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Abstract

To control hepatitis A spread by vaccination, accurate estimation of transmissibility is vital.
Regan et al. (2016) proposed a model of hepatitis A virus (HAV) transmission and used
least squares to calibrate model to the 1991/1992 HAV outbreak in men who have sex with
men (MSM) in Sydney, Australia. Based on the estimate of R0, they obtained the critical
immunity of 70% and showed that when the proportion immune <70%, there is a definite
chance for outbreaks to take place. The immunity level from previous surveys ranges from
32% to 64% after 1996 while no outbreaks in Australian MSMs have been reported since
1996. Further noticing the ill-distributed parameters, we argue that their estimate of R0 is
not accurate. In this study, we revisited their model by Bayesian inference, which has privilege
over least squares. We obtained the appropriate posterior distributions of parameters and the
estimate of R0 ranges from 1.38 to 2.89, indicating a critical immunity of 65%. The reduction
in critical immunity and outbreak probabilities predicts the absence of outbreaks in Australian
MSMs since 1996. Our study shows the importance of using appropriate methods to provide
reliable and accurate estimates of the model parameters especially the transmissibility.

Introduction

Hepatitis A is caused by hepatitis A virus (HAV) and occurs worldwide. HAV is a ribonucleic
acid virus that replicates in the liver and is shed into the stool. Outbreaks of hepatitis A have
been mostly linked to the consumption of uncooked contaminated foods and contaminated
waters. However, close person-to-person contacts in families, institutions, child care setting
and schools are also an important mode of HAV transmission [1, 2]. One special group of peo-
ple is men who have sex with men (MSM), and numerous outbreaks of hepatitis A have been
reported in MSMs. Recent outbreaks of hepatitis A among MSMs in England, France,
Germany, Israel and the Netherlands [3] challenge our countermeasures in controlling the
transmission of HAV. Hepatitis A is a vaccine preventable disease and the natural countermeas-
ure is hence vaccinating the groups of people in danger. Herd immunity can help control the
transmission by imposing the resistance to the spread of a contagious disease within a popu-
lation that results if a sufficiently high proportion of individuals are immune to the disease,
which can be achieved especially through vaccination. The minimum proportion immune of
individuals (i.e. the critical immunity threshold) is determined by transmissibility of the con-
tagious agent [4]. The transmissibility is usually characterized by the basic reproductive number
R0, the mean number of secondary infectious cases generated by a single primary infectious
case introduced into a totally susceptible population [5]. To protect the MSM people against
HAV by vaccination, we need to evaluate this crucial parameter. Obviously, its precise and reli-
able estimate is vital for the reasonable design of effective countermeasures such as vaccination.

Regan et al., [2] proposed a compartmental model to estimate R0 of HAV infection in a
MSM population. They applied the model to the 1991/1992 Sydney outbreak of hepatitis
A in which large proportions of the infected individuals were MSMs. By applying the least
squares algorithm to fit their model outputs to the outbreak data, they obtained an estimate
of R0 ranging from 1.71 to 3.67 and the critical immunity threshold ranging from 42% to
73% in Sydney MSM population. Therefore, as they claimed in their paper, ‘sustained epidemics
cannot occur once the proportion immune to HAV is greater than ∼70%’. In other words, epi-
demics could possibly occur if the proportion immune to HAV cannot reach this level.

The examination [6] of the HAV status of all MSMs seen at a large sexual health clinic in
inner Sydney between 1996 and 2012 showed that the proportion immune to HAV increased
from about 32% in 1996 to 64% in 2012. The similar levels of proportion immune were also
reported in the MSM population in Victoria, Australia [7]. In accordance with their results of
the event-driven stochastic model for outbreak analysis (Fig. 3a and 3b of [2]), if the propor-
tion immune ranges from 32% to 64%, there is a definite chance for outbreaks of hepatitis A in
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MSMs to occur with outbreak sizes ranging from a hundred to a
thousand. This theoretical indication appeared not to be in agree-
ment with the actual observation: ‘No outbreaks of hepatitis A in
Australian MSMs have been reported since 1996’ [2].

