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Abstract

The finite element method (FEM) is widely used to simulate a variety of physics phenomena. Approaches that
integrate FEM with neural networks (NNs) are typically leveraged as an alternative to conducting expensive FEM
simulations in order to reduce the computational cost without significantly sacrificing accuracy. However, these
methods can produce biased predictions that deviate from those obtained with FEM, since these hybrid FEM-NN
approaches rely on approximations trained using physically relevant quantities. In this work, an uncertainty
estimation framework is introduced that leverages ensembles of Bayesian neural networks to produce diverse sets
of predictions using a hybrid FEM-NN approach that approximates internal forces on a deforming solid body. The
uncertainty estimator developed herein reliably infers upper bounds of bias/variance in the predictions for a wide
range of interpolation and extrapolation cases using a three-element FEM-NN model of a bar undergoing plastic
deformation. This proposed framework offers a powerful tool for assessing the reliability of physics-based surrogate
models by establishing uncertainty estimates for predictions spanning a wide range of possible load cases.

Impact Statement

This manuscript highlights one of the first approaches for quantifying the uncertainty in deep learning-based
surrogatemodeling coupledwith finite-element analysis, which is a rising area of research and interest given their
potential to offset the computational cost of finite element methods alone.

1. Introduction

Mechanical deformation of elastic materials is greatly influenced by microscale features (such as grains,
thermodynamical phases, inclusions) as well as geometric features (such as cracks, notches, voids, etc.)
(Knott, 1973;Wu et al., 2004; Roters et al., 2010; Kalidindi, 2015; Karlson et al., 2023) spanningmultiple
length scales. Numerical methods such as the finite element method (FEM) typically incorporate a
physicallymotivatedmulti-scale representation of such geometries/features to properly resolve the effects
they have across disparate length scales. Common examples of such methods include staggered solution
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schemes for coarse- and fine-scale meshes such as the Schwarz alternating method (Mota et al., 2022) or
the global–local generalized finite element method (GFEM-gl) (Duarte and Kim, 2008); material
formulations that account for mechanical deformation through homogenized properties such as Miehe
and Bayreuther (2007) and Geers et al. (2010); variational multiscale (Liu and Marsden, 2018); and
reduced order models (Ganapathysubramanian and Zabaras, 2004).

The computational efficiency of multi-scale approaches deteriorates as the complexity of the material
model and/or the number of elements increases due to the expense of tasks such as the imposition of
plasticity constraints and the numerical integration of auxiliary variables like damage at each quadrature
point, which are typically performed at each time/continuation step of a simulation. Consequently, full
simulations become untenable as the number of elements increase to the tens to hundreds ofmillions, even
for today’s fastest computers (Balzani et al., 2016; Budarapu et al., 2019; Klawonn et al., 2021).

Surrogate models have been developed as an alternative to finite element simulations of high-fidelity
models by replacing the most computational expensive routines with approximations that are trained
offline using data obtained from previous finite element analyses and/or experiments. Focusing on
NN-based approaches, prior work in these types of models include approximations of constitutive and
balance laws (Huang et al., 2020; Wu et al., 2020; Aldakheel et al., 2021; Benabou, 2021; Wu and Noels,
2022), homogenization schemes (Wang and Sun, 2018; Wu et al., 2020; Wu and Noels, 2022), and
methods that simplify or fully replace finite element analyses (Koeppe et al., 2018, 2019, 2020; Capuano
and Rimoli, 2019; Im et al., 2021).

Illustrative examples of surrogate models used to approximate constitutive laws include approaches
that predict stresses of history-dependent materials using variants of feed-forward networks (Huang et al.,
2020), recurrent neural networks (RNNs) such as Long-Short Term Memory (LSTM) (Benabou, 2021),
and theGated Recurrent Unit (GRU) (Wu et al., 2020;Wu andNoels, 2022).Works such asWang and Sun
(2018), Wu et al. (2020), and Wu and Noels (2022) specifically focus on reducing the computational
complexity of traditional multi-scale approaches such as FE2 by approximating the homogenized fields
and properties thus eliminating the need to solve the full boundary-value problem for representative
volume elements (RVEs). The authors in Aldakheel et al. (2021) replace the costly numerical integration
of an ordinary differential equation (ODE) for a phase-field variable that controls the stress degradation
with a NN-based approximation. In Im et al. (2021), the authors construct models that predict the full
displacement, stress, or force fields for a given geometry such as a structural frame. In these cases, the
surrogate fully replaces the need to run a finite element analysis for the given geometry and set of
boundary conditions. In another example, a forcing term is trained to predict the corrections/errors on a
coarse mesh for a given boundary-value problem solved on a refined mesh (Baiges et al., 2020). The
authors achieved accurate predictions of the deformation for a cantilever beam bending problem using a
coarsened mesh and a trained error correction term. In the approaches of Koeppe et al. (2018, 2019, 2020)
and Capuano and Rimoli (2019), a machine-learned element is trained to predict a set of fields such as
forces for only a single element. The full predictive power of such methods is demonstrated by predicting
various quantities of interest in FEM simulations with meshed geometries composed of these machine-
learned elements.

The common assumption in the above approaches is that the surrogate model only makes predictions
on inputs that are near the data it was trained on. Such limitations are discussed briefly in the concluding
remarks of works such as Koeppe et al. (2019),Wu et al. (2020), and Aldakheel et al. (2021), but potential
solutions are left as research directions for future work. The degree of uncertainty in these surrogate
models’ predictions is crucial in determining whether such estimates represent an accurate and physically
relevant approximation of the original finite element model. Prior work on uncertainty quantification in
machine learning includes predictions of uncertainty due to noise (Yang et al., 2021), and predictions of
distributions over possible solutions where training data is sparse or nonexistent (Zhu et al., 2019). Other
similar applications are also highlighted in Zou et al. (2022). The uncertainty described in these works
pertains to problems where physics-constrained NNs predict fields that satisfy some governing ordinary
or partial differential equation subject to prescribed initial and/or boundary conditions. To the authors’

e23-2 Guy L. Bergel et al.

https://doi.org/10.1017/dce.2023.17 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2023.17


knowledge, uncertainty quantification for hybrid approaches that coupleNNswith discretizationmethods
such as FEM for simulating the deformation of solids has not been extensively studied to date.

