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Abstract
In this short note, we show that every convex, order-bounded above functional on a Fréchet lattice is automatically
continuous. This improves a result in Ruszczyński and Shapiro ((2006) Mathematics of Operations Research 31(3),
433–452.) and applies to many deviation and variability measures. We also show that an order-continuous, law-
invariant functional on an Orlicz space is strongly consistent everywhere, extending a result in Krätschmer et al.
((2017) Finance and Stochastics 18(2), 271–295.).

1. Automatic continuity
Since its introduction in the landmark paper (Artzner et al., 1999), the axiomatic theory of risk mea-
sures has been a fruitful area of research. Among many topics, one particular direction is to investigate
automatic continuity of risk measures. In general, automatic continuity has long been an interesting
research topic in mathematics and probably originates from the fact that a real-valued convex function
on an open interval is continuous. This well-known fact was later extended to the following theorem for
real-valued convex functionals on general Banach lattices.

Theorem (Ruszczyńki and Shapiro 2006). A real-valued, convex, monotone functional on a Banach
lattice is norm continuous.

Recall that a functional ρ on a vector space X is said to be convex if ρ(λX + (1 − λ)Y) ≤ λρ(X) +
(1 − λ)ρ(Y) for any X, Y ∈X and any λ ∈ [0, 1]. Recall also that a vector lattice X is a real vector space
with a partial order ≤ such that (1) if X ≤ Y in X , then X + Z ≤ Y + Z for any Z ∈X and αX ≤ αY for
any α ∈R with α ≥ 0; (2) the supremum of any two elements exists in X . We also denote X ≤ Y by
Y ≥ X. In the case of a vector lattice of random variables, the order X ≤ Y is always defined by X ≤ Y
a.s. See Aliprantis and Burkinshaw (2006) for standard terminology and facts regarding vector lattices.
A Banach lattice X is a vector lattice with a complete norm such that |X| ≤ |Y| in X implies ‖X‖ ≤ ‖Y‖.
A functional ρ on a Banach lattice X is said to be increasing if ρ(X) ≤ ρ(Y) whenever X ≤ Y in X . ρ is
said to be decreasing if −ρ is increasing. ρ is said to be monotone if it is either increasing or decreasing.

The above celebrated result of Ruszczyński and Shapiro has drawn extensive attention in optimiza-
tion, operations research, and risk management. We refer the reader to Biagini and Frittelli (2009) for a
version on Fréchet lattices and Farkas et al. (2014) for further literature on automatic norm continuity
properties.

With law invariance, other types of continuity properties beyond norm continuity can be established.
The theorem below is striking. Recall first that a functional ρ defined on a set X of random variables
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is said to be law invariant if ρ(X) = ρ(Y) whenever X, Y ∈X have the same distribution. Recall also
that a functional ρ defined on a set X of random variables is said to have the Fatou property if ρ(X) ≤
lim infn ρ(Xn) whenever Xn

o−→ X in X . Here, Xn
o−→ X in X , termed as order convergence in X ,1 is used

in the literature to denote dominated a.s. convergence in X , that is, Xn
a.s.−→ X and there exists Y ∈X such

that |Xn| ≤ Y a.s. for any n ∈N. The Fatou property is therefore just order lower semicontinuity.

Theorem (Jouini et al., 2006). A real-valued, convex, monotone, law-invariant functional on L∞ over a
nonatomic probability space has the Fatou property. Consequently, it is σ (L∞, L1) lower semicontinuous
and admits a dual representation via L1.

This theorem was recently extended by Chen et al. (2022) to general rearrangement-invariant spaces.
See Chen et al. (2022), Theorems 2.2., 4.3, 4.7) for details. We also refer the reader to Shapiro (2013)
for further interesting continuity properties of law-invariant risk measures.

In this section, we aim at extending the above theorem of Ruszczyński and Shapiro on norm continu-
ity of convex functionals. Specifically, we show that the monotonicity assumption can be significantly
relaxed to the following notion on order boundedness.