We further noted that among ten parameters of Regan et al.’s
[2] model, (posterior) distributions of eight parameters diverge to
their lower and upper bounds set up by fitting constraints (see
their Fig. A2 and Table 2). Another important parameter (‘force
of infection per sexual contact per day’), though not diverging to
lower and upper bounds, appears to have a bimodal distribution.
The distribution of the size of the MSM population converged to
the lower bound which is clearly below the range of 5000–10 000
of the MSM population size that was estimated from the survey
of [8]. In view of such ill-distributed model parameters, the
accuracy and reliability of their estimate of R0 are doubtful.

We think the abnormal behaviours of the distributions of
model parameters obtained in [2] stem from two aspects. The
first is that the least squares algorithm is inappropriate for calibra-
tion of the transmission model to obtain the reliable estimates of
model parameters (see Appendix A); the second is that the only
data used in [2] (i.e. the time series of case onset dates) lack
enough information to distinguish ten model parameters because
the inherent correlations between them such as transmissibility
and susceptibility.

In view of these questions, in this study we revisited the model
of [2] by proposing the Bayesian inference for model calibration
in replace for the least squares algorithm and reducing the num-
ber of independent model parameters by considering the early
transmission dynamics of the outbreak. These changes will hope-
fully improve the behaviour of distributions of model parameters
and compromise the discrepancy between the field observations
and theoretical prediction from the analysis of [2].

Models and methods

We adopted the deterministic model of [2] for the transmission
dynamics of the 1991–1992 hepatitis A outbreak in Sydney,
Australia. Susceptible MSMs (S) contact with infections and
then become infected but not yet infectious (E). The exposed peo-
ple progress to become occult infectious (IO) at rate σ. A propor-
tion of infections ( pS) becomes symptomatic (IS) and the rest still
remains asymptomatic but infectious (IA) at rate γ1. All infections
recover and become immune to HAV (R) at rate γ2. The model
equations are given in Appendix B.

We propose the Bayesian inference for the model calibration
and use Markov Chain Monte-Carlo (MCMC) [9, 10] to sample
posterior distributions of model parameters and hence to obtain
their median and 95% credible interval (CI). We think Bayesian
inference has privilege over least squares algorithm in calibrating
the transmission model and obtaining the estimates of model
parameters. In order to consider the variation in the number of
monthly cases, Regan et al., [2] added Poisson noise to the
observed epidemic data. Within the Bayesian framework through
MCMC, the variation in the data has been naturally included in
the likelihood function (e.g., negative binomial distribution we
use in this study). Moreover, Bayesian inference is more flexible
and realizes more information by sampling the posterior distribu-
tions of model parameters (the detail of the Bayesian inference
method is given in Appendix B).

We can also reduce the number of independent model parameters
by considering the early stage of transmission dynamics. Following
[11], we assume that at the early stage of the outbreak, the number

of newly infected cases increases exponentially with growth rate Ψr.
Then the initial conditions can be parameterized as follows:

E(0) = (a0 + (a+ g1)dt)
sdt

IO(0),

IS(0) = pSg1dt
(a0 + (a+ g2)dt)

IO(0),

IA(0) = (1− pS)g1dt
(a0 + (a+ g2)dt)

IO(0)

and S(0) =Nρ− E(0)− IO(0)− IS(0)− IA(0)
Here α0 = exp (Ψrδt)− 1 and δt is a small time step used in the

simulations. We assume the transmission dynamics started from
December 1990 and IO(0) represents the number of occult infec-
tions on December 1990. N is the effective size of MSM popula-
tion and ρ is the initial proportion of MSMs that are susceptible to
HAV. α is the rate of entry/exit from MSM population, which is
fixed at 1/(30 × 365) as in [2] who assumed a sexually active per-
iod from age 20 to 50 years old.

Following [12], we can establish the relationship between the
transmission rate β (i.e. what Regan et al., [2] called ‘force of
infection’) and the initial growth rateΨr,

b = 1+ a+ cr

s

( )
g1 + a+ cr

1+ (1− pS)g1
g2 + a+ cr

The derivations of these expressions are given in Appendix
B. After these treatments, the model is now described by eight-
independent parameters (see Table 1).

