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1. INTRODUCTION. The Journal of Navigation recently published a paper
[29] in which it is claimed that a new integer ambiguity resolution method, inspired
by the LAMBDA method [1], is developed and presented. Unfortunately, this
paper, here referred to as Piergentili, contains serious errors and misconceptions
about integer ambiguity resolution (IAR). This becomes clear once one has a prop-
er understanding of the existing body of knowledge in the field of GNSS ambiguity
resolution.

2. THEORY OF INTEGER INFERENCE. The theory that underpins
ultra-precise GNSS parameter estimation is the theory of integer inference [2, 3].
Central in the theory of integer inference is the mixed integer model. It is defined
as:

E(y)=Aa+Bb, a€ 7",b € R?, (1)

in which the m-vector y contains the ‘observed minus computed’ pseudo ranges
and carrier-phase observables, E denotes the mathematical expectation, (A4, B) is
the m x (n+ p) design matrix, the n-vector a contains the integer double-differenced
ambiguities and the real-valued p-vector b contains the remaining unknown para-
meters, such as baseline components (coordinates) in the case of the geometry-based
model or receiver-satellite ranges in the case of the geometry-free model, and possibly
atmospheric delay parameters (troposphere, ionosphere). The latter parameters
may be assumed absent in the case of sufficiently short baselines. Matrix 4 contains
the wavelength(s) and matrix B is formed, in the case of the geometry-based model,
from the receiver-satellite direction vectors; it thus contains the relative receiver-
satellite geometry information.

The mixed integer model is solved in three steps [1]. First, the integer nature of
a is discarded and the parameters ¢ and b are estimated using the principle of
(weighted) least-squares (LS) estimation. This gives the so-called float solutions of the
ambiguities and baseline, d and b, together with their variance matrices Q,; and Qg
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and covariance matrix Qy; Then the integer ambiguity constraints are taken into
account by a mapping / of a:

a=\(a). (2

Finally in the third step, the resolved ambiguity vector d is used to re-adjust the float
estimator b, so as to obtain the fixed baseline estimator:

b=b—0;,0,'a—a) (3)

The mapping / of Equation (2) can be defined in many different ways. The following
three classes of such estimators exist [3]: the class of integer estimators (I), the class of
integer aperture estimators (IA), and the class of integer equivariant estimators (IE).
They are subsets of one another and related as:

I CIA CIE. 4)

Each class consists of a multitude of ambiguity estimators and each class has its
own optimal estimator. Optimality refers here to the maximization of the probability
of correct integer estimation (the success rate) or to the minimization of the mean
squared error. The three optimal estimators, one for each class, have been identified
in [4-6].

Of the three classes, I, IA and IE, the class of integer estimators is most often used.
Within this class, the three most popular estimators are integer rounding (IR), integer
bootstrapping (IB), and integer least-squares (ILS). In [4, 7] it is proven that their
success-rates are related as:

P(air =a) <P(aig =a) <P(ais =a) ®)

Thus integer rounding (IR) has the poorest performance, while integer least-squares
(ILS) has the best performance.

3., LAMBDA METHOD. The LAMBDA method, introduced in [1], is a
computationally efficient mechanization of the ILS principle. It therefore produces
ambiguity solutions with the highest possible success rate. Hence, on the basis of
the same underlying assumptions, no other integer ambiguity estimator exists that
can produce higher success rates than LAMBDA. The computational efficiency of
the method is for a large part due to the method’s decorrelating ambiguity trans-
formation. It transforms the usually extremely elongated double differenced ambi-
guity search space to a more spherical shape, thus enabling a much more efficient
integer ambiguity search.

