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Abstract

Background. Emotion regulation tendencies are well-known transdiagnostic markers of psy-
chopathology, but their neurobiological foundations have mostly been examined within the
theoretical framework of cortical–subcortical interactions.
Methods. We explored the connectome-wide neural correlates of emotion regulation tenden-
cies using functional and diffusion magnetic resonance images of healthy young adults (N =
99; age 20–30; 28 females). We first tested the importance of considering both the functional
and structural connectome through intersubject representational similarity analyses. Then, we
employed a canonical correlation analysis between the functional–structural hybrid connec-
tome and 23 emotion regulation strategies. Lastly, we sought to externally validate the results
on a transdiagnostic adolescent sample (N = 93; age 11–19; 34 females).
Results. First, interindividual similarity of emotion regulation profiles was significantly corre-
lated with interindividual similarity of the functional–structural hybrid connectome, more so
than either the functional or structural connectome. Canonical correlation analysis revealed
that an adaptive-to-maladaptive gradient of emotion regulation tendencies mapped onto a
specific configuration of covariance within the functional–structural hybrid connectome,
which primarily involved functional connections in the motor network and the visual net-
works as well as structural connections in the default mode network and the subcortical–cere-
bellar network. In the transdiagnostic adolescent dataset, stronger functional signatures of the
found network were associated with higher general positive affect through more frequent use
of adaptive coping strategies.
Conclusions. Taken together, our study illustrates a gradient of emotion regulation tendencies
that is best captured when simultaneously considering the functional and structural connec-
tions across the whole brain.

Introduction

How individuals change the rise, maintenance, and decline of their affective experiences – the
process of emotion regulation – has been widely recognized as a key process from normative
functioning to psychopathology (Fernandez, Jazaieri, & Gross, 2016; Gross & Muñoz, 1995;
Sheppes, Suri, & Gross, 2015). Studies have found that emotion regulation measures can
lead to successful predictions of prospective mental health outcomes such as social function-
ing, well-being, internalizing symptoms, and externalizing symptoms (Berking, Wirtz, Svaldi,
& Hofmann, 2014; Cameron & Overall, 2018; Kim & Cicchetti, 2010; Wirtz, Hofmann, Riper,
& Berking, 2014). Moreover, recent studies highlight the role of emotion regulation in both the
development and successful treatment of diverse dimensions of psychopathology (Aldao, Gee,
De Los Reyes, & Seager, 2016; Fernandez et al., 2016; Sakiris & Berle, 2019; Sloan et al., 2017;
Weissman et al., 2019).

Given its relevance in both normative and aberrant affective experiences, increasing num-
ber of neuroimaging studies sought to delineate the neural substrates of emotion regulation. In
detail, decades of task-based experiments have culminated in relatively reliable meta-analytic
mappings of emotion regulation circuits that encompass the amygdala, ventromedial pre-
frontal cortex, ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, the insula, supple-
mentary motor area, and the cingulate cortex (Buhle et al., 2014; Frank et al., 2014; Kohn et al.,
2014; Morawetz, Bode, Derntl, & Heekeren, 2017). These empirical mappings are also in line
with theoretical models that explain emotion regulation as a dynamic process that recruit mul-
tiple combinations of cortical–subcortical interactions to shape affective experiences
(Braunstein, Gross, & Ochsner, 2017; Caballero, Nook, & Gee, 2022; Etkin, Büchel, &
Gross, 2015; Ochsner, Silvers, & Buhle, 2012; Silvers & Moreira, 2019; Smith & Lane, 2015).

However, there are two important shortcomings in the relevant literature that need to be
addressed: reliance on (1) laboratory-based tasks of emotion regulation and (2) a priori regions
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of interest (ROIs) approaches. The first limitation of the emotion
regulation literature is its heavy reliance on laboratory-based emo-
tion regulation tasks to elucidate the neural substrates supporting
successful implementation of certain emotion regulation strategies
(Caballero et al., 2022; Silvers & Moreira, 2019). In other words,
there is a relative paucity of neuroimaging research on emotion
regulation tendency. Emotion regulation tendency refers to the
habitual mode of emotion regulation in which individuals engage
in when faced with naturalistic regulatory needs (Silvers &
Moreira, 2019), and such tendencies cannot be fully captured in
laboratory settings where subjects are given certain emotion regu-
lation strategies to utilize. Numerous studies have demonstrated
that dispositional patterns through which individuals deploy
specific emotion regulation strategies can be especially inform-
ative in parsing psychopathology symptoms (Aldao,
Nolen-Hoeksema, & Schweizer, 2010; Eftekhari, Zoellner, &
Vigil, 2009; Naragon-Gainey, McMahon, & Chacko, 2017;
Sheppes, Scheibe, Suri, & Gross, 2011), but few studies have inves-
tigated the neural underpinnings of such patterns. Though a
number of studies investigated the neural mechanism behind
emotion regulation tendency by giving individuals regulatory
choices in experimental settings (Doré, Weber, & Ochsner,
2017; Fine, Schwartz, Hendler, Gonen, & Sheppes, 2022; Shafir,
Schwartz, Blechert, & Sheppes, 2015; Shafir, Thiruchselvam,
Suri, Gross, & Sheppes, 2016) or by probing the correlations
between self-reported emotion regulation tendency and individual
difference in brain activity magnitude (Che, Luo, Tong,
Fitzgibbon, & Yang, 2015; Drabant, McRae, Manuck, Hariri, &
Gross, 2009; Kanske, Heissler, Schönfelder, & Wessa, 2012;
Kanske, Schönfelder, Forneck, & Wessa, 2015; Scult, Knodt,
Swartz, Brigidi, & Hariri, 2017), studying diverse patterns across
multiple emotion regulation strategies has been limited because
these studies mainly focused on only one or two strategies in
experimental settings.