Even with the above parametrization of the model, there are
still a lot of model parameters to be estimated. Because of the
inherent associations between model parameters such as the pro-
portion of non-immune people and transmissibility, the calibrat-
ing transmission model to symptom onset dates cannot identify
all the eight model parameters. In general, the lack of identifiabil-
ity was met when the calibrating transmission model with one
dataset in other infectious diseases (e.g. [13]). To avoid this iden-
tifiability problem, we first consider a situation by fixing some
model parameters based on the literature.

The survey results of [6] suggested that about 30% of the MSM
population in inner Sydney between 1996 and 2012 would have
been immune. This was further supported by another survey:
Heywood et al., [14] show the seropositivity is 34% in the
Australia population in 1988. In view of these, we can fix the initial
proportion of the susceptible individuals before the 1991/1992
outbreak at ρ = 70%. The risk that a hepatitis A infection will
cause symptomatic case is known to increase with age at infection.
In accordance with the modelling of [15], the proportion of symp-
tomatic for individuals of age >20 years can be approximated at
85%. Hence we can use this estimate to fix the proportion of symp-
tomatic cases at pS = 85%. To further reduce the number of model
parameters to be estimated, we also fix the life history parameter at
their middle values of the ranges used in [2]: latent period (PL) =
1/σ = 14 days, period of occult infection (POI) = 1/γ1 = 14 days and
period of symptomatic infection (PSI) = 1/γ2 = 7 days (also see
[16]). We now have three parameters to be estimated: size of the
MSM population (N), the number of initial occult infection (I0)
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on Dec 1990 and the initial growth rateΨr. Uniform distributions
within some ranges will be used for priors of model parameters
(Table 1). In view of the downsized distribution of the population
size of [2], we assume a uniform prior from 500 to 10 000 for N.
The prior for growth rate Ψr is chosen so that a large range of R0
for HAV will be covered. The priors for other parameters follow
that of [2]. The arrangement of the model parameters will be here-
after referred to as model variant 0.

Sensitivity analysis

To assess how the estimate of R0 depends on the different choices of
life history parameters, the proportion of the susceptible and the
proportion of symptomatic cases, we relax the above assumptions
of the model parameters and consider the following model variants:

Variant I: Allowing the proportion of symptomatic cases ( pS)
to vary within the range (0.5,1.0) as suggested in [2]. We now
have four parameters to be estimated: N, I0, Ψr and pS.

Variant II: Allowing both pS and ρ to vary within the range
(0.5,1.0) and fixing life history parameters (PL, POI and PSI) at
14:14:7.

Variant III: The model variant allows eight parameters (N, PL,
POI, PSI,ρ, pS, IO(0) and Ψr) to be estimated. We regard the esti-
mates of model variant III as our estimates and use further for
our outbreak analysis.

Outbreak analysis

To capture the stochastic features of outbreak of hepatitis A within
a MSM population, we approximate the deterministic equations by
the Monte Carlo algorithm [17], which tracks the succession of dis-
crete events that change the number of individuals in each of the
six infection compartments. The whole stochastic system is
described by 13 transmission and transition events. Each event
occurs at a rate equal to that in the deterministic model (see
Table A1). The size of each compartment is the number of indivi-
duals occupying the compartment. From initial sizes of compart-
ments, the programme first determines the time of the next
event, which follows an exponential distribution with mean 1/Ω;

here Ω denotes the sum of all individual event rates. The nature
of the next event is chosen at random, with each of the 13 events
having a probability equal to its own rate divided by Ω. After each
occurrence, the sizes of the compartments are updated according
to the picked events (Table A1). The input parameters for these
simulations were the 5000 samples of model parameters (N, PL,
POI, PSI, pS, IO(0) and Ψr) obtained from the above model calibra-
tion. For each set of model parameters, 20 stochastic realisations
are generated to evaluate probabilities and size of outbreaks. To
investigate how the proportion immune (ρ) impacts the outcome
of simulating transmission dynamics, we replace the proportion
immune in the input parameters by 0%, 5%, 10%,…,100%. We
define sustained epidemics as simulations in which the epidemic
ceases via depletion of susceptible individuals rather than by
chance elimination. Technically, we regard an outbreak takes
place when the total number of symptomatic cases exceed 5% of
susceptible individuals.