In the current work, uncertainty estimates of predictions that surrogate models produce are constructed
within the framework of a coupled FEM-NN approach similar to those ofKoeppe et al. (2018, 2019, 2020)
and Capuano and Rimoli (2019). In this approach, the machine-learned elements predict internal forces
given displacements for a subregion of a full-scale geometry, while the rest of the meshed geometry
contains elements whose internal forces are computedwith the traditional evaluation of the stresses via the
FEM. Ensembles of Bayesian neural networks (BNNs) (Fort et al., 2019) are used to generate a diverse set
of internal force predictions. A novel tolerance interval-inspired approach is introduced to account for
uncertainty in the ensemble predictions. Ultimately, this approach is used to assess reliability of the NN
predictions for a wide range of possible loading conditions. We believe the proposed method provides a
powerful tool for quantifying the uncertainty of predictions for NN-based models when coupled
with FEM.

The article is organized as follows: In Section 2, the theoretical background on FEM and NNs is
presented. In Section 3, the training and uncertainty estimation procedures are discussed. In Section 4, the
proposed procedure is highlighted for a three-element geometry with a single machine-learned surrogate
element, and the results are discussed. Concluding remarks are presented in Section 5.

2. Theoretical background

2.1. Finite element formulation

Consider a spatially discretized domain in the current/deformed configuration at some specified time t
(omitted on domains and fields for brevity) as Ω composed of a set of finite elements Ωe,

ΩFEM�
[

Ωe, (1)

and a contiguous segment of NN elements Ωe
NN,

ΩNN�
[

Ωe
NN, (2)

with an imposed set of boundary conditions

T n ¼�t on ∂Ωt

u ¼ �u on ∂Ωu
(3)

as shown in Figure 1. In the above equation, T is the Cauchy stress tensor, n is the outward-facing unit
normal on ∂Ω, u is the displacement relative to a stress-free reference configuration, and t and u are the
imposed set of boundary traction and displacement (respectively). Additionally, the superscript e signifies
a unique element identifier.

The spatially discretized Bubnov–Galerkin formulation for the balance of static forces for a given finite
element Ωe is (Hughes, 2012)

½Fe
intðuÞ�� ½Fe

ext� ¼ ½0�, (4)

where the finite element internal and external forces are defined as

Fe,int
� �¼ Z

Ωe
Be½ �T T̂ dv

Fe,ext½ � ¼
Z
∂Ωe∩Γt

N e½ �T tdaþ
Z
∂Ωe⧵Γt

N e½ �T tda
: (5)

In the above equation, T̂ is the Cauchy stress ordered in Voigt notation, and N e½ � and Be½ � are the
traditional arrays of the finite element shape functions and their derivatives.
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Define the linearized strain ϵ as the symmetric material gradient of the displacement,

ϵ =
1
2

∂u
∂X
þ ∂u

∂X

� �T
" #

: (6)

Following the classical approach (Simo and Hughes, 1998), we admit an additive decomposition of the
strain ϵ into an elastic and plastic contribution ϵe and ϵp (respectively) at a given point inΩFEM of the form

ϵ¼ ϵeþ ϵp: (7)

The (linearized) Cauchy stress σ (here we assume the linearized Cauchy stress σ is equivalent to the
Cauchy stress T) is defined as

σ¼ℂ � ϵe, (8)

whereℂ is the classical fourth-order elasticity tensor. Plasticity is introduced through inequality constraint
on the yield function f σ,hð Þ which takes the following form,

f ðσ,hÞ¼ ϕðσÞ�ðσyþhðϵpÞÞ≤ 0: (9)

In equation (9), ϕ σð Þ is the effective stress which, here, is the von Mises criterion,

ϕ σð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2
3
S �S

r
, (10)

where S is the deviatoric stress tensor

S¼ σ�1
3
tr σð ÞI : (11)

Additionally, σy is the yield stress, and h ϵpð Þ is the isotropic hardening, which is assumed to be a function
of the plastic strain ϵp.

The plastic strain ϵp is defined assuming associative flow as

ϵp¼ γ
S
kSk , (12)

where γ is a nonnegative consistency parameter. The Kuhn–Tucker conditions are

Figure 1. Discretized domain Ω highlighting the NN element domain ΩNN (green) and finite element
domain ΩFEM.
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f σ,hð Þ≤ 0

γ≥ 0

γf σ,hð Þ¼ 0

8><>: , (13)

and the consistency condition is

γ _f σ,hð Þ¼ 0: (14)

Together, equations (9), (13), and (14) form the full set of plasticity constraints for loading/unloading.
The plasticity constraint equations coupledwith the constitutive equation in equation (8) provide a closed-
form definition of the Cauchy stress needed to evaluate the internal forces in equation (5).

Akin to coupled FEM-NNmethods proposed in Capuano and Rimoli (2019) and Koeppe et al. (2020),
the internal force term for the NN elements Ωe

NN is given by a regression tool such as a NN,

½Fe,int
NN � � ½ f NNðue,wNN,bNNÞ�, (15)

where f NN is a nonlinear function of the element displacements ue, NN weights wNN and biases bNN. The
internal forces predicted by f NN are, in general, assumed to approximate the relation between the forces
and displacements for thematerial occupying theNNelements. As such, the predicted forces given by f NN
represent a mechanical response to physically imposed motion, and should thus be trained using a set of
relevant forces/displacements.

It is important tomention that the internal force in equation (15) depends on the reference frame used to
express the displacements. Additionally, the internal force in equation (15) does not contain any history
variables, and thus cannot predict processes that depend on loading history, such as inelastic cyclic
loading. Treatment of the reliance of forces/displacements on their respective orientations relative to a
fixed reference frame, as well as the dependence of the forces on the history of displacement in the context
of FEM-NN approaches, is discussed in Capuano and Rimoli (2019) and Koeppe et al. (2020) (respect-
ively), among other works. In the current context, we assume that the mechanical deformation does not
incur large deformations and rotations on elements in the NN domain, and the initial configuration and
orientations of the geometry do not change between each training data set and prediction. Additionally, all
loads used for training, validation, and prediction are monotonic. These are limitations that simplify the
training/prediction of forces in the NN domain. Proper treatment and modifications that account for
dependence on reference frame and force/displacement history will be discussed in future work.