The second limitation of the existing body of research is that
the analyses were mostly limited to activations or functional con-
nectivity patterns among a priori ROIs. Extracting neural pheno-
types from emotion regulation circuits have led to promising
models that predict symptoms or treatment responses (Fournier
et al., 2021; Fresco et al., 2017; Klumpp et al., 2017; Wu et al.,
2022). On the other hand, such models may be further improved
by considering whole-brain data to understand the neural corre-
lates of emotion regulation in a more comprehensive manner.
Indeed, previous literature highlight that exploring outside the
theoretically restricted ROIs contributes to building generalizable
models of affective experience (Tejavibulya et al., 2022; Yarkoni &
Westfall, 2017). Evidence that directly support this claim can be
found where distributed patterns of activation across the entire
brain showed better performance in capturing negative emotions
than ROI activations (Chang, Gianaros, Manuck, Krishnan, &
Wager, 2015), or where subjective fear was represented in distrib-
uted systems rather than conventionally defined ‘fear centers’
(Zhou et al., 2021). Taken together, a formal investigation of emo-
tion regulation tendency in the context of whole-brain data is
warranted.

One useful approach that would be able to address these issues
is to investigate stable networks derived from whole-brain func-
tional connections, or functional connectomes. Accumulating evi-
dence suggest that although transitory states induce significant
changes in functional connections (Finn & Bandettini, 2021;
Geerligs, Rubinov, & Henson, 2015; Greene, Gao, Scheinost, &
Constable, 2018), their network organizations are mostly stable

within individuals across time (Gratton et al., 2018; Horien,
Shen, Scheinost, & Constable, 2019; Shen et al., 2017), making
them suitable for inspecting trait-like individual differences
such as sustained attention (Rosenberg et al., 2016), transdiagnos-
tic psychopathology (Elliott, Romer, Knodt, & Hariri, 2018), or
fluid intelligence (Finn et al., 2015). One prime example that
emphasizes the utility of connectomes is a recent meta-analytic
study using connectomics to find a convergence map that is clin-
ically translatable to effective treatment targeting, which was
unattainable when using regional activations (Cash, Müller,
Fitzgerald, Eickhoff, & Zalesky, 2023).

On the other hand, structurally bound functional networks
have been seldom studied despite its promise in highlighting
stable trait-like features. Conceptually, if functional connectivity
corresponds to the ‘observed amount of traffic’ between two ‘cit-
ies’, white matter structural connectivity derived from diffusion
magnetic resonance imaging (dMRI), in turn, corresponds to
the ‘highways’ that support the traffic (Amico & Goñi, 2018).
Therefore, one can consider the possibility that stronger networks
of highways shaping how traffics operate and include this
dynamic in brain connectivity models. Of note, though stronger
structural connectivity between two regions promotes functional
connectivity between said regions (Sarwar, Tian, Yeo,
Ramamohanarao, & Zalesky, 2021; Sporns, 2011; Suárez,
Markello, Betzel, & Misic, 2020), the structural networks may
influence spatially non-overlapping functional networks through
facilitating or restricting network-level interactions (Amico &
Goñi, 2018; Mišić et al., 2016).

To expand the emotion regulation literature through adopting
such network-based approaches, we analyzed the functional con-
nectome in tandem with the structural connectome to search for
whole-brain functional–structural network correlates of emotion
regulation tendency (Fig. 1). First, as a preliminary examination,
we employed an intersubject representational similarity analysis
(IS-RSA) framework to test whether individuals with similar
functional and structural connectomes have similar emotion regu-
lation tendencies across 23 regulatory strategies (Finn et al., 2020).
The IS-RSA framework serves as a general test of relationship
where statistical assumptions between the variables are minimal,
and also retains the high resolution of information in the vari-
ables, which is especially helpful when analyzing a set of variables
that may be comprised of qualitatively distinct subsets (e.g. 23
emotion regulation strategies). Then, we sought to pinpoint the
structurally bound functional networks that represent individual
differences in emotion regulation tendency. In detail, we applied
independent component analysis (ICA) on the functional–struc-
tural hybrid connectome to elucidate the functional–structural
covariant components that are reliably present across individuals
(Amico & Goñi, 2018), then subjected these hybrid components
to a canonical correlation analysis (CCA) to explore their relation-
ship with emotion regulation tendencies (Smith et al., 2015). We
hypothesized that multiple structurally bound functional net-
works would each be related to diversiform domains of emotion
regulation tendency. Lastly, we sought to externally validate the
results on a transdiagnostic sample of adolescents from the
Healthy Brain Network (HBN; Alexander et al., 2017) to check
if such structurally bound functional networks would also be
important in the developmental stage where emotion regulation
tendencies as well as psychopathology symptoms purportedly
start to emerge (Ahmed, Bittencourt-Hewitt, & Sebastian, 2015;
Casey, Getz, & Galvan, 2008; Lee et al., 2014; Silvers, 2022;
Thompson, 1991).
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Methods and materials