Results

Estimation of R0

The estimates of model parameters under four model variants are
shown in Table 1. The initial number of occult infections (IO(0))
and the initial growth rate (Ψr) are nearly insensitive to the model
variants, and have medians of 2.1–2.7 and 0.29–0.31, respectively.
Under the model variant 0, the three model parameters converge
well (see Fig. A1) and the basic reproduction number (R0) is esti-
mated to have median 2.00 and 95% CI from 1.84 to 2.12. Under
model variant I where the proportion of symptomatic cases
( pS) was also to be estimated, albeit the three parameters (i.e.
N, I0 and Ψr) converging well as in model variant 0, the poster-
ior distribution of parameter pS is nearly equivalent to its prior
(Fig. A3). To test how the results depend on the choices of the
values of life history parameters (PL, POI and PSI) and the pro-
portion of susceptible (ρ), 10 combinations of three life history
parameters were sampled by Latin hypercube sampling (see
Table 2a). The estimate of R0 is nearly insensitive to the vari-
ation in life history parameters given the proportion of the

Table 1. Prior and posterior distributions of model parameters under different model variants. Here U stands for the uniform distribution

Parameters Priors

Posterior

Model variant 0 Model variant I Model variant II Model variant III

N U[500, 10 000] 1033 [848, 1381] 1299 [824, 1969] 1321 [708, 2280] 1274 [676, 2277]

PL U[10, 18] 14 (fixed) 14 (fixed) 14 (fixed) 13.9 [10.1, 17.9]

POI U[10, 18] 14 (fixed) 14 (fixed) 14 (fixed) 14.6 [10.2, 17.9]

PSI U[3, 11] 7 (fixed) 7 (fixed) 7 (fixed) 6.9 [3.2, 10.9]

pS U[0.5, 1.0] 0.85 (fixed) 0.67 [0.51, 0.98] 0.67 [0.50, 0.99] 0.68 [0.51, 0.98]

ρ U[0.5, 1.0] 0.70 (fixed) 0.70 (fixed) 0.67 [0.51, 0.98] 0.70 [0.50, 0.99]

Io(0) U[0.1, 20] 2.14 [1.27, 4.03] 2.68 [1.34, 5.38] 2.67 [1.30, 5.61] 2.72 [1.20, 6.07]

Ψr U[0.01, 0.10] 0.029 [0.025, 0.032] 0.029 [0.025, 0.032] 0.031 [0.013, 0.047] 0.029 [0.012, 0.049]

β – 0.13 [0.12, 0.14] 0.12 [0.11, 0.14] 0.13 [0.085, 0.18] 0.125 [0.077, 0.21]

R0 – 2.00 [1.84, 2.12] 2.01 [1.85, 2.14] 2.09 [1.40, 2.29] 2.02 [1.38, 2.89]

Re – 1.40 [1.29, 1.49] 1.41 [1.30, 1.50] 1.40 [1.29, 1.50] 1.41 [1.27, 1.57]

η U[1.01, 40] 2.20 [1.22, 4.90] 2.22 [1.26, 5.00] 2.27 [1.23, 4.99] 2.23 [1.22, 4.95]
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susceptible (ρ) being fixed. Further supplement was provided by
choosing ρ at 50%, 60%, 70%, 80% and 90%. The estimate of R0

is fairly sensitive to the value of ρ (see Table 2b). Therefore it is
no wonder in Model variant II where parameter ρ was also to be
estimated that the effective reproduction number Re converge
well even both R0 and ρ don’t (Fig. A4).