The NN element’s balance of forces takes the same form as equation (4), namely,

½Fe,int
NN ðueÞ�� ½Fe,ext� ¼ ½0�: (16)

The set of element-wise internal and external forces are assembled across all elements inΩ to form the full
system of equations,

½F intðuÞ�� ½Fext� ¼ ½0�, (17)

where the global internal and external forces are defined as the element-wise assembly of their local
counterparts (notated with the assembly operator A acting on each element e), that is,

½F intðuÞ� ¼A
e
Fe,intðuÞ

½Fext� ¼A
e
Fe,ext

: (18)

The solution is the set of displacements u that satisfies global balance of forces (equation (5)) given the
set of boundary conditions in equation (3), a constitutive law governing the relation between the
deformation/strains and the Cauchy stress, and an assumed function f NN mapping displacements to
forces in Ωe

NN. The full coupled FEM-NN procedure is shown in Algorithm 1.
The global internal force in equation (18) can be a nonlinear function of the displacements u (for either/

both the finite element and/or NN element domains). Therefore, obtaining a global displacement vector u
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that satisfies balance of forces across the entire domainΩ is typically obtained through iterative methods
where each iteration predicts a trial set of displacements/forces to minimize a residual of the form

½RðuÞ� ¼ ½F intðuÞ�� ½Fext�: (19)

Using numerical integration techniques to evaluate the integral for the internal forces in equation (5) for
the traditional finite elements involves the evaluation of the Cauchy stresses at each quadrature point at
each iteration. In general, this procedure can be computationally expensive when inelastic deformation
takes place due to imposition of plasticity constraints, and in some cases, the evaluation of any state
variables that are relevant. In contrast, the evaluation of the NN element internal forces simply involves
the computation of f NN at each of the element nodes for a given iteration. The lack of physical constraints
and numerical solutions of additional variables needed to determine the Cauchy stress can make the
evaluation of f NN less computationally expensive at the cost of training a NN to predict a set of forces
given a set of displacements.

Algorithm 1. Coupled FEM-NN procedure

1: Initialize t0 and Ωt0
2: Set solver parameters itermax, tol ⊳ max nonlinear iterations and residual tolerance
3: Set i¼ 1
4: while i≤ n_steps do ⊳Begin time loop
5: Set time step Δti
6: ti ti�1þΔti ⊳Update current time
7: Initialize trial displacements u0ti

8: Initialize residual norm R ukti

� �h i			 			
2
to large number

9: Set k¼ 0
10: Compute and assemble Fe,ext½ �
11: while k≤ itermax and R ukti

� �h i			 			
2
≥ tol do ⊳Iterate to obtain equilibrium displacements

12: Compute and assemble Fe,int
NN ukti

� �h i
and Fe,int

FEM ukti

� �h i
13: Update residual R ukti

� �h i
14: Compute approximate tangent
15: Solve for ukþ1ti
16: k kþ1
17: end while
18: Extract relevant QOIs
19: i iþ1 ⊳Update simulation step
20: end while

2.2. NN ensembles and Bayesian inference

NNs are a method for approximating nonlinear functional mappings between a set of inputs and a desired
set of outputs (LeCun et al., 2015). NNmodels learn the desired functional mapping from a set of training
results and subsequently use the learned function to predict the outputs for new/unseen inputs. NNmodels
are able to establish that functional mapping by identifying an optimal set of features which are then
regressed to the desired outputs. The typical transformation NNs use to obtain an output z from an n-
dimensional input (assumed to be a vector) x∈ℝn is called a node (we term this an NN node hereafter to
differentiate from nodes of a discretized mesh), and performs the following operation
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zi wNN,i,x,bNN,ið Þ= f wT
NN,ixþbNN,i


 �
, (20)

where wNN,i ∈ℝn denotes the ith row of the weights that multiply the input. Similarly, bNN,i is the ith bias
added to the resultant operation and f ðÞ is a nonlinear activation function applied element-wise to its
arguments.

Feed forward neural networks (FFNN) sequentially stack layers to transform the inputs into the desired
outputs, as illustrated in Figure 2. The number of nodes in a layer as well as the number of layers can be
tuned for the specific task at hand. The values of the weights and biases of each layer are obtained by
minimizing a loss function that quantifies the discrepancy between the values predicted by the model
(i.e., the FFNN) and the known values of the training set. The minimization process is typically stopped
when the value of the loss function reaches a pre-determined threshold. FFNNs are a very versatile and
accurate surrogate model-building technique that have shown great success in a wide variety of
applications and fields (Wang et al., 2018;Wenyou andChang, 2020; Zhang andMohr, 2020;Muhammad
et al., 2021).

BNNs have been widely studied for characterizing both aleatoric and epistemic uncertainties (Gal and
Ghahramani, 2015; Sargsyan et al., 2015; Kendall andGal, 2017; Knoblauch et al., 2019). BNNs leverage
the concept of Bayesian inference to sample from an assumed posterior distribution given some prior
knowledge. Variational Bayesian inference (VBI) (Blundell et al., 2015) is a common approach used to
train BNNs. Rather than attempting to sample from the true posterior, which is a computationally
intractable problem, VBI assumes a distribution on the weights qðwjθÞ where θ is the collection of
hyperparameters associated with the assumed distribution. The weights are thus sampled from the
distribution q. The hyperparameters θ are optimized such that they minimize the variational free energy
(also termed expected lower bounds, or ELBO) of the form

F ðD,θÞ¼KL½qðwjθÞkPðwÞ��EqðwjθÞ½PðDjwÞ�, (21)

where PðwÞ is an assumed prior, KL �ð Þ is the Kullback–Leibler divergence, and D is the training data
set. The first term in equation (21) signifies some measure of the distance between the assumed prior
PðwÞ and the approximate posterior qðwjθÞ, which is assumed to always be positive or zero. The last
term in equation (21) is a data-dependent likelihood term. The above equation poses an optimization of
the approximate posterior q, with the aim of capturing information about the true posterior based only
on knowledge of the assumed prior and the given data. In practice, an approximation of the variational
free energy in equation (21) is used to train a BNN. This procedure is explained in Blundell et al.
(2015).

Figure 2. Schematic representation of a feed-forward network with two layers and scalar inputs/outputs.
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The optimization process described above will yield a set of NN parameters that minimize the
variational free energy in equation (21). The predictions of an optimized NN generally incur some
amount of error. In the context of the FEM-NN approach highlighted in Section 2.1, the replacement
of an internal force governed by local stresses that precisely satisfy the constitutive relation in
equation (8) and plasticity constraints of equations (9), (13), and (14) with an approximation can
commonly lead to a set of global displacements that satisfy the balance of forces in Ω. Nevertheless,
the approximation can deviate (sometimes significantly) from the true/expected deformation of the
body under a given set of boundary conditions. This source of error is epistemic in nature, as it
pertains to a lack of knowledge about single-valued (but uncertain) errors from numerous factors
such as a finite amount of training data, an assumed form of the NN architecture and loss function, and
an optimization of NN weights/biases that is a single realization from an inherently stochastic
procedure.