Participants

Data for this study were from the Max Planck Institute ‘Leipzig
Study for Mind- Body-Emotion Interactions’ (LEMON) dataset
(Babayan et al., 2019). The resulting sample comprised of
99 young German-speaking adults (n = 59 in age bracket
20–25, n = 40 in age bracket 25–30) among which 28 were
female. Further details on the dataset are described in the
online Supplementary Information.

Behavior measures

Data on emotion regulation tendency have been obtained from
three different questionnaires (Emotion Regulation Questionnaire,
ERQ; Cognitive Emotion Regulation Questionnaire, CERQ;
Coping Orientations to Problems Experienced, COPE) to capture
a broad range of individual difference in habitual emotion regula-
tion. Details on these questionnaires can be found in the online
Supplementary Information.

Connectome building

Image acquisition, preprocessing, and quality check as well as pro-
cedures on connectome construction are fully described in the
online Supplementary Information. In brief, using the 268-node
Shen atlas (Shen, Tokoglu, Papademetris, & Constable, 2013),

structural connectomes were derived from number of streamlines
of probabilistic tractography on preprocessed dMRI images
(Behrens, Berg, Jbabdi, Rushworth, & Woolrich, 2007), while func-
tional connectomes were calculated from correlation coefficients
between the mean timeseries of functional activations for each of
the 268 regions from preprocessed resting-state functional images
(Taylor & Saad, 2013).

Intersubject representational similarity analyses

IS-RSA via Mantel tests (Finn et al., 2020; Mantel, 1967) were per-
formed to examine whether the joint consideration of functional
and structural connectomes, compared to either connectome sep-
arately, offered better explanatory power for individual differences
in emotion regulation tendencies. We therefore tested three inter-
subject similarity correlation models: (1) interindividual similarity
of functional connectome and interindividual similarity of emo-
tion regulation tendencies, (2) interindividual similarity of struc-
tural connectome and interindividual similarity of emotion
regulation tendencies, and (3) interindividual similarity of func-
tional–structural hybrid connectome and interindividual similar-
ity of emotion regulation tendencies. Details are described in the
online Supplementary Information.

Canonical correlation analysis

Given that the functional–structural hybrid connectome showed
stronger correlation with emotion regulation tendencies than

Figure 1. Schematic of the main analytic framework. The canonical correlation analysis involves the functional–structural hybrid connectome on one end and
emotion regulation tendency on the other, both of which were each subjected to dimensionality reduction beforehand. Four independent components emerged
from the 268 × 268 functional and structural connectomes, and three principal components were extracted from the 23 dimensions of emotion regulation tendency.
Then, these sets of components were entered into the canonical correlation analysis framework to find the configuration of variable weights that determines max-
imal correlation between the two sets of variables.
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either the functional or structural connectome by itself, the func-
tional–structural hybrid connectome was further inspected to pin-
point the source of the correlation. Although CCA is a powerful
multivariate analytic tool for capturing covariance between two
sets of variables with high dimensionality (i.e. 268 × 268 brain
variables and 23 behavior variables) (McPherson & Pestilli,
2021; Smith et al., 2015; Wang et al., 2020; Xia et al., 2018), con-
cerns regarding its susceptibility to overfitting has been documen-
ted (Dinga et al., 2019; Mihalik et al., 2022). To circumvent this
issue, we sought to reduce the dimensions of variables before
they are entered into the CCA framework, which increases the sta-
bility and the reliability of CCA (Dinga et al., 2019; Mihalik et al.,
2022; Wang et al., 2020). Crucially, considering the number of
subjects of our study (n = 99), the number of variables that
would lead to reliable results is around 3–10 according to intro-
ductory texts (Pituch & Stevens, 2015; Tabachnick & Fidell,
2001) and less than 9 according to a recent methodological
guide (Mihalik et al., 2022). Therefore, these standards were
kept in mind when deciding the optimal number of dimensions,
which are outlined in the online Supplementary Information. As a
result, four independent components of functional–structural
hybrid connectomes and three principal components of emotion
regulation tendency were identified.