Under the general model choice (Model variant III) the
median of R0 is 2.02 and its 95% CI ranges from 1.38 to 2.89.
This very well agrees with the other three simplified model var-
iants. However, Figure 1 shows that within model variant III,
the posterior distributions of three life history parameters (PL,
POI, PSI), and both the proportion of symptomatic cases ( pS)
and the proportion of the susceptible (ρ) are nearly equal to
their priors. This result has been demonstrated by the sensitivity
analysis shown in Table 2. Table 1 further shows that the distribu-
tion of Re remains nearly the same over the four model variants.
Notice that Re is the product of R0 and the proportion of the sus-
ceptible (ρ), insensitiveness of Re to ρ indicates the highly negative
correlation between R0 and ρ. This observation reflects the fact
that data of symptom onset dates do not contain sufficient infor-
mation to distinguish these characteristics. Nevertheless, these
posteriors appear to be much better than that obtained by least
squares (see Fig. A2 of [2]). Although the posterior distribution
of the growth rate does not converge to a bell-shaped curve, it
does converge to a restrictive range, and its associated parameter
transmission rate (β) does converge well. The distribution of R0

was also restricted in a range, however, the distribution of effective
reproductive number Re converges very well, with a median of
1.44 and 95% CI from 1.27 to 1.57.

The effective size of MSM population in Sydney is estimated to
be 1274 with 95% CI from 676 to 2277. This is comparable with that
obtained in [2]. The dispersion parameter in the negative binomial
likelihood that captures the variation in observed epidemic data
(Fig. 2) consistently has a median of 2.2, which show that the
monthly counts of symptom onset dates during the outbreak are
over-dispersed when compared to a Poisson noise assumed in [2].

The model was also fitted to the total outbreak (n = 570) which
included a further 240 cases that were recorded as heterosexual
men/women and children or unknown. The nearly same estimate
of R0 was obtained (see Table A2). The population size is esti-
mated to be nearly double that for the analysis based on the out-
break of 330 cases.

Outbreak probability

Based on the estimate of transmissibility within model variant III,
the critical level of immune proportion to HAV in the MSM popu-
lation in Sydney is 65%. The outbreak probability we obtain here is
greatly decreased compared to that of Regan et al.’s analysis (see
Fig. 3a). The outbreak analysis shows that an outbreak probability
per initial MSM case is about 1.8% (vs. 12% of [2]) when the popu-
lation immunity was 65%; it is only 6.6% (vs. 28% of [2]) when the

Table 2. Sensitivity analyses with (a) different combinations of three life history parameters by Latin hypercube sampling and (b) different proportion of the
susceptible under model variant I

(a). Proportion of the susceptible (ρ) is fixed at 70%

LP:LOI:LSI R0 Re N pS β Io(0) Ψr

priors – – [500, 10 000] [0.5, 1.0] – [0.1, 20] [0.01, 0.10]

14:14:7 2.01 [1.85, 2.14] 1.41 [1.30, 1.50] 1299 [824, 1969] 0.67 [0.51, 0.98] 0.12 [0.11, 0.14] 2.68 [1.34, 5.38] 0.029 [0.025, 0.032]

17:10:6 1.98 [1.83, 2.11] 1.39 [1.28, 1.48] 1305 [856, 1999] 0.68 [0.50, 0.99] 0.17 [0.15, 0.20] 1.89 [0.97, 3.88] 0.030 [0.026, 0.033]

11:15:9 1.97 [1.83, 2.1] 1.39 [1.28, 1.47] 1343 [867, 1982] 0.68 [0.51, 0.99] 0.11 [0.10, 0.13] 2.95 [1.51, 5.89] 0.030 [0.026, 0.033]

10:17:5 1.97 [1.83, 2.1] 1.38 [1.28, 1.47] 1356 [867, 2068] 0.68 [0.51, 0.98] 0.11 [0.10, 0.12] 3.31 [1.68, 6.54] 0.030 [0.026, 0.033]

18:15:7 2.13 [1.95, 2.28] 1.49 [1.37, 1.60] 1149 [760, 1738] 0.69 [0.51, 0.98] 0.13 [0.11, 0.14] 2.68 [1.4, 5.51] 0.027 [0.023, 0.030]