Definition 1.1. Let X be a vector lattice. For U, V ∈X with U ≤ V , the order interval [U, V] is
defined by:

[U, V] = {X ∈X :U ≤ X ≤ V}.
A functional ρ:X →R is said to be order bounded above if it is bounded above on all order intervals.

Monotone functionals are easily seen to be order bounded above. While risk measures are usually
assumed to be monotone, many important functionals used in finance, insurance, and other disciplines
are not necessarily monotone.

Example 1.2. General deviation measures were introduced in Rockafellar et al. (2006) as functionals
ρ:L2 → [0, +∞] satisfying subadditivity, positive homogeneity, ρ(X + c) = ρ(X) for every X ∈ L2 and
c ∈R, and ρ(X) > 0 for nonconstant X. They are usually not monotone but may be order bounded above.
A specific example is standard deviation and semideviations. Recall that for a random variable X ∈ L2,
its standard deviation and upper and lower semideviations are given by:

σ (X) = ‖X −E[X]‖L2 , σ+(X) = ‖(X −E[X])+‖L2 , σ−(X) = ‖(X −E[X])−‖L2 ,

respectively. They are well known to be convex. It is also easy to see that they are neither increasing
nor decreasing. We show that they are all order bounded above on L2. Indeed, take any order interval
[U, V] ⊂ L2 and any X ∈ [U, V]. The desired order boundedness property is immediate by the following
inequalities:

U −E[V] ≤ X −E[X] ≤ V −E[U]

0 ≤ (X −E[X])+ ≤ (V −E[U])+

0 ≤ (X −E[X])− ≤ (U −E[V])−

Example 1.3. General variability measures were introduced in Bellini et al. (2022) as law-invariant,
positive-homogeneous functionals that vanish on constants. Many of them are also order-bounded above,
although usually not monotone. In fact, all the three one-parameter families of variability measures in
Bellini et al. (2022, Section 2.3) are easily seen to be order bounded above but not monotone. Let us
discuss in details the class of inter-ES differences �ES

p , p ∈ (0, 1), on L1. Let X ∈ L1 and p ∈ (0, 1). Recall
the right and left expected shortfalls of X:

ESp(X) = 1

1 − p

∫ 1

p

F−1
X (t) dt, ES−

p (X) = 1

p

∫ p

0

F−1
X (t) dt,

1The term order convergence originates from the theory of vector lattices (see e.g., Aliprantis and Burkinshaw, 2006). We note
here that in our definition, we do not require that X is a vector lattice.
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where F−1
X (t) = inf{x ∈R:P(X ≤ x) ≥ t} is the left quantile function of X. The inter-ES difference �ES

p is
defined by:

�ES
p (X) := ESp(X) − ES−

1−p(X) = ESp(X) + ESp(−X).

�ES
p is clearly convex. Take any order interval [U, V] ⊂ L1 and any X ∈ [U, V]. By the monotonicity of

expected shortfall, we get

�ES
p (X) ≤ ESp(V) + ESp(−U) < ∞.

This proves that ESp is order-bounded above on L1. Now suppose that U ∈ L1 follows a uniform
distribution on [ − 1, 1]. Then

U ≤ 1, �ES
p (U) = 2ESp(U) > 0 = �ES

p (1),

U ≥ −1, �ES
p (U) = 2ESp(U) > 0 = �ES

p (−1).

Thus, �ES
p is not monotone.

Our main result in this section is as follows. Recall first that a topological vector space (X , τ ) is a
Fréchet lattice ifX is a vector lattice and τ is induced by a complete metric such that 0 has a fundamental
system of convex solid neighborhoods. A neighborhood V of 0 ∈X is solid if Y ∈ V whenever X ∈ V
and Y ∈X satisfy that |Y| ≤ |X|. All Lp spaces and Orlicz spaces equipped with their natural norm are
Banach lattices and, in particular, are Fréchet lattices.

Theorem 1.4. Let (X , τ ) be a Fréchet lattice. Let ρ:X →R be a convex, order-bounded above
functional. Then ρ is τ -continuous.

Recall that monotone functionals are order bounded above and Banach lattices are Fréchet. Thus,
Theorem 1.4 includes the preceding theorem of Ruszczyński and Shapiro as a special case.