CCA takes two sets of variables and finds the optimal config-
uration of variable weights that maximizes the correlation between
the two sets of variables. The analytic framework and the code for
the CCA analysis followed a previous work (Smith et al., 2015),
which also utilized CCA to pinpoint brain–behavior links after
carrying out dimension reduction schemes on datasets to ensure
reliability. First, for each participant, their weight for each of
the four ICA components were found by averaging the weight
values across the 1000 runs. Second, a covariate matrix was
derived by aggregating and normalizing data on gender, age,
height, weight, heart rate, resting-state EPI movement, and
diffusion-weighted imaging movement for all subjects. Gender
and age (in 5-year range brackets) were entered as binary dummy-
codes, and data on height (cm) and weight (kg) were provided up
to the first decimal figure. Heart rate data were collected during
resting-state scans using BIOPAC MP150 acquisition system
(BIOPAC Systems Inc., Goleta, CA, USA) and the acquisition soft-
ware AcqKnowledge (Version 4.0, BIOPAC Systems Inc.), and the
systole and the diastole signal at the brachial artery of the left
arm were each used as covariates. Mean FD values during the
resting-state acquisition and mean relative movement parameters
during the diffusion image acquisition were also entered as covari-
ates. Third, the covariate matrix was regressed out from both the
functional–structural hybrid ICA components and the emotion
regulation tendency PCA components. Fourth, CCA (cancorr func-
tion in Matlab) was run 10 000 times with the emotion regulation
tendency PCA components randomly permuted across subjects
each time. This formed the null distribution of CCA results, on
which the non-parametric significance of the true CCA result
could be tested. Lastly, the true CCA result was tested for signifi-
cance with the p < 0.05 threshold after multiple test correction.

Control analyses

To account for possible alternate explanations for our results, we
carried out multiple control analyses to test if the results were dri-
ven by (1) the functional connectome, (2) the structural connec-
tome, or (3) the pure amount of data in the functional and

structural connectome. Details can be found in the online
Supplementary Information.

External validation on transdiagnostic adolescent data

Based on prior literature that emphasize the role of adolescence in
development of emotion regulation tendencies and psychopath-
ology (Ahmed et al., 2015; Casey et al., 2008; Lee et al., 2014;
Silvers, 2022; Thompson, 1991), the HBN dataset was used to
probe if the results of our CCA analyses were generalizable to ado-
lescent subjects with varying psychiatric diagnoses. As a direct
correlate of emotion regulation tendency, we inspected coping
strategies from the Children’s Coping Strategies Checklist –
Revised (CCSC-R1; Ayers et al., 1989). We additionally probed
experience of positive affect as a possible consequence of emotion
regulation, gauged by the Positive And Negative Affect Schedule
(PANAS; Watson, Clark, & Tellegen, 1988).

First, adolescent subjects with psychiatric diagnoses were
selected from the HBN dataset Releases 7 through 10. Excluding
subjects with insufficient data, no diagnosis, or with head move-
ment above 0.2 mm in mean FD, the final sample consisted of 93
adolescents aged 11–19 years (34 females; mean age 14.39 ± 2.12).
The sample was fully transdiagnostic as the adolescents were diag-
nosed with at least one psychiatric illness. According to diagnoses,
the adolescents were further categorized into internalizing disorder
(n = 38; Generalized Anxiety Disorder, Major Depressive Disorder,
Obsessive-Compulsive Disorder, Bulimia Nervosa, Persistent
Depressive Disorder, Social Anxiety, and Specific Phobia), exter-
nalizing disorder (n = 2; Conduct Disorder-Childhood-onset
type and Alcohol Use Disorder), and neurodevelopmental dis-
order (n = 53; ADHD-Combined Type, ADHD-Inattentive Type,
Autism Spectrum Disorder, Borderline Intellectual Functioning,
Intellectual Disability, Language Disorder, and Learning Disorder).

Functional connectomes of the adolescents were constructed
following procedures reported in the online Supplementary
Information. External validation was carried out by calculating
network scores to explore the generalizability of the originally
found network. We adopted this approach to discover a general-
izable network model of emotion regulation tendencies that can
aid further research without having to collect extensive emotion
regulation tendency data or construct computationally expensive
structural connectomes every time. One notable example is the sus-
tained attention network model (Rosenberg et al., 2016), which has
been leveraged to uncover novel findings pertaining to the nature of
attention and related constructs – all based on a network predefined
from a discovery sample (Jangraw et al., 2018; Kardan et al., 2022;
Rosenberg et al., 2020). Nonetheless, as it is critical to also establish
the replicability of our findings, we also constructed the structural
connectomes and employed the same CCA framework in the ado-
lescent dataset as described in the online Supplementary
Information. Moreover, although not the primary aim of the valid-
ation analyses, we sought to confirm that the structural network
found in the young adult dataset was also generalizable. We there-
fore calculated the structural network score by applying the meth-
ods described above to the structural connectomes of the
adolescents and tested it for behavioral relevance.

We calculated the composite functional network score by first
multiplying the weights of the final composite functional network
from the young adult dataset with the functional connectomes of
each subject in the adolescent dataset, and then aggregating the
absolute values across the entire connectome to find single-value
scores for each individual. These network scores would be higher
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for subjects with stronger positive and negative connections across
the composite functional network, and lower for subjects with
overall weaker connections across the network. Notably, because
individuals with stronger connections but with opposite signs
(e.g. values of 3 and −2 for subject A and −3 and 2 for subject
B) would be assigned the same absolute sum score (e.g. score of
5 for both subjects), we additionally calculated a positive and
negative network score for each individual by aggregating across
all positive or negative values only.