15:11:10 1.99 [1.84, 2.12] 1.40 [1.29, 1.48] 1310 [871, 1923] 0.69 [0.51, 0.99] 0.14 [0.12, 0.18] 2.14 [1.07, 4.35] 0.029 [0.025, 0.033]

13:12:5 1.93 [1.78, 2.05] 1.35 [1.25, 1.43] 1433 [919, 2171] 0.67 [0.51, 0.98] 0.14 [0.13, 0.16] 2.31 [1.14, 4.78] 0.030 [0.026, 0.034]

12:16:4 1.99 [1.85, 2.12] 1.39 [1.29, 1.48] 1330 [847, 1953] 0.67 [0.51, 0.98] 0.12 [0.11, 0.13] 3.14 [1.53, 6.17] 0.029 [0.025, 0.032]

15:13:4 1.99 [1.83, 2.12] 1.39 [1.28, 1.49] 1325 [850, 1938] 0.67 [0.51, 0.98] 0.14 [0.13, 0.16] 2.52 [1.27, 5.23] 0.029 [0.025, 0.032]

13:17:8 2.06 [1.87, 2.2] 1.44 [1.31, 1.54] 1244 [791, 1837] 0.66 [0.50, 0.99] 0.11 [0.09, 0.12] 3.23 [1.61, 6.77] 0.028 [0.024, 0.031]

16:13:10 2.06 [1.89, 2.2] 1.44 [1.32, 1.54] 1258 [801, 1857] 0.66 [0.50, 0.98] 0.13 [0.11, 0.16] 2.52 [1.16, 5.44] 0.028 [0.024, 0.031]

(b). The life history parameters fixed as PL = 14 days, POI = 14 days and PSI = 7 days.

ρ R0 Re N pS β Io(0) Ψr

priors – – [500, 10 000] [0.5, 1.0] – [0.1, 20] [0.01,0.10]

50% 2.80 [2.60, 3.0] 1.40 [1.30, 1.50] 1732 [1123, 2603] 0.67 [0.51, 0.99] 0.17 [0.16, 0.20] 2.42 [1.22, 4.87] 0.046 [0.042, 0.051]

60% 2.35 [2.17, 2.5] 1.41 [1.3, 1.5] 1512 [966, 2196] 0.66 [0.51, 0.98] 0.14 [0.13, 0.17] 2.6 [1.29, 5, 5.16] 0.037 [0.033, 0.040]

70% 2.01 [1.85, 2.14] 1.41 [1.30, 1.50] 1299 [824, 1969] 0.67 [0.51, 0.98] 0.12 [0.11, 0.14] 2.68 [1.34, 5.38] 0.029 [0.025, 0.032]

80% 1.75 [1.61, 1.87] 1.40 [1.29, 1.49] 1154 [751, 1710] 0.68 [0.51, 0.98] 0.11 [0.10, 0.13] 2.82 [1.44, 5.79] 0.022 [0.019, 0.025]

90% 1.56 [1.44, 1.67] 1.40 [1.30, 1.51] 1022 [658, 1569] 0.68 [0.51, 0.99] 0.10 [0.09, 0.11] 2.87 [1.4, 5.73] 0.017 [0.014, 0.020]
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population immunity was 55%. The corresponding sizes of the out-
breaks are also reduced substantially (see Fig. 3b). Using the esti-
mates of model parameters based on the total outbreak (n = 570),

the outbreak analysis suggested the similar outbreak probabilities
to that based on the outbreak of 330 cases (Fig. A7).