Among the various methods used to quantify and/or control epistemic uncertainty in machine-
learning, the concept of NN ensembles (Fort et al., 2019) is particularly relevant for this work. NN
ensembles leverage multiple trained NNs termed “base learners.” Common ensembling strategies are
randomized-based approaches that concurrently train multiple NNs on the same base data set such as
bagging/bootstrapping (Lakshminarayanan et al., 2017), as well as other sequential trainingmethods such
as boosting and stacking (Yao et al., 2018). The use of NN ensembles has been shown to substantially
improve the quality of predictions, typically by enhancing diversity in those predictions thus reducing
overall bias (Lakshminarayanan et al., 2017; Fort et al., 2019; Hüllermeier andWaegeman, 2021). In this
work, ensembles are trained concurrently (as is done with traditional bagging approaches). Uncertainty
estimates are obtained by bootstrap-sampling from the ensemble multiple times to obtain a distribution of
predictions. This procedure is described in Section 3.

3. Uncertainty estimation of coupled FEM-NN approaches using ensembles

3.1. Generation of training and validation data

The training and validation data should encompass the sets of input displacements and output forces
relevant for a given set of boundary-value problems. In the current context, the inputs and outputs are
sampled inΩNN for a set of relevant boundary conditions. We define these boundary conditionsB in what
is termed the primary space, ℙ⊂ℝN , where N corresponds to the dimension of an assumed parameter-
ization of the boundary conditions.

For each boundary condition b∈B, there exists a set of “exact” (i.e., not approximated by surrogates)
displacements ub that satisfy equilibrium inΩNN. Typically, these displacements are determined through a
traditional finite element simulation. The “exact” internal forces associated with the displacements ub in
the elements occupyingΩNN are simply computed using an assumed constitutive law that is a function of
the displacements (through its gradient), such as the one shown in equation (8). The combined set of
resulting element-level displacementsDub and forcesDf b inΩNN areM-dimensional vectors defined in the
secondary displacement space and secondary force space, Su ⊂ℝM and Sf ⊂ℝM , respectively. The
combined sets of displacements and forces for all boundary conditions in B are denoted Du and Df

(respectively).
In general, dimensionality reduction via methods such as principal component analysis (PCA) (Joliffe

and Morgan, 1992) can be used to sample relevant boundary conditions in a reduced primary space
ℙr ⊂ℝn (where n<N), as well as generate training data in a reduced secondary input space Sur ∈ℝm

(where m <M). In the current setting, we assume dimensionality reduction is only performed on the
secondary input space. We define the linear mapping between secondary and reduced secondary spaces
obtained through PCA as φur : Su↦Sur. The full input data set of all displacements in its reduced space is
denoted Dur.

Once the full training and validation set are established, the displacements and forces are each scaled by
their standard deviation and normalized to values between �1and 1, that is,
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bDi
ub ¼

~D
i
ub

max∣~Du∣
, ~D

i
ub ¼

Di
ub

σ Di
u


 �
bDi
f b
¼

~D
i
f b

max∣~Df ∣
, ~D

i
f b
¼ Di

f b

σ Di
f

� �

8>>>>>><>>>>>>:
: (22)

In the above equation,Du andDf are the full set of displacementsDu and forcesDf (respectively) inmatrix

form. Additionally, D̂
i
ub and D̂

i
f b

are the scaled data for the ith component/feature of the bth set of

displacements and forces. Lastly, σðDi
uÞ and σðDi

f Þ are the standard deviations of the full displacement and
force data sets for the ith component. Note that the standard deviations are computed only for the training
data, though the scaling transformations are applied to both training and validation data. The NNs are
subsequently trained ne times to obtain multiple sets of optimal hyperparameters. The combined set of ne
NNs forms the ensemble used to make predictions. The full training procedure is shown in Algorithm 2.

Algorithm 2. Training procedure

1: Generate set of relevant boundary conditions B∈ℙ
2: for b∈B do ⊳loop through relevant boundary conditions
3: Compute displacements/forcesDub andDf b in secondary space S ⊳via FEM
4: end for
5: Compute displacement mapping to reduced secondary space Sur
6: Construct reduced training/validation input displacement data set Dur ∈Sur
7: for b∈B do
8: Compute actual input displacement data Dub ¼ φ�1ur Durbð Þ
9: Compute output forces Df b

10: end for
11: split full data sets Du and Db to training/validation Du,t,Du,vf g and Df ,t,Df ,v

� 

12: apply feature scaling to data sets
13: for n∈ range neð Þ do ⊳ loop through total number of NNs for the ensemble
14: Randomly initialize weights wn

NN and biases bnNN by sampling prior distribution
15: Find optimal posteriors wn

NN� qnw θnw

 �

and bnNN� qnb θnb

 �

⊳Using VBI
16: end for

As an illustrative example of the procedure described above, consider a simple two-element cantilever
beam embedded in two-dimensional spaceℝ2, as shown in Figure 3. The left end that has an applied load
can be parameterized by variations in both the horizontal and vertical directions, therefore N¼ 2. The set
B consists of variations of the applied load in the parameterized two-dimensional space, shown as the red
points on the top plot in Figure 3. The NN-element has two independent degrees of freedom for its
displacement and force on the left node, therefore M¼ 2. The element-level displacements Dub corres-
ponding to the applied loads in primary space are shown as blue circles in the secondary space plot in
Figure 3.Note that the force on the right node of theNN-element is always equal and opposite to that of the
left node, and thus does not have independent degrees of freedom. For simplicity, the training and
validation input data can be constructed as a grid of displacements in the reduced secondary space such
that they span the original data Dub , as schematically shown in Figure 3. In this setting, an interpolative
prediction occurs when the input displacements lie within the grid, whereas extrapolative predictions
encompass all the input space not spanned by the grid. For this problem, dimensionality reduction is not
strictly needed since both primary and secondary spaces are two-dimensional.
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3.2. Uncertainty estimation procedure

For a given ensemblem of a load case T ∈ T (with index τ), we define a statistical tolerance interval (Hahn
andMeeker, 1991) inspired uncertainty scaling factor Fτ,m of the ensemble’s standard deviation στ,m such
that the true value of the QoI (obtained via FEM) denoted f FEMτ,m is ±Fτ,mστ,m from the predicted mean μτ,m.
With this requirement, the uncertainty scaling factor F can be expressed as

Fτ,m¼ eτ,m
στ,m

, (23)

where themean bias (absolute error of themean prediction) is defined as eτ,m¼ ∣f FEMτ,m �μτ,m∣. Based on the
form of equation (23),F can be interpreted as ametric of bias-to-variance ratio for a set of NN predictions.
High values of F indicate that the subensemble predictions have a high mean bias and/or low standard
deviation (and variance), whereas lower values of F indicate a low mean bias and/or high standard
deviation.

To account for the load-dependent variation in the uncertainty scaling factor F, a selected set of test/
trial boundary conditions T are constructed and sampled in primary spaceℙ. For each boundary condition
instance, the full boundary-value problem is solved via the FEM-NNmethod highlighted in Algorithm 1,
and the predictions for each quantity of interest (QoI) are extracted at equilibrium. In this prediction
process, each NN of the ensemble produces a different output due to the stochastic nature of training these
networks via randomly initialized weights/biases, back-propagation (e.g., using stochastic gradient
descent), and the computation of an approximate variational free energy obtained via random sampling.
The NN ensemble will thus produce a set of ne predictions for a given test/trial case.