Then, Pearson correlations were conducted between these
composite functional network scores and positive affects score
and coping tendency score. Positive affect score was derived
from 10 questions from the PANAS scale where subjects are
prompted to answer the extent to which they generally feel a
given emotion (e.g. ‘Interested’, ‘Excited’, ‘Strong’) on a 5-point
Likert scale (PANAS; Watson et al., 1988). Coping tendency
score was defined as the first principal component of the 13 cop-
ing strategies from the CCSC scale, which was found sufficient by
the same criteria described above (Lüdecke, Ben-Shachar, Patil, &
Makowski, 2020), explaining 46.0% of variance from the scale.
Additionally, we have examined the relevance of our network
feature with regards to psychiatric symptoms from the Child
Behavior Checklist (CBCL; Achenbach, 1991).

Because the composite functional network absolute sum score
was positively correlated with both behavioral measures, we also
carried out a path analysis. In a path analytic framework, there
is a direct path and an indirect path between an independent vari-
able and a dependent variable. We reasoned that if the composite
functional network can be replicated in the adolescent age, it will
be correlated to the general experience of positive affect through
promoting use of adaptive strategies. Therefore, a direct path
from the composite functional network score to positive affect
as well as an indirect path including the coping strategies princi-
pal component were tested. After finding evidence of indirect
effects through linear modeling, bootstrapping of 5000 trials
was conducted to measure the 95% confidence interval of the
tests via the Causal Mediation Analysis package in R (Tingley,
Yamamoto, Hirose, Keele, & Imai, 2014).

Results

Intersubject representational similarity analysis

The functional–structural hybrid connectome showed stronger
correlation with emotion regulation tendencies than either the
functional or structural connectome by itself, supported by vari-
ous tests outlined in the online Supplementary Information.

Canonical correlation analysis

With three principal components of emotion regulation tendency
and four independent components of functional–structural
hybrid connectome as input, CCA resulted in one significant
mode of correlation after 10 000 permutations (r = 0.336,
p = 0.025 after correcting for multiple tests). The significant
mode of correlation was between an adaptive-to-maladaptive gra-
dient of emotion regulation tendency and the functional–struc-
tural network which mainly involved the functional and
structural connections of the visual cortex. To elaborate, the
three principal components of emotion regulation tendency
with the weight of −0.125, −0.835, and −0.530 showed a canon-
ical correlation with the four independent components of func-
tional–structural hybrid connectome with the weight of 0.275,

0.359, −0.940, and −0.025. Each of these components, multiplied
by their weights, was summed to create a comprehensive brain–
behavior correlation that is interpretable.

As a result, the composite emotion regulation tendency mode
revealed an adaptive-to-maladaptive gradient with active coping,
positive reframing, and positive reappraisal on one end, and self-
blame (both COPE and CERQ) and catastrophizing on the other
(Table 1). The composite functional–structural hybrid model had
pronounced functional connections concentrated in the motor
network and the visual networks (Fig. 2a) as well as structural
connections most heavily involving the subcortical–cerebellum
network and the default mode network (Fig. 2b). In detail, the
adaptive-to-maladaptive emotion regulation tendency gradient
(1) negatively covaried with functional connections in the default
mode network and the subcortical–cerebellum network, (2) posi-
tively covaried with functional connections involving the motor net-
work and the visual networks, (3) negatively covaried with
structural connections in the subcortical–cerebellum network and
the default mode network, (4) positively covaried with structural
connections among the motor network and the visual networks.

Control analyses

The results of the control analyses described in the online
Supplementary Information ensured that the CCA results were

Table 1. Composite emotion regulation tendency from the significant mode of
canonical correlation

Emotion regulation strategies Weight

Active coping 2.032

Positive reframing 1.316

Positive reappraisal 1.160

Humor 0.826

Refocus on planning 0.793

Reappraisal 0.784

Putting into perspective 0.758

Use of instrumental support 0.703

Positive refocusing 0.604

Venting 0.479

Use of emotional support 0.431

Religion −0.010

Acceptance (COPE) −0.194

Blaming others −0.420

Suppression −0.453

Self-distraction −0.519

Acceptance (CERQ) −0.690

Substance use −0.975

Rumination −1.059

Denial −1.239

Catastrophizing −1.344

Self-blame (CERQ) −1.464

Self-blame (COPE) −1.517

The 23 emotion regulation strategies are shown ordered by their canonical correlation weight.
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not solely dependent on (1) the functional connectome, (2) the
structural connectome, or (3) the pure amount of data in the
functional and structural connectome.

