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AN ANALOG OF NAGATA’S THEOREM FOR
MODULAR LCM DOMAINS

RAYMOND A. BEAUREGARD

1. Introduction. The theorem referred to in the title asserts that for an
atomic commutative integral domain R, if S is a submonoid of R* (the monoid
of nonzero elements of R) generated by primes such that the quotient ring
RS-! is a UFD (unique factorization domain) then R is also a UFD [8].
Recently several definitions of a noncommutative UFD have been proposed
(see the summary in {6]). However the analog of Nagata’s theorem does not
hold for all of these, the most notable illustration being that of a similarity-
UFD which was introduced in [5] (but the terminology is that of [6]). In
contrast, Nagata's theorem holds for the larger class of projectivity-UFD and
this result is included in Section 4 below.

The notion of a projectivity-UFD arose from an attempt to obtain unique-
ness of atomic factorizations of an element as in the commutative case, that is,
for a right LCM domain (an integral domain in which the intersection of any
two principal right ideals is again principal). Unfortunately there are right
LCM domains in which not even the number of atomic factors in different
factorizations of an element is constant (an example first noticed in [4] occurs
below). Uniqueness (in the projectivity-UFD sense) has been established [1]
for modular right LCM domains, a class which includes the commutative LCM
domains. In addition, many results of noncommutative principal ideal do-
mains can be carried over to modular LCM domains (see [2] and [3]). Our
main goal here is to obtain an analog of Nagata’s theorem for modular LCM
domains thus providing the means for exhibiting additional examples to which
these results apply.

2. Preliminaries. All rings considered are not necessarily commutative
integral domains with unity. For a ring R, Uy denotes the group of units of R
and R* is its monoid of nonzero elements. We recall from [1] that if ad’ = ba’
in R* and if the least common right multiple [a, 0], of @ and b exists then the
greatest common right divisor (¢, b’), of @’ and b’ exists and satisfies

(1)  ab’ = ba’ = [a,b](a, D")r;

in addition, aR M bR = [a, b],R and we also write Ra’ V RV’ = R(a’, b'),.
Thus for x € R* in a (two sided) LCM domain R the interval [xR, R] =
{aR|xR C aR C R} is a lattice under inclusion. This lattice is modular if and
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only if R satisfies the following condition which is left-right symmetric in an
LCM domain:

MY a, b], = [a, bel,, (@,0), = (a,bc), = ¢ € Up.

In general, a ring R is said to be (right) modular if it satisfies (M) (whenever
those quantities exist).

A 2-fir (weak Bezout domain) is an example of a modular LCM domain.
In addition every commutative ring is modular. This can be shown more
generally. Recall that ¢« € R* is tnvariant if aR = Re; in this case every factor
of a is a left factor, for if @ = uyv then a = yvu’ where u’ is chosen so that
ua = au’ (similarly every factor of « is a right factor). Thus if «, b, and ¢ are
invariant then there is no need for the subscripts in (M); if we assume, as we
may, that (¢, b) = (a, bc) = 1 and if we choose 0’ € R such that ad’ = ba
then we have ba = [a, 0] by the left-right analog of (1); multiplying this
equation on the left by ¢ and then cancelling ¢ on the right we find «b = [a, b];
similarly abc = [a, bc], and equating these lcm’s we have ab = abc so that
¢ € Ug. We summarize in the following.

ProrositioN 2.1. The modular condition (M) holds for all invariant elements
in an integral domain.

By an m-system in R we mean a submonoid S of R*. An element a € R*\ Uy
is said to be right prime to S if whenever s € S is a right factor of «b(b € R)
then s is a right factor of b (we shall abbreviate this as s € .S, s/,(zb = S/,b).
The next three propositions make this concept easier in particular cases. Re-
call that a right Ore system in R is an m-system S for which «S M sk # § for
eacha € R,s € S;asis well known, the right quotient ring RS—1 is then defined.

ProrosiTioN 2.2. Let S be a right Ore system in R with K = RS~ Then
a € RN\ Ug s right prime to Sif and only if aK M R = aR.

We omit the proof since it is straight-forward. A particular type of Ore
system is an m-system which is invariant in R, i.e., every element of S is in-
variant in R. Of course in this case there is no need for the subscripts (indi-
cating right division) in the definition of ‘“‘right prime to S”’ which may be
phrased ‘“‘prime to S’".

ProrositioNn 2.3. Let S be an m-system which is invariant in R. Then
a € R¥N\Ug1s prime to S if and only if aR M sR = asR for euch s ¢ S.

Proof. We alwayshave asR € aR M sR;if ais prime toSand ifx € aR M sR
then x = ab for some b € R and s/ab, hence s/b which shows x € asR. The
converse follows as easily.