In practice, producing an ensemble-averaged prediction can be prohibitively expensive, as it requires
the evaluation of ne NNs for a given load/boundary condition. A subensemble of nss BNNs can be selected
via random sampling to reduce the computational cost of the ensemble-averaged predictions. The number
of NNs nss that the subensembles contain is typically selected to optimize the cost ofmaking predictions in
a typical application setting. For instance, large models involving complicated discretized geometries
may require smaller subensembles to maintain reasonable computational efficiency.

Figure 3. Schematic of sampled boundary conditions in primary space ℙ (top) and the corresponding
displacements used to inform training/validation in secondary space S (bottom). The circles attached to
either side of the beam are the nodes associated with the degrees of freedom of this element. The red and

blue arrows on the left diagrams correspond to the red and blue points on the right plots.
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To estimate uncertainty due to variations in subensemble predictions, we generate nse unique
combinations of subensembles, each composed of nss BNNs. Each prediction of a given load case will
have a scaling factor F based on its mean bias and standard deviation, as illustrated in Figure 4. With this
set of information, each test case will have a distribution ofF values, with the lowest ones representing the
subset of NNs that are most optimal (i.e., lowest mean bias and/or highest standard deviation). The
uncertainty estimation calibration procedure described here is highlighted in Algorithm 3. Note that the
prediction of a given BNN statistically varies, due to the uncertain nature of sampling from an
approximate posterior. Therefore, this scaling factor F accounts both for uncertainty between each
BNN prediction as well as the uncertainty within a single BNN.

Algorithm 3. Uncertainty estimation procedure

1: Generate set of test loading conditions T ∈ℙ
2: τ 0 ⊳ Initialize test boundary condition counter
3: for T ∈ T do
4: Compute “exact” QoIs for BCs associated with T ⊳via high-fidelity FEM simulation
5: for n∈ range neð Þ do
6: Run FEM-NN simulations using wn

NN and bnNN to compute internal forces Fe
int,NN

7: if run succeeds then
8: Save QoIs
9: end if

10: end if
11: for m∈ range nseð Þdo
12: Randomly select nss subsamples of QoIs from successful runs
13: Compute mean bias eτ,m and standard deviation στ,m of QoIs
14: Compute ensemble’s uncertainty scaling factor Fτ,m¼ eτ,m=στ,m
15: end for
16: τ τþ1 ⊳ Increment test boundary condition counter
17: end for

Figure 4. Extraction of uncertainty for three sampled neural network subensembles for two sampled load
cases with ne¼ 20 and nss¼ 5.
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3.3. Calibration and reliability of uncertainty estimates

In the current setting, we assume ne¼ 20 is a representative number of total NNs that is sufficient to
capture reasonable diversity in predictions. Moreover, nss¼ 5 is chosen as a reasonable size for a
subensemble that is relatively affordable for our applications. Lastly, the number of subensembles where
we compute an uncertainty scaling factor is nse¼ 100. Therefore, for each test point T ∈ T , there exist 100
values of F, corresponding to the 100 different combinations of ensemble prediction biases/variances.
The subensembles are randomly chosen (with a fixed random seed for reproducibility) from the ne¼ 20
ensembles such that each combination is unique.

The uppertail of the distribution of 100 F values is a useful metric of the predictive uncertainty for this
problem, since the highest values of F indicate the least reliable predictions (i.e., highest bias and/or
lowest variance) generated by the subensembles for a given load. More specifically, we assume that the
95th-percentile of F (for short will be notated F95) for a given test point T is sufficient to provide
conservative estimates of the higher-end of bias/variance seen in the predictions while excluding outliers
that detract from the primary trends. Note that this selection of an upper-bound is a heuristic parameter that
is problem-dependent, and should be fine-tuned based on the observed distribution of F values.

Since F varies spatially across the primary spaceℙ, we introduce a continuous polynomial uncertainty
estimator functionF whose coefficients are calibrated to match the F95 values at points in the calibration
set T calibration ∈ℙ. The uncertainty scale factor F and its 95th percentile (notated F95) are known at each
point of the calibration set. Formally, the uncertainty estimator maps any point p∈ℙ to some interpolated
value F95

p , that is, F : p∈ℙ↦F95
p . The subscript p indicates the function F is evaluated at point p. For

simplicity, linear interpolation ofF95 values between calibration points in T calibration is used. Additionally,
a point r outside of ℙ assumes a value of F95 equivalent to the estimator function F evaluated at the point
on the boundary of ℙ closest to r.

The reliability of the estimatorF is determined by its ability to predict conservative F95 values at other

points between or outside of the calibration set, termed the test set T̂ . We define P95 as the probability that

the 95th-percentile of computed F values at a given test point T̂ (labeled F̂
95
T̂ ) is less than or equal to the

estimated F95 value obtained from evaluating F at the point T̂ (labeled F95
T̂
), that is,

P95¼ pðbF95bT ≤F95bT Þ: (24)

The value of P95 can also be interpreted as the probability that the true QoI value obtained from FEM lies
within the range ±F95

T̂
σT̂ ,m from the mean μT̂ ,m for a given subensemble m and a given test case T̂ . For

instance, with nse¼ 100 andP95¼ 0:90 for some set of boundary conditions, themean predictions of 90 of
the 100NN subensembles will lie within at most ±F95

T̂
σT̂ ,m of the true value. In other words, the estimated

uncertainty scale factor at this boundary condition T̂ will lead to a 90% empirical success rate at capturing
the true value.

4. FE-NN-UQ performance characterization test problem

4.1. Results

Here, we demonstrate the procedure and implementation described in Section 3 on a simple FEM model
that consists of a rectangular bar 3cm long and 1cmwide, meshed into three elements of equal volume, as
shown in Figure 5. This bar is fully constrained in the x-, y-, and z-directions (no translations/rotations) on
its left-most surface along the x-axis, and is exposed to some varying imposed displacements (in both
direction and magnitude) on its right-most surface. The bar is composed of a generic type of steel, with
a Young’s modulus, Poisson’s ratio, and yield stress of 200 GPa, 0:27, and 150 MPa, respectively.
J2-plasticity of the form shown in equation (10) is assumed for the middle element in Figure 5, with
an isotropic hardening term h ϵpð Þ that is the piece-wise linear function shown in Figure 6. The left-most
and right-most elements are linearly elastic with the aforementioned Young’s modulus and Poisson’s
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ratio. Each of the three elements is an eight-noded linear hexahadron, and assumes two Gauss–Legendre
integration points per direction. TheQoI used to evaluate the uncertainty is the integration-point-averaged
von Mises stress on the right-most element in Figure 5. All FEM and coupled FEM-NN simulations are
conducted in SIERRA/SM, a Lagrangian finite element code for solids and structures (SIERRA Solid
Mechanics Team, 2021).