Proof of Theorem 1.4. Let (Xn) and X be such that Xn
τ−→ X inX . We want to show that ρ(Xn) → ρ(X).

Suppose otherwise that ρ(Xn) 
→ ρ(X). By passing to a subsequence, we may assume that

|ρ(Xn) − ρ(X)| > ε0 for some ε0 > 0 and any n ∈N. (1.1)

Let (Vn) be a basis of 0 for τ consisting of solid neighborhoods such that Vn+1 + Vn+1 ⊆ Vn for each
n ∈N. By passing to a further subsequence of (Xn), we may assume that n|Xn − X| ∈ Vn for any n ≥ 1.
Put Wn = ∑n

i=1 i|Xi − X|. For any n, m ∈N, we have

Wn+m − Wn =
n+m∑

i=n+1

i|Xi − X| ∈ Vn+1 + Vn+2 + · · · + Vn+m ⊆ Vn.

Thus, (Wn) is a τ Cauchy sequence. By the completeness of τ , there exists Y ∈X such that Wn
τ−→ Y .

Since (Wn) is an increasing sequence, Wn ↑ Y (Aliprantis and Burkinshaw, 2006, Theorem 3.46). In
particular, it follows that Wn ≤ Y so that

|Xn − X| ≤ 1

n
Y for any n ∈N. (1.2)

Moreover, since ρ is order bounded above on [X − Y , X + Y] = X + [ − Y , Y], there exists a real number
M > 0 such that

ρ(X + Z) ≤ M for any Z ∈ [ − Y , Y], that is, whenever |Z| ≤ Y . (1.3)

Now fix any ε > 0. Put N =  1
ε
� + 1. By (1.2),

1

ε
|Xn − X| ≤ Y for any n ≥ N. (1.4)
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On the one hand, by the convexity of ρ and the representation

Xn =(1 − ε)X + ε

(
X + 1

ε
(Xn − X)

)
,

we have

ρ(Xn) ≤(1 − ε)ρ(X) + ερ

(
X + 1

ε
(Xn − X)

)
,

implying that

ρ(Xn) − ρ(X) ≤ ε

(
ρ
(

X + 1

ε
(Xn − X)

)
− ρ(X)

)
.

This together with (1.4) and (1.3) implies that

ρ(Xn) − ρ(X) ≤ ε
(
M − ρ(X)

)
for any n ≥ N. (1.5)

On the other hand, by the convexity of ρ and

2X − Xn = (1 − ε)X + ε

(
X + 1

ε
(X − Xn)

)
,

we have as before that

ρ(2X − Xn) ≤ (1 − ε)ρ(X) + ερ

(
X + 1

ε
(X − Xn)

)
≤ (1 − ε)ρ(X) + εM,

for any n ≥ N. In particular,

ρ(2X − Xn) − ρ(X) ≤ ε(M − ρ(X)) for any n ≥ N.

By X = 1
2
Xn + 1

2
(2X − Xn) and the convexity of ρ, we also get

ρ(X) ≤ 1

2
ρ(Xn) + 1

2
ρ(2X − Xn)

so that

ρ(X) − ρ(Xn) ≤ ρ(2X − Xn) − ρ(X).

It follows that

ρ(X) − ρ(Xn) ≤ ε(M − ρ(X)) for any n ≥ N. (1.6)

Combining (1.5) and (1.6), we have

|ρ(X) − ρ(Xn)| ≤ ε(M − ρ(X)) for any n ≥ N.

Hence, ρ(Xn) → ρ(X). This contradicts (1.1) and completes the proof. �

2. Strong consistency
In this section, we discuss the strong consistency of estimating the risk ρ(X) using estimates drawn
from the empirical distributions. This problem has been studied for general convex risk measures on Lp

spaces and Orlicz hearts in Shapiro (2013) and Krätschmer et al. (2014), respectively. We are motivated
to study it on general Orlicz spaces.