External validation on transdiagnostic adolescent data

We focused on the first principal component of the coping strat-
egies that roughly followed an adaptive-to-maladaptive spectrum

from ‘Cognitive Decision Making’ and ‘Optimistic Thinking’ to
‘Repression’ and ‘Avoidant Actions’ (Table 2; accounting for
46.0% variance) and named this component the coping tendency
score. The composite functional network score was positively
correlated with this coping tendency score (r = 0.236, p = 0.023)
as well as positive affect from the PANAS scale (r = 0.270,
p = 0.009; Fig. 3a). Aside from the network absolute sum score
used above, network positive value score and network negative

Figure 2. Composite functional and structural network properties from the significant mode of canonical correlation. (a) Functional connections of the significant
mode reveal concentration in the motor network and the visual networks. Top left figure denotes important nodes with size and color scaled by eigenvector cen-
trality, a metric of graph centrality emphasizing nodes that are connected to other nodes with high eigenvector centrality that was calculated via Brain Connectivity
Toolbox (Rubinov & Sporns, 2010). Important connections that carry top 1% weight in either the positive or the negative direction are also shown. The same
important connections are signified on the top right 268 × 268 matrix, ordered by eight network labels (Shen et al., 2013). Bottom left and right figures dissociate
the connections that either positively covaries or negatively covaries with the adaptive-to-maladaptive gradient of emotion regulation tendency. (b) Structural
connections of the significant mode illustrate relevance of subcortical–cerebellar structures and default mode network connections.
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value score were also tested for correlation with positive affect and
coping tendency score. The positive network score was positively
correlated with coping tendency score (r = 0.294, p = 0.004) and
positive affect (r = 0.242, p = 0.019), while the negative network
score was not significantly correlated with coping tendency
score ( p = 0.511) or positive affect ( p = 0.153). Despite the posi-
tive network score carrying heavier behavioral relevance, the
absolute sum score was used for further analyses because it is con-
ceptually more in line with our network property in which posi-
tive and negative connections work together. The structural
network score was not significantly correlated to positive affect
( p = 0.711) or the coping tendency score ( p = 0.114). The func-
tional composite network score was not correlated with the
internalizing symptom score ( p = 0.193) or the externalizing
score ( p = 0.991), and the same was true for the structural com-
posite network score ( p = 0.560; p = 0.561).

In the following path analysis, the effect of the composite func-
tional network score on positive affect was fully explained by the
coping tendency score (Fig. 3b). In other words, the path from the
composite functional network score to coping tendency score
(B = 0.0005, p = 0.023) and the path from coping tendency score
to positive affect were both significant (B = 1.6218, p < 0.001),
but the direct effect on positive affect from the composite func-
tional network score (B = 0.0020, p = 0.009) was not significant
anymore when considering the indirect path that included the
coping tendency score (B = 0.0012, p = 0.083). Significance testing
through 5000 trials of bootstrapping revealed that the indirect
path was significant (indirect effects = 0.0008, 95% CI [0.00005–
0.0016]), whereas the direct path was not (direct effects =
0.0012, 95% CI [−0.0001 to 0.0026]).

Discussion

In our study, IS-RSA and CCA have each demonstrated that indi-
vidual differences in emotion regulation tendency can be gleaned
from whole-brain functional and structural connections. First,
IS-RSA showed that emotion regulation tendency is best captured

when investigating both the structural and the functional connec-
tome. Second, CCA results associated an adaptive-to-maladaptive
gradient of emotion regulation tendency with a network feature
conveying noticeable contributions from motor network and vis-
ual network functional connections as well as default mode net-
work and subcortical–cerebellum network structural connections.
Together, our study advances the theoretical understanding of
emotion regulation tendency by elucidating its neural foundations
while also confirming multiple streams of clinical research on the
transdiagnostic psychopathology factor.

First, our results provide affirmation as well as novel insights
on the theoretical models of affective processes. Connections
involving the visual network regions, motor network regions,
and cerebellar regions, which are traditionally placed at the lowest
end of the regulation hierarchy model (Smith & Lane, 2015), were
most strongly correlated with the adaptive-to-maladaptive gradi-
ent of emotion regulation tendency. This implies that (1) individ-
ual differences in the network organization that oversees the
somatosensory stages of emotion generation may cause down-
stream differences in voluntary emotion regulation tendency, or
(2) adaptive-to-maladaptive emotion regulation tendency may
be embedded in low-level networks. The former explanation is
in line with the hierarchical models of emotion regulation,
where the low-level functionalities of the human brain related
to basic body states and movements form the building blocks of
emotion generation that lead to downstream identification,
choice, and implementation of regulatory goals (Gross, 2014;
Sheppes et al., 2015; Smith & Lane, 2015). Within such frame-
works, our result may indicate that individual differences in low-
level processes that are ostensibly devoid of affective value can
bring on differences in habitual emotion regulation tendency
down the line. The latter, on the other hand, relates to relatively
recent findings that affective information such as valence (Bo
et al., 2021; Kragel et al., 2021; Xu et al., 2023), fear learning
(Li & Keil, 2023; You, Brown, & Li, 2021), distinct emotion cat-
egories (Kragel, Reddan, LaBar, & Wager, 2019), and even emo-
tion down-regulation (Bo et al., 2023) is processed at the
rudimentary visual perception stage. Building on such empirical
evidence, we may speculate that early stages of affective experience
may already contain information on regulatory tendency that
spans an adaptive-to-maladaptive gradient. Though both
accounts are plausible, our study demonstrates a clear link
between low-level network features and high-level emotion regu-
lation tendencies, speaking to the importance of conceptualizing
the emotion regulation process as an integrated and dynamic sys-
tem instead of a segregated and unidirectional system that follows
a strict hierarchy (Pessoa, 2017; Underwood, Tolmeijer, Wibroe,
Peters, & Mason, 2021).