In practice, the region where the NN-elements are placed should coincide with portions of the mesh
that are either spatially varying (i.e., having geometric defects such as notches or voids), or consist of
material that undergoes inelastic deformation. The former requires either a homogenization scheme or
proper mesh refinement of these features. This is discussed to some extent within the context FEM-NN
methods in Capuano and Rimoli (2019). Here, we focus on the latter, by replacing the middle FEM-based
element that has an inelastic material response with a NN-element.

Training data is obtained by extracting the forces/displacements on the nodes connected to the
NN-element through a series of FEM simulations. For training, both FEM and NN domains compute
the internal force directly through the volume integration of the stress divergence term, that is, equation
(5). Each FEM simulation has applied boundary displacements sampled from the primary set space
ℙ⊂ℝ3 spanning �4,�2½ �× �1,1½ �× �1,1½ � (units: mm), where the first, second, and third dimensions
correspond to displacements along the x-, y-, and z-directions (per the axes shown in Figure 5),
respectively. Here, it is assumed that the applied displacement on all four nodes of the boundary is equal
in magnitude and direction. Therefore, a single point in ℙ corresponds to a 3-dimensional displacement

Figure 5. Geometry and boundary conditions of three-element model.

Figure 6. Hardening function h(ϵp).
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vector that is assigned to each of these four nodes. The volume-averaged plastic strain for boundary
conditions within the selected region ℙ range from approximately 14�29%.

Boundary conditions are sampled in ℙ to both inform the relevant domain of input space used for
training, and serve as calibration points for the uncertainty estimator. In this setting, the setB is identical to
T calibration. To start, this training/calibration set consists of the eight corners of ℙ, which is a 2× 2× 2 grid
denoted as T 2× 2× 2. The nodal displacements and internal forces of the middle element obtained from the
eight FEM simulations are the boundary of the training/validation secondary data space S. Since there are
eight nodes in this element and each node has three degrees of freedom, the input (displacement) and
output (force) spaces are both 24-dimensional, that is, S⊂ℝ24.

Obtaining training data for every possible combination of displacements/forces the NN can predict is
intractable due to the large number of samples required. As an alternative, training and validation displace-
ments/forces are sampled and computed on a discretized set spanning S. For simplicity, discretization of the
training/validation input space is performed by creating a cube grid with equidistant intervals between each
point in a reduced secondary spaceSur ⊂ℝ3. Themappingφur : Su↦Sur is obtained via PCA. In this case, the
reduced input displacement data in three-dimensions has a total explained variance of 98% of the original 24-
dimensional data. The sampled training/validation input points are shown in Figure 7. The number of training
and validation grid points per direction is 27 and 26 (respectively), leading to approximately 20k and 17:5k
total data points (respectively). To obtain the displacement data set Dur in the reduced space Sur, the nodal
forces are computed through a single-step FEM simulation of theNN-element with each of the 24 degrees of
freedom constrained by the displacements corresponding to this boundary condition. The 24 components of
the displacement can be obtained by applying the inverse mapping on the input data in the reduced space,
which for a given set of boundary conditions b∈B is expressed as

Dub ¼φ�1ur Durbð Þ: (25)

The NN architecture consists of an input layer with 24 NN nodes for the nodal displacements, a 100 NN
node hidden layer with a sigmoid activation function, and a 24 NN node output layer for the forces. The

Figure 7.Grid of training and validation data shown in cross sections of the 1�2 (top-left), 2�3 (top-right),
and 1�3 (bottom-center) principal axes in reduced secondary space Sur. Red data points correspond to
displacements associated with each of the eight corner points inℙ. The densely packed blue and green grid
points represent the training and validation data, respectively. Values on all axes are scaled by 1:0e3.
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choice of a single hidden layer with 100 NN nodes is a heuristic parameter that was determined to provide
sufficient interpolation accuracy while avoiding overfitting (Montes de Oca Zapiain et al., 2022).
Additionally, the use of a sigmoid activation function for the hidden layer allows for a nonlinear mapping
between input displacements and output forces that has smooth gradients. The assumed prior for all the
NNweights is a normal distribution with mean of 0 and standard deviation of e�2. The weight means and
standard deviations are randomly initialized from a normal distribution with 0 mean and a standard
deviation of 0:1, and the bias means and standard deviations are randomly initialized from a uniform
distribution in the closed range 0,4½ �. These prior distributions and initializations of theweights and biases
were selected through trial-and-error, with the goal of balancing accuracy and prediction diversity.

The training of eachBNN is performed on a single CPUusing the PyTorch library (Paszke et al., 2019).
The weight/bias means and standard deviations are chosen to optimize the variational free energy, that is,
equation (21). The training takes place for 500 epochs, using the Adam optimizer (Kingma and Ba, 2014).
The initial learning rate is 0:1, and is halved when the loss remains stagnant to within a 1:0e�4 tolerance
for more than 50 epochs. The total number of epochs and learning rate used for training were selected
through trial-and-error. In general, selecting more epochs did not improve the prediction accuracy, and
training for less epochs led to a large variability between each NN prediction such that their overall
accuracy was diminished. As highlighted in Figure 8, the total variational free energy and root-mean-
square error (RMSE) of both training and validation data decrease proportionally for all 20NNs of the full
ensemble, despite the initially large network-to-network variability, particularly during the first 200
epochs. Note that the variational free energy stabilizes at a negative value, which in this setting, indicates
that the likelihood cost term in equation (21) is greater than the KL divergence term. The RMSE of both
the training and validation data stabilizes at values ranging from 2:0e�2 to 6:0e�2, with a mean near
3:0e�2. Additionally, the validation RMSE deviates by an average of 8% from the training RMSE. With
these combined observations, we claim that the trained BNNs are sufficiently accurate in making
predictions at training points, and are not overfit when predicting at the validation points.

The uncertainty estimates of the NN ensembles are obtained according to Algorithm 3 on the
calibration set T 2× 2× 2 that was used to perform the training. Estimators are also established for refined
discretizations of the primary spaceℙ, namely for the setsT 3× 3× 3,T 4× 4× 4, andT 5× 5× 5, in addition to the
original set T 2× 2× 2, as shown in Figure 9. For short, these collective sets and the corresponding
uncertainty estimatorswill be notatedT i × i × i andF i × i× i (respectively), with the assumption that i¼ 2…5.