Discussion

We revisited a HAV transmission model of [2] by using Bayesian
inference and considering the early stage dynamics of the outbreak
to reduce the number of independent model parameters. We,
therefore, improve the model analysis and prediction. The posterior
distributions of model parameters either converge well to a bell-
shaped curve or restrict in a limited range; they are much more
proper than that of [2]. The estimate of R0 ranges from 1.38 to
2.89 and the corresponding critical level of immune proportion
to HAV reduce to 65% for controlling the hepatitis A outbreaks
in MSMs in Sydney. Although this appears a small reduction in
the critical level compared to 70% suggested in [2], the outbreak
analysis suggests that the outbreak probabilities under a proportion
immune smaller than this critical level decrease greatly (Fig. 3a). A

Fig. 2. Model fitting to observed symptom onset dates of 330 MSM patients under
model variant III. Triangles represent observed data, dark dashed line represents
the median of model predictions and thin dashed lines represent the 95% CIs.

Fig. 1. Posterior distributions of model parameters under model variant III. The red vertical lines represent the lower and upper bounds of uniform priors.
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combination of both reductions greatly compromises the discrep-
ancy between the theoretical prediction of [2] and the observation
of no outbreaks in Australian MSMs since 1996.

One concern is on the size of MSM population. Based on the
survey of [8], the estimated size of the MSM population in the
postcodes that predominated in the 1991 outbreak ranged from
5000 to 10 000. If we fix the population size at such levels and
assume the proportion of the susceptible ranging from 0.5 to
1.0, then the simulated transmission dynamics cannot reach the
peak around the end of 1991 and downturn will take much longer
to emerge than the duration of the outbreak. This is because many
susceptible MSMs are still there to be infected. In this simple
model proposed by [2], the downforce for the spread of HAV
infection is the deletion of susceptible MSMs. By allowing the
population size to vary and thus to be estimated, our analysis sug-
gests a size of 1274, which is much smaller than the survey,
though being comparable to that of [2]. Another possible down-
turn force for an outbreak is the reduction in contact rate between
MSM people, presumably due to interventions and health educa-
tion by local health agency since the onset of the outbreak (c.f.,

[16]). A simple simulation analysis (see ‘Effect of behaviour
response during the outbreak’ in Technical appendix B) shows
that when the contact rate and thus the transmission rate reduce
29% (ranging from 2% to 47%) from July 1991, the estimated size
of MSM population increases to 2811, which is still much smaller
than the ranges suggested by the survey of [8]. Nevertheless, the
shrinkage of the size of the MSM population is another cause
that reduces the outbreak probabilities.

This deviation of theoretical estimation from the actual sur-
vey in the effective size of MSM population might reflect the
fact that the real mixing patterns among MSM population
depart significantly from the homogeneous-mixing. In more or
less realistic contacts, most people have only one or few contacts
while only a very small proportion of people have large numbers
of contacts [18]. This deviation might also suggest that there
would be a small but highly connected core group of MSMs dur-
ing the outbreak while the remainder large proportion of MSMs
are isolated in some way from the spread of HAV. Such struc-
tured contact patterns should greatly reduce the effective size
of MSMs in view of spread of HAV infection. Transmission

Fig. 3. (a) Outbreak probability as a function of the immune proportion, (b) the median size and 95% CI of such outbreaks and (c) examples of distribution of the
outbreak size as a function of immune proportion. In panel (a) triangles represent the outbreak probability predicted by Regan et al., [2].
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models that include these realistic demographic characteristics of
MSMs and their contact rates will be required for a complete
understanding of the spread of HAV especially the force for
the downturn of the outbreak within the population where sus-
ceptible has not been exhausted.

Conclusion

In this study, we have demonstrated the importance of using
appropriate inference methods for model parametrization and cali-
bration. With the information of only symptom onset dates of
symptomatic infections, many epidemiological parameters are left
unidentifiable. Making reasonable assumptions about the trans-
mission dynamics can help reduce the number of independent
parameters and therefore the uncertainty in model calibration.
Bayesian inference through MCMC sampling treats model fitting
processes as a dynamic process and can dig out the possible com-
binations of model parameters that can generate the time series
comparable to the observed outbreak dataset. We show that com-
pared to the traditional least squares algorithm, Bayesian inference
provides a more reliable estimation of model parameters; the out-
break analysis based on the calibrated model might be more robust
to explain the field observation (i.e., the absence of the HAV out-
break in MSM population in Australia since 1996).

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268819001109
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