Throughout this section, fix a nonatomic probability space (	, F , P). Let L0 be the space of all ran-
dom variables on 	, with a.s. equal random variables identified as the same. Let X be a subset of L0.
Denote the set of distributions of all random variables in X by:

M(X ) = {P ◦ X−1:X ∈X }.
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Recall that a law-invariant functional ρ on X induces a natural mapping Rρ on M(X ) by:

Rρ(P ◦ X−1) = ρ(X), for any X ∈X .

Recall that a sequence (Xn) of random variables is said to be stationary if for any k, n ∈N and any
x1, ..., xn ∈R, it holds that P(X1 ≤ x1, · · · , Xn ≤ xn) = P(Xk+1 ≤ x1 · · · , Xk+n ≤ xn). Let B be the Borel
σ -algebra on R

N. A set A ∈F is said to be invariant if there exists B ∈B such that A = {(Xn)n≥k ∈ B}
for every k ∈N. A stationary sequence is said to be ergodic if every invariant set has probability 0 or
1. Birkhoff’s ergodic theorem states that the arithmetic averages of a stationary ergodic sequence (Xn)
converge a.s. to E[X1] whenever E[|X1|] < ∞. See Breiman (1991, Section 6.7) for more facts regarding
stationary and ergodic processes.

Let X be a subset of L0 containing L∞. Take any X ∈X . Let (Xn) be a stationary ergodic sequence
of random variables with the same distribution as X. We denote the empirical distribution of X arising
from X1, . . . , Xn by:

m̂n = 1

n

n∑
i=1

δXi ;

here δx is the Dirac measure on R at x. Since L∞ ⊂X , m̂n ∈M(L∞) ⊂M(X ). This allows us to consider
the corresponding empirical estimate for ρ(X):

ρ̂n := Rρ(m̂n);

We say that ρ is strongly consistent at X if for any stationary ergodic sequence of random variables with
the same distribution as X:

ρ̂n =Rρ(m̂n)
a.s.−→ ρ(X).

We refer to Shapiro (2013), Krätschmer et al. (2014, 2017), and the references therein for literature on
strong (and weak) consistency of risk measures. In particular, we are interested in the following result.

Theorem (Krätschmer et al., 2014, Theorem 2.6). A norm-continuous, law-invariant functional on an
Orlicz heart is strongly consistent everywhere.

We remark that this theorem was originally stated for real-valued, law-invariant, convex risk mea-
sures. In their definition in Krätschmer et al. (2014), convex risk measures are assumed to be monotone
and thus are norm continuous by the aforementioned theorem of Ruszczyński and Shapiro. A quick
examination of the proof of Krätschmer et al. (2014, Theorem 2.6) shows that norm continuity and law
invariance are the only ingredients of the functional used.

Let’s recall the definitions of Orlicz spaces and hearts. A function �:[0, ∞) → [0, ∞) is called an
Orlicz function if it is nonconstant, convex, increasing, and �(0) = 0. The Orlicz space L� is the space
of all X ∈ L0 such that the Luxemburg norm is finite:

‖X‖� := inf
{1

λ
:λ > 0 and E

[
�

(
λ|X|)] ≤ 1

}
< ∞.

The Orlicz heart H� is a subspace of L� defined by:

H� := {
X ∈ L0:E

[
�

(
λ|X|)] < ∞ for any λ > 0

}
.

We refer to Edgar and Sucheston (1992) for standard terminology and facts on Orlicz spaces. Risk
measures on Orlicz spaces have been studied extensively; see, for example, Bellini et al. (2021), Bellini
and Rosazza Gianin (2012), Biagini et al. (2011), Gao et al. (2018, 2019, 2020), Gao and Xanthos
(2018), and the references therein.

The above theorem in conjunction with Theorem 1.4 immediately yields the following result, which
improves Krätschmer et al., (2014), Theorem 2.6.

Corollary 2.1. A convex, law-invariant, order-bounded-above functional on an Orlicz heart is strongly
consistent everywhere.
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The above theorem of Krätschmer et al. is essentially due to the fact that for any X ∈ H�, and for a.e.
ω ∈ 	, there exist a random variable Xω on 	 with same distribution as X and a sequence of random
variables (Xω

n ) on 	 with distributions m̂n(ω)’s such that

‖Xω

n − Xω‖� → 0. (2.1)

This, however, does not hold for arbitrary random variables in a general Orlicz space L�. Specifically,
when � fails the �2-condition, there exists X ∈ L�\H�. For this X, (2.1) must fail: Xω

n takes only at most
n values and thus is a simple random variable lying in H�; therefore, (2.1) would imply X ∈ H� as well.