Figure 8. Average training loss (red), validation loss (blue), and relative difference (green) of all 20 NNs
based on approximate variational free energy shown in equation (21) (left three plots) and RMSE (right
three plots, log-scaled). Averages are shown as dots. Shading corresponds to range of values across 20

networks. Outliers of validation deviations for initial epochs are not shown for clarity.
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To determine whether the training data informed by the boundary conditions in T 2× 2× 2 covers the
range of inputs for each of the refined test cases (i¼ 3,4,5), FEM simulations are conducted for each
boundary condition to obtain the set of inputs (nodal displacements) Du,i × i × i on the NN-element. These
displacements are subsequently mapped to the reduced training space using the transformation φsr to
determine whether any of the reduced set of displacements Dur,i× i × i lie outside of the original training
bounds obtained from the boundary conditions of T 2× 2× 2. As shown in Figure 10, the original training
input data set spans inputs of all refined cases. Therefore, the same set of NNs can be used to make
predictions for all test cases in consideration without a need for retraining.

The test set T̂ contains points sampled from the test primary space ℙ̂, which both fully encloses and

contains regions outside of the original primary spaceℙ, that is,ℙ⊂ ℙ̂. The region ℙ̂ is the enclosed three-
dimensional space �4:5,�1:5½ �× �1:5,1:5½ �× �1:5,1:5½ � (units: mm).We assume a uniformly distributed

8× 8× 8 grid defines the set of test points T̂ 8× 8× 8 ∈ ℙ̂. The subset of test points that lie inside

Figure 9. Grid of primary space sets T 2× 2× 2, T 3× 3× 3, T 4× 4× 4, andT 5× 5× 5.

Figure 10. Values of displacements on the NN-element in the reduced space Sur (red markers) associated
with all refined discretizations of boundary conditions in the primary space T i × i × i for i¼ 2…5. Cross-
sections are shown for the principal 1�2 (top), 2�3 (middle), and 1�3 axes (bottom). The space of input

data used for training/validation is shaded in purple. Values on all axes are scaled by 1e3.
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(interpolative predictions) and outside (extrapolative predictions) of ℙ are notated T̂
interp

8× 8× 8 and T̂
extrap

8× 8× 8,
respectively. FEM-NN simulations are run for each test point to generate predictions for each of the 20
NNs. The same procedure used for the calibration set is repeated for the test set, with the identical values
ne¼ 20, nss¼ 5, and nse¼ 100. Solutions that do not converge are discarded in analyzing uncertainty,
which comprise approximately 5:5% and 6:8% of the total prediction attempts for interpolation and
extrapolation (respectively). If, for instance, 19 of the 20 total NN predictions for a specific load case
result in globally converged residuals, each combination of five NN subensembles are randomly selected
from the 19 converged predictions rather than the full set of 20.

To illustrate the evaluation of an uncertainty estimator with respect to an observed set of uncertainty

scale factors, consider the set of eight test points highlighted in blue in Figure 11. The distributions of F̂
95

values from the 100 subensemble predictions are compared against the uncertainty estimator F 5× 5× 5 on

the top plot shown in Figure 11. The distributions of F̂
95
clearly vary by test case, with some of the highest

Figure 11. Distributions of the observed uncertainty scale factors bF95
(top), mean bias e, and standard

deviation σ of the blue test points in bT 8× 8× 8. The red curve on the top plot is the uncertainty estimator
F5× 5× 5 with the red markers identifying the points in the test set where the estimator is evaluated.
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values occurring near the middle along the x-axis. These points tend to exhibit high mean bias and low

standard deviation, thus leading to high F̂
95
values, as highlighted by the distributions in the middle and

bottom plots of Figure 11. This indicates that the predictions will not vary significantly between each NN
in an ensemble, but they may generally be biased toward certain predictions that may be inaccurate.
Interestingly, predictions of the four extrapolation test points show low mean bias and low standard

deviation (leading to low F̂
95
values), meaning that the NN ensembles produce a wide set of predictions,

some of which may have lower errors.
The reliability of the uncertainty estimator is determined by the proportion of total test cases in some

region of the primary test space ℙ̂ that have a specified minimum acceptable success rate per load case,
which we denote P95

acc. For instance, suppose we assume that a value of P95
acc¼ 90% is sufficiently

conservative in predicting the 95th percentile of observed uncertainty scale factors F̂
95
. For the population

of eight test points shown in Figure 11, 7=8 or 87:5% of the considered test cases have a success rate per
load case of at least 90%. In other words, the estimator F 5× 5× 5 will predict an uncertainty scaling factor
F95 that has at least a 90% probability of capturing the trueQoI value for 87:5% of the eight considered test
cases. Note that theminimum success rate per load is generally problem-dependent and should be decided
based on the application.

To evaluate the full set of test data in a similar fashion as described above, we determine the

distributions of F̂
95

for each point in T̂ 8× 8× 8, and compute the corresponding P95 value using each
uncertainty estimator F i × i× i. The empirical complimentary cumulative distribution functions
(CCDFs) of all P95 values using each of the four calibrated estimators are shown in Figure 12. Here,
we assumeP95

acc¼ 90%, therefore the coverage (shown as the shaded blue region in Figure 12) spans the
closed range 90%,100%½ �. It is clear from this figure that the estimator F 2× 2× 2 significantly under-
predicts the 95th-percentile upper bounds of test cases, particularly for points where predictions are
interpolated within the primary space ℙ. In contrast, the estimators of each of the refined cases are
significantly more reliable, with approximately 70�85%of the total test cases lying within the desired
coverage. This contrast between the CCDF of all refined cases and the CCDF using the estimator
calibrated from T 2× 2× 2 indicates that NN ensemble predictions on the corners of the training space ℙ
may differ significantly from those inside the domain of ℙ, and that accounting for these differences
and associated uncertainties in predictions is crucial in determining the reliability of the uncertainty
estimator.

Figure 12. Empirical complimentary CDF functions of P95 values for test cases corresponding to
interpolation (left) and extrapolation (right) (relative to the primary space ℙ) using the estimators
F 2× 2× 2, F 3× 3× 3, F 4× 4× 4, and F 5× 5× 5. The blue region indicates the acceptable coverage for the

success rates.
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4.2. Summary and motivation for future work

With the example in Section 4.1, we highlight the proposed framework of estimating uncertainty on a
simple three-element problem undergoing inelastic deformation. To start, a set of boundary conditions
used to inform the NN training were parameterized in the primary space ℙ, which here is a cube region in
ℝ3, where each axis corresponds to a direction of an imposed displacement. The training/validation input
displacements were obtained in a reduced three-dimensional secondary space Sur from a simple grid
constructed around the reduced NN-element displacements at equilibrium for the selected boundary
conditions. The training output forces were subsequently determined through FEM. A set of 20 BNNs
were trained simultaneously on the same set of input displacement and output force data to optimize the
variational free energy. The training/validation plots in Figure 8 highlight that the 20 NNs initially
exhibited stable and similar variational free energies andRMSE losses after approximately 200 epochs for
the training and validation data, which indicate the BNNs are reasonably accurate and are not overfit when
interpolating between training data.