An element p € R*\Uj is said to be a right prime if pl,ab = p[.a or p/b.
Shortly we shall be interested only in invariant primes (and the subscripts will
again be omitted).

https://doi.org/10.4153/CJM-1977-034-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1977-034-6

NAGATA'S THEOREM 309

ProposiTION 2.4.
(i) If a € R s right prime to an m-system S then a has no right factor in S\ Up.
(i1) The converse of (i) holds if S is generated by right primes.

Proof. (i) If s € S and s/,a and if « is right prime to S then s/,1 so that
s € Ug.

(i1) Suppose ab = rs where s = p; . .. p, and the p; are right primes. If «
has no right factor in S\ Uy then p,,/,b, say b = b,p,; then ab, = rp1 ... pp
and we continue now with p,_;. We eventually wind up with ab; = » and so
b = bss, as desired, showing « is right prime to S.

Example. Consider the skew polynomial ring

i=n
R =Alx, 2] = {Z x'asla, € A,n € N}
i=0

where A is the commutative polynomial ring 4 = Z,[y] over the field of
integers modulo 2 and where multiplication in R is defined so that ax = xa?.
Let S = {x"|n € N} be the m-system in R generated by x. Clearly xy has no
right factor in .S other than 1, but xy is not right prime to S as the equation
yx = (xy)y shows. Note that x is a left prime but not a right prime.

ProrosITION 2.5. Let ay, as € R be right prime to an m-system S. Then:
(1) araq is right prime to S.

(i1) If ai1s1 = asss (s; € S) then a,R = a2R.

(iii) If [a1, as), exists then it has no right factor in S\ Ug.

Proof. The proofs of (i) and (ii) are straight-forward. To prove (iii) we
write [a1, az], = aay = asa;’ and suppose s/,[(zl, @s],. Then s/,al' and s/,ag’
by definition of right prime to S; but (a//, ¢2’), = 1 by (1) so that s € Up.

3. Nagata’s Theorem for modular LCM domains. Hereafter S will be
an invariant m-system in K and K = RS~ will be the corresponding quotient
ring of R.

ProrosiTioN 3.1. Let a, a1, as € R be either units or prime to S such that
aK = a; K M aK, and let s, sy, s2 € S be such that sR = s1R M soR. Then
asR = a151R M ass9R, that s, [a181, asse), = |a1, as),[s1, 2] tn R.

Proof. According to Proposition 2.3, asR = aR M sR if s € Sand « is prime
to.S; this also holds if « € Ug, for asR = aRsR = sR = «R M aR. In addition,
Proposition 2.2 shows that «R = 1R M ayR. Thus asR = aR M sR =
AR M @R M 1R M 53R = a151R M asssR.

PROPOSITION 3.2. Assume that each x € R*\S can be written x = as where
s € Sand a is prime to S. If K is (right) modular then so is R.

Proof. We remark that .S is necessarily saturated, for if s = ab € .S and
if a ¢ S then ¢ = a;s; where a1 is prime to .S; the equation s = a;5,0 then
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implies s/s1b so that a; € Upg contradicting the definition of ;. To establish
condition (M) let

(2) [x1, x2], = [y, X023,

and (x1, x2); = (1, x2x3); which we may assume is unity. Let x; = «;5; where
s;€ Sand a; € UgorisprimetoS (1 =1, 2, 3). We first show that x3 € S.
[f this is not so then ssa3 = a4 where s; € S and a, is prime to S. Then using
Proposition 3.2, (2) can be written

[(11, (12]7[51y 52] = [ay, 02(&1]1[31, 8483]-

The left factors of the last equation are prime to S in view of Proposition 2.5
(iii) and the hypothesis on R. Thus [a4, as], = [«1, asas], by Proposition 2.5
(ii), and in particular, ;K M @K = ;K M @a:K. Also, ;K V a.K =
KV aa,K = K, for if a,K, a,K C dK where d € R is a unit or prime to S
then a1 R, @R € dR (Proposition 2.2) which meansd € Ujg because (¢4, as); =
1 in R; similarly «;K V a.5,K = K. Applying (M) which holds in K, we
conclude that a4y € Ug so that ay € S because S is saturated, and this contra-
dicts the choice of «,. We have shown x3 € S, so that with Proposition 3.2,
(2) can be written

[(117 (12]7[51, S;z] = L(h, ([2]7[81, ng;;].

Thus we have [s1, s2] = [s1, sox3]. Clearly (s1, s2) = (s1, $S2x3) = 1 because
54/ ;. Proposition 2.1 then applies to show x3 € Uy and the proof is concluded.

An m-system S of R is said to be lem-closed if s1, so € S= sR = s;R M 53R
for some s € S. We summarize what has been established as follows (cf. [7,
Theorem 3.1] for the commutative case).

THEOREM 3.3. Let S be an invariant m-system which is lcm-closed in R.
Assume each x € R*\S can be wrillen x = as where s € S and «a is prime lo S.
If RS—'is « modular right LCM domain then so is R.