We extend the theorem of Krätschmer et al. as follows. Recall first that on a set X ⊂ L0, a func-
tional ρ:X →R is said to be order continuous at X ∈X if ρ(Xn) → ρ(X) whenever Xn

o−→ X in X . In the
literature, order continuity is also termed as the Lebesgue property.

Theorem 2.2. An order-continuous, law-invariant functional on an Orlicz space is strongly consistent
everywhere.

For the proof of Theorem 2.2, we need to establish a few technical lemmas, which along the way
also reveal why order continuity is the most natural condition for general Orlicz spaces. For an Orlicz
function �, the Young class is defined by:

Y� := {
X ∈ L0:E [� (|X|)] < ∞}

.

It is easy to see that H� ⊂ Y� ⊂ L�. As in Krätschmer et al. (2014), we use the term �-weak topol-
ogy in place of the �(|·|)-weak topology on M(Y�) for brevity. This topology is metrizable (see e.g.,
Fölmer and Schied 2011, Corollary A.45). For the special case where �(x) = xp

p
for some 1 ≤ p < ∞,

the �-weak topology generates the Wasserstein metric of order p (see e.g., Villani 2021, Theorem 7.12).
Moreover, for a sequence (μn) ⊂M(Y�) and μ0 ∈M(Y�), (μn) converges �-weakly to μ0, written as
μn

�-weakly−−−−→ μ0, iff

μn
weakly−−→ μ and

∫
�(|x|)μn(dx) →

∫
�(|x|)μ0(dx).

The following Skorohod representation for �-weak convergence is a general order version of
Krätschmer et al. (2014, Theorem 3.5) and Krätschmer et al. (2017, Theorem 6.1) beyond the Orlicz
heart and without any restrictions on �.

Lemma 2.3.
(i) Let (μn) be a sequence in M(Y�) that converges �-weakly to some μ0 ∈M(Y�). Then there

exist a subsequence (μnk ) of (μn), a sequence (Xk) in Y� and X ∈ Y� such that Xk has distribution
μnk for each k ∈N, X has distribution μ0, and Xk

o−→ X in Y�.
(ii) Let (Xn) in Y� and X ∈ Y� be such that Xn

o−→ X in Y�. Then μn
�-weakly−−−−→ μ0, where μn’s are the

distributions of Xn’s and μ0 is the distribution of X, respectively.

Proof. We start with the following observation. Since � is continuous and increasing, for any
sequence (Xn) in Y�, we have

E

[
�

(
sup
n∈N

|Xn|
)]

=E

[
sup
n∈N

�(|Xn|)
]

(2.2)

(i). Take (μn) in M(Y�) that converges �-weakly to μ0 ∈M(Y�). Since the probability space is
nonatomic, the classical Skorohod representation yields (Xn) ⊂ Y� and X ∈ Y� such that Xn ∼ μn for
every n ∈N, X ∼ μ0, and Xn

a.s.−→ X. Clearly,

E[�(|X|)] =
∫

�(|x|)μ0(dx) = lim
n

∫
�(|x|)μn(dx) = lim

n
E[�(|Xn|)] < ∞. (2.3)
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Since � is continuous, we also have that �(|Xn|) a.s.−→ �(|X|). This combined with (2.3) yields (see
Aliprantis and Burkinshaw, 2006, Theorem 31.7) that∥∥�(|Xn|) − �(|X|)∥∥

L1 → 0.

Passing to a subsequence we may assume that
∞∑

n=1

∥∥�(|Xn|) − �(|X|)∥∥
L1 < ∞

so that
∞∑

n=1

∣∣�(|Xn|) − �(|X|)∣∣ ∈ L1.

In particular,

sup
n∈N

∣∣�(|Xn|) − �(|X|)∣∣ ∈ L1.