The trained BNNs were used to approximate the internal forces of the middle element in Figure 5 in a
series of coupled FEM-NN simulations. The predictions of 100 unique random samples of 5 BNNs from
the full set of 20 networks were collected for every relevant boundary condition used for calibration and
testing. Each subensemble is viewed as a possible realization of a sparse set of networks used to predict the
internal forces in an actual application. The uncertainty scaling factor F, defined as a multiplier on the
prediction set’s standard deviation such that the true value of a givenQoI is ±Fσ from the predictedmean,
is computed for each subensemble.

Every set of 100 uncertainty scaling factors associated with some boundary conditions has its own
empirical distribution. This is illustrated for eight representative test boundary conditions in the top plot of
Figure 11. Estimates of a sufficiently conservative upper bound for these distributions provides a basis for
determining a conservative range of possible predictions for any random ensemble of five BNNs in an
application prediction setting. Here, we chose the 95th-percentile of the distribution of F values (termed
F95) as a sufficiently conservative metric for inferring an ensemble’s possible prediction error and
consequent uncertainty.

The uncertainty scaling factors and their distributions depend on the applied boundary conditions,
and hence vary at any given point in the space ℝ3 defining the primary space ℙ. For the three-element
problem in Section 4.1, the pertinent boundary conditions for predictions consists of a cube region inℝ3

defined as the test primary space ℙ̂, which covers the original primary spaceℙ as well as regions outside
of this space. This test primary space was discretized into an 8× 8× 8 grid, with the assumption that this
level of refinement is both computationally affordable for this specific setting and is sufficient in
capturing the variations in the distributions of the uncertainty scaling factors with varying boundary
conditions.

The estimates of F95 values within ℙ were computed via a set of piecewise linear functions spanning
this space. The coefficients of these functions were fit to match the F95 value for a specific set of coarse
grid points spanning the original primary space ℙ. These grid points, termed the calibration set, were
discretizedwithmultiple levels of refinement, as grids of 2× 2 × 2, 3× 3× 3, 4× 4× 4, and 5× 5× 5 points,
shown in Figure 10. An F95 piecewise function was constructed for each of the four levels of grid
refinements. Empirical success rates of uncertainty estimates based on interpolated/extrapolated F95

values were determined by computing the likelihood that these estimates captured the true value of a QoI
obtained fromFEMat the observed 8× 8× 8 test points. TheCCDFs of the full set of success rates for each
of the four grid refinements are shown in Figure 12, and are qualitatively similar for the 3× 3× 3, 4× 4× 4,
and 5× 5× 5 grids, indicating that all the chosen levels of refinement beyond the coarsest 2× 2× 2 grid are
likely to predict sufficiently conservative F95 values and corresponding uncertainty estimates across the
test primary space ℙ̂.

Estimators developed with the highlighted framework provide powerful tools for establishing
uncertainty in coupled FEM-NN predictions. In an application setting, these uncertainty estimators
can be used to infer (with some established reliability) the uncertainty scaling factor F for any load
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spanning the primary space. This scaling factor provides an uncertainty range associated with a QoI
prediction from an FEM-NN simulation that would likely encompass the true values obtained in FEM
simulations.

The cost associated with running FEM-NN simulations includes the time needed to generate training
data, the training costs for each BNN, and the time needed to obtain the uncertainty scaling factors and
evaluate them for the appropriate load cases. The computational savings gained from using such FEM-
NN simulations versus traditional FEM simulations are thus only achieved when the savings in running
these simulations overcomes the aforementioned costs. In practice, the process of calibrating an
uncertainty estimator and establishing its reliability based on test data points can become prohibitively
time-consuming, particularly for FEM simulations involving high-fidelity meshes with millions of
elements. In this expensive FEM setting, the selection and discretization of the calibration/test sets in
primary space is crucial to obtain reliable uncertainty estimators. This topic will be explored in
future work.

5. Conclusion

In this article, a method to systematically estimate the uncertainty of NN predictions is introduced within
the context of a coupled FEM-NN approach used for predicting the elastic and plastic deformation of
solids. Such uncertainty methods are crucial in establishing reliability (or lack thereof) for surrogate
modeling approaches whose overall trustworthiness is intimately tied to the bias errors and variance of its
predictions.

Ensembles of BNNs are used to enhance diversity in predictions while reducing persistent bias/error.
Moreover, sampling of such ensembles is leveraged to quantify the range of possible predictions for a
wide variety of test cases that require both interpolation and extrapolation on the space of possible inputs.
To establish an uncertainty procedure, a scaling factor is introduced that measures the overall bias-to-
variance ratio for possible predictions in the entire test space.

Uncertainty estimators are developed for an example problem where the forces for a subregion of a
simple three-element geometry are approximated by ensembles of BNNs that are fed the displacements as
inputs. Calibration of this estimator was achieved by illustrating its ability to reliably estimate uncertainty
scaling factors for a wide variety of interpolative and extrapolative test cases.

List of Symbols

ΩFEM discretized domain containing all finite elements
ΩNN discretized domain containing all NN elements
Fe,int

NN

� �
element-level internal force vector for NN elements

Fe,int
FEM

� �
element-level internal force vector for finite elements

F int½ � global internal force vector containing contributions from FEM and NN domains
ℙ primary space where the set of boundary conditions for a given boundary-value problem are

defined
Su secondary input space where the NN element displacements are defined
Sur reduced secondary input space where the NN element displacements are defined in a lower

dimensional space
Sf secondary output space where the NN element forces are defined
Du the full set of displacement input data used for training and validation
Df the full set of force output data used for training and validation
B the full set of boundary conditions defined in primary space that are used for training and

validation
F the uncertainty scaling factor
F the piece-wise linear function that estimates the upper bounds of the uncertainty scaling

factor for a given set of boundary conditions defined in primary space
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T calibration the set of boundary conditions defined in primary space that are used to calibrate/fit the
coefficients of the function F

T̂ the set of boundary conditions defined in primary space that are used to test the reliability of
the uncertainty estimates predicted by the function F

Data availability statement. The data that support the findings of this study are available upon reasonable request. The neural
networks developed in this work were generated using PyTorch, available on the following repository https://github.com/pytorch/
pytorch.
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