Second, our network property also aligns well with a burgeon-
ing literature on neural correlates of the transdiagnostic factor of
psychopathology. On one hand, adaptive or maladaptive emotion
regulation tendency has been consistently implicated with mul-
tiple psychopathology symptoms across diagnoses (Aldao et al.,
2010; Eftekhari et al., 2009; Fernandez et al., 2016;
Naragon-Gainey et al., 2017). On the other, studies aiming to
locate the neural basis of general psychopathology have also
been accumulating evidence supporting the involvement of
regions and networks prominently featured in the present data.
In detail, while abnormal connectome-wide functional connectiv-
ity of the visual association cortex and default mode network have
been found to be indicative of transdiagnostic psychopathology
features (Doucet et al., 2020; Elliott et al., 2018; Whitfield-

Table 2. One principal component of Children’s Coping Strategy Checklist

Coping strategies Weight

Direct problem solving 0.326

Control 0.325

Positivity 0.314

Cognitive decision making 0.312

Optimism 0.310

Support sought from peers 0.298

Seeking understanding 0.298

Wishful thinking 0.256

Support sought from mother/father/guardian 0.243

Avoidant actions 0.225

Support sought from siblings 0.221

Support sought from other adults 0.214

Religion 0.176

Repression 0.133

The 14 coping strategies are shown ordered by their principal component weight.
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Gabrieli & Ford, 2012), functional connectivity disruptions of
somatosensory–motor network both within and across networks
have been documented as transdiagnostic signatures of psycho-
pathology (Kebets et al., 2019). Moreover, general psychopath-
ology features related to structural connectivity and gray matter

volume alterations of cerebellar circuitry and visual cortices
have been demonstrated and replicated with large transdiagnostic
datasets (Moberget et al., 2019; Romer et al., 2018, 2021b).
Although these studies did not explicitly connote emotion regula-
tion tendency as a transdiagnostic risk factor, maladaptive

Figure 3. External validation on a transdiagnostic adolescent dataset. (a) Composite functional network score is positively correlated with positive affect and cop-
ing tendency. Composite functional network score was calculated by multiplying the weights from the network property of the young adult dataset with the con-
nectomes of the adolescents and then finding the sum of the absolute values across each connectome. Positive affect was assessed via PANAS scale, and coping
tendency score was defined from extracting the first principal component of the CCSC Questionnaire. The adolescents were categorized into internalizing, exter-
nalizing, or neurodevelopmental disorders according to their diagnoses, indicated as colors of dots on scatterplots. (b) The effect of the composite functional
network score on positive affect is fully explained by the coping tendency in transdiagnostic adolescents. 95% Confidence intervals that do not include zero signify
statistical significance. *p < 0.05; **p < 0.01; ***p < 0.001.

2306 Wonyoung Kim and M. Justin Kim

https://doi.org/10.1017/S0033291724000473 Published online by Cambridge University Press

https://doi.org/10.1017/S0033291724000473


regulatory goals have been pointed out as the primary conse-
quence of such transdiagnostic neural aberrations (Romer,
Hariri, & Strauman, 2021a). To sum up, our network property
that is correlated with an adaptive-to-maladaptive gradient of
emotion regulation tendency resembles previous findings that
highlight brain-wide functional and structural connectivity anom-
alies as signatures of transdiagnostic psychopathology.

Finally, our composite network related to emotion regulation
tendency was externally validated in a transdiagnostic sample of
adolescents aged 11–19. In detail, adolescents with stronger signa-
tures of the composite functional network from the young adult
sample had higher general experiences of positive affect through
more frequent use of adaptive coping strategies such as ‘Direct
Problem Solving’ or ‘Positivity’. As emotion regulation tendencies
that start to be fully fleshed out in adolescence can act as risk or
resilience toward psychopathology, locating a neural marker of
emotion regulation tendency has implications for preventive
and early intervention (Cracco, Goossens, & Braet, 2017; Silvers,
2022; Young, Sandman, & Craske, 2019). It is also noteworthy
that such effects were found in a sample of adolescents with dis-
tinct psychiatric diagnoses that span internalizing, externalizing,
and neurodevelopmental disorders. One potentially fruitful
avenue of translational research is to target our network related
to emotion regulation tendency as a neural marker of resilience
in pediatric psychiatric patients that may be associated to positive
affect through use of more adaptive coping strategies, which in
turn could mitigate symptoms (Davis & Suveg, 2014; Gilbert,
2012).