The LAMBDA method applies to any mixed integer model (1). It is therefore
application independent. It can and has been used for single-frequency and multi-
frequency models, for single-epoch and multi-epoch models, and for current and
future GNSS, stand alone or in combination. It has also been used in disciplines
other than GNSS. Examples are radar remote sensing [8], VLBI [9] and acoustic
marine positioning [10]. Details of the method can be found in [1, 11]. An elementary
description is given in [12, 13], see also the FAQs of [14]. (note: Piergentili refers to
[13], but gives a wrong reference).
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4. PIERGENTILI’S TAR METHOD. With the above theoretical back-
ground, one may ask how the work of Piergentili relates to this existing body of
knowledge? Although Piergentili’s method of IAR (c.f. Equation 7) is presented as
an ILS technique, it is essentially based on integer rounding, because Piergentili’s
objective function is unfortunately chosen to be univariate (in the scalar case, ILS,
IB and IR are identical). We will come back to this in a moment.

We start with Piergentili’s motivation for developing an IAR method in the first
place. In the paper it is stated that the LAMBDA method “is applicable only in post-
processing analysis of data’. This statement is false. In the more than 15 year existence
of the method, it has been successfully used in real-time by many, in a variety of
different and demanding applications. Some such examples are real-time (automatic)
aircraft landings [15, 16], real-time relative navigation of spacecraft [17, 18], and real-
time attitude determination [19, 20]. The method is also widely used in industry and
by receiver manufacturers, for instance, in Leica’s SpiderNET [21], in Septentrio
receivers [22] and in the satellite compasses of Furuno [23].

Piergentili’s statement that LAMBDA’s ‘convergence time is quite long’ is also
wrong. In fact, upon its introduction, LAMBDA made epoch-by-epoch or instan-
taneous GNSS positioning possible. For examples, see [24—27]. Finally, the statement
that the ‘ Wide Lane technique is faster’ than LAMBDA, is also incorrect. In [28] it
has been shown that the wide lane combination is a special case of LAMBDA’s
automated decorrelation step.

Now let us turn to Piergentili’s IAR method itself. In the introduction it is stated
that “the number of satellites used for DGPS should be kept low to guarantee brief
calculation time’. Although this point is not further clarified in the paper, it is gen-
erally a counterproductive strategy from an IAR point of view. The more satellites
are tracked, the higher the ambiguity success rate generally is for such short baselines
as treated in the paper. That Piergentili’s method is indeed not able to realize high
success rates in short time, is in fact acknowledged in the paper’s statement (p. 650)
that it needs ‘a period of two minutes for GV evaluation’ and ‘a period of about twenty
minutes for ambiguity evaluation’. Despite the paper’s goal to enable fast ambiguity
resolution, this is not really a fast initialization time. The reason lies mainly in
Piergentili’s unfortunate scalar approach (c.f. Equation 7), where IAR is done on an
individual ambiguity by ambiguity basis. Since ILS is identical to IR in the scalar
case, integer minimizing Piergentili’s ambiguity objective function (c.f. Eq. 7) is
identical to rounding its scalar float LS solution to its nearest integer. Hence, since
in Piergentili’s case the solution is constrained to a subset of integers, the solution is
the subset integer which is nearest to the scalar float solution. Thus if the nearest
integer is not in the subset, the next nearest integer is checked, etc. In this way, one
alternates around the float solution until the evaluated integer is a member of the
given subset.

It follows from the theory of integer inference that this nearest integer based
scalar approach has two important drawbacks. First, the scalar approach implies that
not all available information is taken into account. The correlation between the am-
biguities, for instance, is not taken into account. More importantly however, the
relative receiver-satellite geometry is also not taken into account, thus effectively
making Piergentili’s method a geometry-free method [2], with corresponding signifi-
cantly reduced strength of successful IAR. Secondly, since the ambiguities are re-
solved on an individual scalar basis, the absence of a vectorial formulation implies
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that no advantage can be taken of the optimal ILS success rate performance, see
Equation (5).

It is rather unfortunate, given Piergentili’s claim of a new method, that the paper
has not properly explored the existing body of knowledge. With such a conceptual
and numerical comparison, the errors and misconceptions could have been
avoided.
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