It follows from �(|Xn|) ≤ ∣∣�(|Xn|) − �(|X|)∣∣ + �(|X|) that supn∈N �(|Xn|) ∈ L1. Hence, by (2.2),
E[�( supn∈N |Xn|)] =E[ supn∈N �(|Xn|)] < ∞. That is, supn∈N|Xn| ∈ Y�; equivalently, (Xn) is dominated
in Y�. In particular, we have Xn

o−→ X in Y�

(ii). Let (Xn) be such that Xn
o−→ X in Y� and μn be the distribution of Xn for each n, μ0 be the dis-

tribution of X. We clearly have μn
weakly−−→ μ and by the continuity of �, we get �(|Xn|) a.s.−→ �(|X|). Since

(Xn) is dominated in Y�, supn∈N|Xn| ∈ Y�. Thus in view of (2.2), we get

E

[
sup
n∈N

�(|Xn|)
]

=E

[
�

(
sup
n∈N

|Xn|
)]

< ∞,

that is, supn∈N �(|Xn|) ∈ L1. By the dominated convergence theorem, we get∫
�(|x|)μ0(dx) =E[�(|X|)] = lim

n
E[�(|Xn|)] = lim

n

∫
�(|x|)μn(dx).

This proves μn
�-weakly−−−−→ μ0. �

The lemma below reveals the essential and natural role of order continuity.

Lemma 2.4. Let ρ:Y� →R be law invariant. The following are equivalent.

(i) Rρ is continuous on M(Y�) with the �-weak topology.
(ii) ρ is order continuous on Y�.

Proof. (ii) =⇒ (i). Suppose that (ii) holds but (i) fails. Recall that the �-weak topology is metrizable.
Thus, we can find a sequence (μn) and μ0 in M(Y�) such that μn

�-weakly−−−−→ μ0 but Rρ(μn) 
→Rρ(μ0).
Passing to a subsequence, we may assume that

|Rρ(μn) −Rρ(μ0)| ≥ ε0, (2.4)

for some ε0 > 0 and all n ∈N. By Lemma 2.3(i), there exist a subsequence (μnk ) of (μn), a sequence (Xk)
in Y� and X ∈ Y� such that Xk has distribution μnk for each k ∈N, X has distribution μ0, and Xk

o−→ X in
Y�. Then (ii) implies that

Rρ(μnk ) = ρ(Xk) → ρ(X) =Rρ(μ0).

This contradicts (2.4) and proves (ii) =⇒ (i). The reverse implication (i) =⇒ (ii) is immediate by
Lemma 2.3(ii). �
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We now present the proof of Theorem 2.2.

Proof of Theorem 2.2. Suppose that ρ:L� →R is law-invariant and order-continuous. Take any X ∈
L� and any stationary ergodic sequence of random variables with the same distribution as X. Denote by
μ0 their distribution. Let λ > 0 be such that E[�(λ|X|)] < ∞. Put �λ( · ) := �(λ·). Arguing similarly
as in the proof of Krätschmer et al. (2014, Theorem 2.6), by applying Birkhoff’s ergodic theorem, one
obtains a measurable subset 	0 of 	 such that P(	0) = 1 and for every ω ∈ 	0,

m̂n(ω)
�λ-weakly−−−−→ μ0.

Since ρ is order-continuous on L� and Y�λ ⊂ L�, ρ is also order-continuous on Y�λ . By Lemma 2.4, Rρ

is continuous on M(Y�λ ) with the �λ-weak topology. Thus, ρ̂n(ω) =Rρ(m̂n(ω)) →Rρ(μ0) = ρ(X) for
every ω ∈ 	0. This proves that ρ is strongly consistent at X. �
Remark 2.5. In our definition of Orlicz spaces, we do not allow the Orlicz function to take the ∞
value, which excludes L∞ from the above considerations. However, Theorem 2.2 remains true for L∞. Let
ρ:L∞ →R be an order-continuous, law-invariant functional. Take any X ∈ L∞ and any stationary ergodic
sequence (Xn) of random variables with the same distribution as X. Denote by μ0 their distribution. By
Birkhoff’s ergodic theorem and an application of Theorem 6.6 in Parthasarathy (1967, Chapter 1), there
exists a measurable subset 	0 of 	 such that P(	0) = 1 and m̂n(ω)

