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Properties of lower hybrid waves
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Abstract. Most treatments of lower hybrid waves include either electromagnetic or warm-
plasma effects, but not both. Here we compare numerical dispersion curves for lower hybrid
waves with a new analytic dispersion relation that includes both warm and electromagnetic
effects. Very good agreement is obtained over significant ranges in wavenumber and plasma
parameters, except where ion magnetization effects become important.
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1. Introduction
Waves in heliospheric plasmas are involved in many universal heliophysical processes,

including plasma heating, particle acceleration, and emission processes that are signatures
of energy releases. Lower hybrid (LH) waves are of particular interest in contexts that
involve both electrons and ions; these waves can transfer energy between parallel motions
of electrons and perpendicular motions of ions (Omel’chenko et al. 1989; Melrose 1986;
Cairns 2001; Cairns & Zank 2002).

LH waves are nearly electrostatic with wavevectors k nearly perpendicular to the
magnetic field, and involve oscillations of both the ions and electrons. In a cold plasma
LH waves occur at a frequency which depends on the angle θ between the magnetic field
B and k and is given by

ω2 = ω2
LH

(
1 +

mi

me
cos2 θ

)
. (1.1)

Here me and mi are, respectively, the masses of electrons and ions in the plasma, and
the LH frequency is

ωLH ≈ 1√
1/ω2

pi + 1/ΩeΩi

, (1.2)

where ωpi is the ion plasma frequency and Ωe and Ωi are the electron and ion gyrofre-
quencies, respectively.

At the LH frequency the ions are unmagnetized and free to move across B, but the
electrons are magnetized and may only move along B. If the wave electric field is nearly
perpendicular to B then the electron response time is greatly increased. The LH resonance
occurs only when the ion response time is less than or comparable to the electron response
time; i.e. when the following is satisfied,

cos2 θ � me

mi
. (1.3)

When warm plasma or electromagnetic effects are included in the plasma response the
LH resonance becomes a propagating mode which must still satisfy equation (1.3). Hence,
the components of k parallel and perpendicular to B are of such different magnitude, with
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k||/k⊥ � me/mi � 1, that LH waves at the same frequency ω can satisfy the resonant
conditions for interacting with the unmagnetized ions (ω = k · vi) and the magnetized
electrons (ω = k||ve||). Thus LH waves may transfer energy from the perpendicular
motions of ions to the parallel motions of electrons or vice versa, either accelerating
particles or heating them.

Whenever there is a non-thermal perpendicular distribution of ions or parallel distribu-
tion of electrons, LH waves may play a role in redistributing the energy. Such distributions
occur in many regions of the heliosphere, including in the outer heliosheath where pick-up
ions form a ring beam distribution (Cairns & Zank 2002), and near magnetic reconnec-
tion sites where bulk ions flows across B and electrons accelerated along B are observed
(Cairns 2001), such as occur in the Earth’s magnetotail and possibly in the solar corona.
However, to determine where this mechanism is efficient and could be relevant we must
calculate the wave growth and particle diffusion rates. To do so, we must first find the
LH dispersion relation, so that we can calculate the phase and group speeds.

Section 2 introduces the existing analytic dispersion relations for LH waves, which
are compared with numerical dispersion relations in Section 3. In Section 4 we compare
the numerical results with a new analytic dispersion relation we have derived. Section 5
contains a discussion and summary of our results.

2. Existing dispersion relations
The dispersion relations most commonly used for LH waves either include electromag-

netic (EM) effects and assume the plasma is cold, or include warm plasma effects and
assume that the waves are electrostatic. In general when deriving a dispersion relation
for LH waves it is assumed that equation (1.3) is satisfied and Ωi � ω � Ωe � ωpe ,
where ωpe is the electron plasma frequency, so the ions may be treated as unmagnetized
and the electrons as magnetized.

Assuming the plasma is cold but including EM effects gives (Omel’chenko et al. 1989)

ω2/ω2
LH =

1
1 + ω2

pe/k2c2

(
1 +

mi

me

cos2 θ

1 + ω2
pe/k2c2

)
, (2.1)

where c is the speed of light. This expression makes no assumption on the size of ω2
pe/k2c2 .

Including warm plasma effects and assuming the waves are longitudinal leads to the
dispersion relation (Melrose 1986)

ω2/ω2
LH =

(
1 +

mi

me
cos2 θ +

(
3

Ti

Te
+

3
4

)
k2V 2

e

Ω2
e

)
, (2.2)

where Te and Ti are the electron and ion temperatures, respectively, and Ve is the electron
thermal speed. This expression includes terms only to first order in k2V 2

e /Ω2
e .

A third dispersion relation for LH waves was used by Bingham et al. (2002). This
dispersion relation includes warm plasma effects to first order in k2V 2

e /Ω2
e and EM effects

to first order in ω2
pe/k2c2 .

3. Comparison of numerical and existing dispersion relations
The deviation of the LH mode frequency from the cold plasma resonance frequency

[equation (1.1)] is greatest when k2V 2
e /Ω2

e is largest in the warm electrostatic approxima-
tion, and when ω2

pe/k2c2 is greatest in the EM cold plasma approximation. The dispersion
relation used by Bingham et al. (2002) differs from equation (1.1) at both large and small
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Figure 1. Warm electrostatic (dashes), cold EM (dots), Bingham et al. (2002) (dash-dot) and
numerical (solid) dispersion relations for π/2−θ = 0.011 rad, Ti = Te = 4000 K and ωpe = 10Ωe .

k. In order to determine whether any of these were appropriate we compared them with
a numerical dispersion relation.

