite rank, and the proof of Theorem 4.1 is complete.
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