Together, our results imply that the whole-brain network that
was extracted from young adults that was linked to an
adaptive-to-maladaptive spectrum of emotion regulation tenden-
cies starts to take shape as early as adolescence. That said, carrying
out the identical CCA analyses on the adolescent dataset pro-
duced a network that had different configurations of important
connections though the connections similarly involved the visual
networks and the subcortical–cerebellar network. At least three
possible explanations exist for this. First, the specific configura-
tions of connections critical to the adaptive-to-maladaptive emo-
tion regulation tendency may manifest differently for individuals
at distinct developmental stages or mental health states. Second,
the sub-critical connections in the network may cumulatively
explain the adaptive-to-maladaptive emotion regulation tendency,
given the fact that the young adult network was generalized to the
adolescents despite differences in their most important connec-
tions. Third, the CCSC scale may not have captured the full extent
of the adaptive-to-maladaptive emotion regulation tendency spec-
trum that was originally acquired from three different question-
naires. While these possibilities remain open, future work could
leverage the generalizable network found in our study to explore
such outstanding questions.

There are still limitations to our study. First, our network fea-
ture that represents an adaptive-to-maladaptive emotion regula-
tion tendency was defined at a whole-brain scale, but multiple
subsystems could theoretically be present within this network fea-
ture. This prospect adheres to a phenomenon well-documented
regarding the default mode network where multiple functionally
segregated subsystems were found to be embedded within the net-
work (Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner,
2010; Buckner & DiNicola, 2019). Such a possibility also aligns
with our ICA results where robust independent components
reached a plateau at four and then at 16, which could imply
that the four components were recapitulated as fragmented

representations. Although our study was not designed to pinpoint
individual differences at such minute scale, whether the fine-
grained subsystems within our network related to emotion regu-
lation tendency could aid in parsing heterogeneity in emotion
regulation and psychopathology is a question that remain unex-
plored. Second, our measure of emotion regulation tendency
depends on cross-sectional self-report questionnaires, which
may not thoroughly cover the dynamic nature of emotion regula-
tion tendency that persist throughout daily life (Lincoln, Schulze,
& Renneberg, 2022). That said, we used a conglomerate of three
different emotion regulation strategy questionnaires to extract
coherent patterns from expansive repertoires of strategies.
Future studies could use ecological momentary assessment to
track multiple features of emotion regulation such as frequency
or flexibility in relation to the neural foundations of emotion
regulation (Colombo et al., 2020). Third, females were underre-
presented in our main sample of young adults (<30%). Despite
including gender as a covariate in the main analytic framework,
our analyses were likely ill-equipped to determine potential effects
of gender, which have been reported to exist in diverse facets of
emotion regulation (Nolen-Hoeksema, 2012). We therefore
remain cautious in terms of making claims about the generaliz-
ability of our results across genders. Collecting ample sample
size across genders would be a crucial goal for future studies, as
gender-related differences in neural activity have also been docu-
mented in the traditional cortical–subcortical pathways (Mak, Hu,
Zhang, Xiao, & Lee, 2009). Fourth, the relatively low loadings on
the emotion regulation tendency principal components in the
young adult sample as well as the coping strategy principal com-
ponent in the adolescent sample suggests that the strategies are
not as highly correlated as expected. While employing as many
variables as possible and preserving the multivariate nature of
the emotion regulation strategies could lead to more exhaustive
explanations of the possible brain–behavior relationships, we
chose to adhere to parsimonious models that would prevent over-
fitting while maximizing generalizability. That said, we note that
replacing the single coping tendency component with the first
three principal components increased the effect in the generaliza-
tion analyses (i.e. better model fit), accounting for the full vari-
ability of the emotion regulation tendencies and the coping
strategies without any dimensionality reduction may yield stron-
ger and clearer effects. Though comparing the performance
between similar multivariate methods falls outside the aim of
the current study, more refined dimensionality reduction or regu-
larization methods that retain the most amount of meaningful
variability such as domain-driven dimension reduction may
grant supplementary insights (Liu, Whitaker, Smith, & Nichols,
2022; for comparison among methods, see also Mihalik et al.,
2022). Lastly, only the functional composite network score was
generalized to the transdiagnostic adolescent sample, and not
the structural composite network score. This may indicate that
the functional and structural connectomes in the transdiagnostic
adolescent sample are not coupled in an identical manner as the
young adults, and also that only the functional network is gener-
alizable to the coping strategies and positive affect of the adoles-
cents. It is noteworthy that previous literature suggest that
adolescence may be a time that structural–functional coupling
goes through cortex-wide changes to support functional develop-
ment (Baum et al., 2020; Park et al., 2022). However, formal tests
using a healthy adolescent sample and a young adult sample with
psychiatric symptoms may need to take place to fully flesh out
such interpretations.
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Conclusion

Our study demonstrates the existence of a network related to an
adaptive-to-maladaptive gradient of emotion regulation tendency
that span the entire brain of functional and structural connec-
tions. Elucidating the topology of this network system can inform
existing theories on affective experiences while also expanding our
understanding of the neural mechanisms underlying pediatric
psychopathology. Together, our findings complement theory-
driven neural schematics of emotion regulation with a network
feature identified through a data-driven approach.
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