weakly−−→ μ0 for any ω ∈ 	0. One may
assume further that |X(ω)| ≤ ‖X‖∞ and |Xn(ω)| ≤ ‖X‖∞ for any ω ∈ 	0 and any n ≥ 1. Fix any ω ∈ 	0.
The classical Skorohod representation yields (Xω

n ) ⊂ L∞ and Xω ∈ L∞ such that Xω
n ∼ m̂n(ω) for every

n ∈N, Xω ∼ μ0, and Xω
n

a.s.−→ Xω. We may assume that |Xω
n | ≤ ‖X‖∞ on 	 for every n ≥ 1. It follows that

Xω
n

o−→ Xω in L∞. Hence, by order continuity of ρ, we get ρ̂n(ω) =Rρ(m̂n(ω)) = ρ(Xω
n ) → ρ(Xω) = ρ(X).

This proves that ρ is strongly consistent on L∞.

Order continuity of law-invariant functionals on Orlicz spaces is generally stronger than norm con-
tinuity. In the following, we show that it is satisfied by a large class of risk measures, namely, spectral
risk measures. Spectral risk measures were introduced in Acerbi (2002) and includes many important
risk measures such as the expected shortfall. Let φ be a nonnegative and nondecreasing function such
that

∫ 1

0
φ(t)dt = 1 (φ is called a spectrum). The associated spectral risk measure is defined by:

ρφ(X) =
∫ 1

0

φ(t)F−1
X (t) dt, X ∈ L1

where F−1
X (t) = inf{x ∈R:F(x) ≥ t} is the left quantile function of X. It is known that ρφ takes values in

(−∞, ∞] and is convex, monotone, and lower semicontinuous with respect to the L1 norm (see e.g.,
Amarante and Liebrich 2024, Lemma C.1). For spectral risk measures, the empirical estimator ρ̂n has
the form of an L-statistic and the strong consistency can be studied using tools from the theory of L-
statistics (see e.g., Tsukahara 2014). Below we give a simple proof of the strong consistency of ρφ in the
Orlicz space framework based on Theorem 2.2.

Corollary 2.6. Let φ be a spectrum function such that ρφ is real-valued on L�. Then ρφ is order
continuous on L� and is thus strongly consistent everywhere on L�.

Proof. Suppose that Xn
a.s−→ X and there exists Y ∈ L� such that |Xn| ≤ Y for every n ∈N. It is well

known that F−1
Xn

a.s.−→ F−1
X on (0,1) (with the Lebesgue measure). Hence,

φF−1
Xn

a.s.−→ φF−1
X .

Next, note that since −Y ≤ Xn ≤ Y , F−1
−Y ≤ F−1

Xn
≤ F−1

Y on (0,1). Thus,

φF−1
−Y ≤ φF−1

Xn
≤ φF−1

Y for every n ∈N.
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Since ρ is real-valued on L�, φF−1
Y ∈ L1 and φF−1

−Y ∈ L1. Thus, by the dominated convergence theorem,

ρφ(Xn) =
∫ 1

0

φ(t)F−1
Xn

(t) dt →
∫ 1

0

φ(t)F−1
X (t) dt = ρφ(X).

This proves that ρφ is order continuous on Lφ . The strong consistency follows from Theorem 2.2. �
We end this note with the following remark that improves the implication (b) =⇒ (a) in Krätschmer

et al. (2014, Theorem 2.8) due to our Theorem 1.4.

Corollary 2.7. Suppose that � satisfies the �2-condition. Let ρ be any convex, law-invariant, order-
bounded-above functional on L�. Then Rρ is continuous on M(L�) for the �-weak topology.

Proof. By Theorem 1.4, ρ is norm-continuous. When � satisfies the �2-condition, order conver-
gence in L� implies norm convergence. Thus, ρ is also order-continuous. Under the �2-condition, we
also have H� = Y� = L�. Now apply Lemma 2.4. �
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