The numerical LH dispersion relation was found for some parameters using the code of
Willes & Cairns (2000). The code calculates the fully electromagnetic response tensor for
the specified plasma parameters, including both electron and ion magnetization effects,
and finds ω(k) as a root of its determinant in the complex plane. The code follows a
single mode as k is changed and θ is kept constant, extrapolating from previous ω(k).

The three existing dispersion relations introduced above are compared with the real
part of the numerical dispersion relation in Fig. 1. For low k the cold EM dispersion
relation matches best with the numerical result. As k increases the slopes differ, with the
cold EM result asymptotically approaching the cold plasma resonance frequency while
the numerical frequency continues to increase. Consequently the group speed for LH
waves calculated in the cold EM approximation is much lower than the actual value.
At higher k the slope and magnitude of the warm electrostatic frequency best matches
the numerical dispersion relation. Neither of these dispersion relations is adequate to
describe LH waves over the range of k that interact with particles with speeds around
the thermal speed and slightly faster.

The Bingham et al. (2002) dispersion relation gives a better overall fit than the other
two dispersion relations. Ideally, one needs a dispersion relation that allows more accurate
calculations of the phase and group speed of LH waves.

4. New results
We derived a new analytic dispersion relation including both EM and warm effects,

with terms to all orders in ω2
pe/k2c2 but only to first order in k2V 2

e /Ω2
e . This dispersion

relation will be presented elsewhere. As for the other, existing, dispersion relations we
assume that equation (1.3) is satisfied and the electrons are magnetized but that the
ions are not, and that there is no thermal damping of the waves. This dispersion relation
reduces to equation (2.2), the warm electrostatic dispersion relation, and equation (2.1),
the cold EM dispersion relation, in the appropriate limits.

A comparison of this new dispersion relation with the numerical and Bingham et al.
(2002) dispersion relations is shown in Fig. 2 for a low temperature plasma. The new
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Figure 2. Bingham et al. (2002) (dashed), new analytic (dot-dashed) and numerical (solid)
dispersion relations for π/2 − θ = 0.024 rad, Ti = Te , Te = 6000 K and ωpe = 100Ωe .

analytic and numerical results are almost indistinguishable, especially for large k, for
these plasma parameters. Our new dispersion relation matches the numerical results far
more closely than the Bingham et al. (2002) dispersion relation.

A comparison of the new analytic dispersion relation with the numerical results at
higher temperatures is shown in Fig. 3. In this case the agreement is not as good. At
both high and low k no numerical solution to the dispersion relation can be found at
or near multiples of Ωi . As the frequency approaches a multiple of Ωi the LH mode
appears to break up into a series of ion Bernstein modes that make a transition between
harmonics of Ωi along a locus that is effectively the dispersion curve for LH waves. The
analytic dispersion relation and the numerical results agree except near multiples of Ωi .

Increasing the ion temperature by even a small factor, with or without changing the
electron temperature, decreases the range of k over which numerical solutions can be
found at multiple of Ωi . Increasing θ so that the waves are even closer to perpendicular
propagation also dramatically decreases the range of k over which numerical solutions at
multiples of Ωi can be found. There are also weaker dependencies on other parameters
of the plasma at which a numerical solution for the LH wave can no longer be found
at frequencies very close to multiples of Ωi . Similar results were found numerically, for
example by Feng et al. (1992); the ion acoustic mode becomes a series of perturbations
to the ion Bernstein modes for low k and nearly perpendicular propagation.

5. Discussion and Summary
Ion magnetization effects, which are not included in any explicit analytic dispersion

relation for LH waves, are strongest at multiples of Ωi . As these are included in the
numerical results it is not surprising that the greatest difference between our numerical
and analytic results occur at multiples of Ωi , and may be attributed to ion magnetization
effects.

To lowest order, ion magnetization effects contribute only to the imaginary part of ω,
Im(ω), and not to the real part, Re(ω). All the numerical results shown here are only for
the real part of the complex frequency. In all cases |Im(ω)| � Re(ω), so the mode is not
heavily damped and the weak damping approximation is valid. Using this approximation
to include the ion magnetization effects analytically to lowest order we reproduce the same
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Figure 3. New analytic and numerical dispersion relations for ωpe = 100Ωe , π/2−θ = 0.024 rad,
Te = 24000 K and Te = Ti (dotted – analytic, and solid – numerical) and Te = 0.8Ti (dash-dot
– analytic, and dashed – numerical).

features as the numerical results, but there are significant quantitative differences. Both
numerical and analytic results show that |Im(ω)| is greatest when Re(ω) is a multiple
of Ωi and that |Im(ω)| at local maxima increases from a minimum at intermediate k
to greater values at large and small k. Ranges of k where the peaks of |Im(ω)/Re(ω)|
exceed some threshold (which is � 1) correspond very closely with ranges of k where the
numerical LH mode breaks up into a series of ion Bernstein modes.

Relativistic effects are not included in either analytic or numerical work and we need to
check that they are not important. Although the speeds involved are low, for waves very
close to perpendicular propagation weakly relativistic effects are necessarily important
even for what would normally be considered non-relativistic speeds (Robinson 1987).

In summary, our analytic dispersion relation for LH waves agrees far better with our
numerical results than any previous dispersion relation over a large range of plasma pa-
rameters and wavenumbers. The agreement is extremely good when ion magnetization
effects are small. However, when ion magnetization effects become larger, the numeri-
cal and analytic results differ qualitatively, with no numerical solution being found at
frequencies very close to multiples of Ωi where the ion magnetization effects are greatest.
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