The next result indicates how the hypotheses of Theorem 3.3 can be satis-
fied in a ring R. Recall that an alom or irreducible is an element of R*\Ug
that has no proper factors; R is atomic if each member of R¥*\ Uy is a product
of atoms.

Prorositiox 3.4. Let S be an m-system contwining Up and generated by
invariant primes of R. Then
(1) S 1s lem-closed.
(1) If R has the acc for principal right ideals or if R is atomic lhen each
member x of R*\S can be wrilien x = as where s € S and a is prime to S.

Proof. We remark again that S is necessarily saturated. To prove (i) let
s, t € S and let py, ..., pr be their common prime factors (not necessarily
distinct) ; thus s = py ... ppsyand £ = py ... Pty where (sy, ) = 1. If t€ Uy
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we are finished. Otherwise {; is prime to {s,"|n € N} (cf. Proposition 2.4) so
that £;R M s1R = t;5,R by Proposition 2.3; this shows tR M sR = is,R.

To prove (ii) let us first assume that R has the acc for principal right ideals.
If some x € R*\S cannot be written in the desired form we may choose such
an x with respect to which xR is maximal. Thus x cannot be prime to .S so
that x = x5, for some s; € S\Uzr (Proposition 2.4). Since xR & x;R we
may write x; = as where s € S and « is prime to S; then x = a(ss1) contra-
dicting the choice of x. Let us now assume that R is atomic; each atom in .S is
prime while each atom in R\S is prime to S (Proposition 2.4). Thus each
X € R* may be written x = a; ... 41 . . . @, where a; € S for 2 > k and
@1 . ..ay is prime to S by Proposition 2.5.

Using Proposition 3.4 we may state Theorem 3.3 in the following form.

THEOREM 3.5. Let S be an m-system gemerated by imvariant primes in R.
Assume that either R has the acc for principal right ideals or that R is atomic.
If RS~ 1s a modular right LCM domain then so is R.

COROLLARY 3.6. Let A be a commutative UFD. The free associative algebra
R = A[X] on a set X 1is a modular LCM domain.

Proof. (cf. [4, Satz 8]) Using an argument as in the proof of Gauss’ lemma
it can be shown that the primes in 4 are primes in R. Thus .S = 4* is an
m-system generated by central primes of R. Also, RS™! = A4 (4*)~'[X], the
free associative algebra over a field which is known to be a 2-fir [5] and hence
a modular LCM domain. Since R is atomic, Theorem 3.5 (and its left-right
analog) apply to show that R is a modular LCM domain.

The next application deals with the ring of skew formal power series over
a PRI (principal right ideal) domain. First we need the following result for
the corresponding ring of formal Laurent series. As usual ord(f) denotes the
degree of the first nonzero term of a Laurent series f.

ProrosiTioN 3.7. Let A be a PRI domain with automorphism o and let K =
ALy, o> = (L, axtla; € A, n € Z} (where multiplication in K 1s defined
byxa = o(a)x,x 'a = o~ (a)x1t). Then K is a PRI domain.

Proof. Let 0 # I be a right ideal of K and let
J=la€ Ala+ h € I, ord (k) > 0}.

Clearly J is a nonzero right ideal of 4 and so has the form J = a4. Let f =
a + h € I so that fK C I. To show the reverse inclusion let g; € I with first
term b, x"'; then b, € J(gix™! € I) so we write b, = ari(r; € 4). If g» =
g1 — frix™, then g, € I and ord (g2) > ord (g1). Proceeding by induction,
suppose g;(¢ = k) have been found in [ with increasing order. If g, has first
term b, x"* then b,lk € Jsowe write b, = ar; and define g,y = g — frix™ € 1
with ord (gey1) > ord (gi). Then g, = f > iy rix™ € fK as desired.
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CoroLLARY 3.8. Let A be a« PRI domain with automorphism o. Then R =
Allx, o] = {>XFvaxia; € A} (where multiplication in R is defined by xa =
a(a)x) 1s @ modular LCM domain.

Proof. Let .S be the saturated m-system generated by the invariant prime x.
Each power series in R may be written as fx* = x*f’ where ¥ € N and f and [
have order zero and so are either units or prime to S (cf. Proposition 2.4). Also,
RS =~ AKLx, ¢>>, the corresponding ring of formal Laurent series, which is
a PRI domain (Proposition 3.7) hence a 2-fir, hence a modular LCM domain.
Theorem 3.3 (and its left-right analog) apply to show that R is a modular
LCM domain.

Remark 3.9. If ¢ is a monomorphism on the PRI domain A but not an
automorphism then the power series ring of Corollary 3.8 need not be modular,
although it is still a right LCM domain according to [4, Satz 9]. For example,
if 4 is the commutative polynomial ring Zs[y] over the field of integers modulo
2 and R = A[lx, 2]] where multiplication is defined by x¢ = «*c then the
equation xy = y% shows that R is not modular, i.e., (x, ¥), = (x, »*), =1
and [x, v], = [x, %], = xy buty ¢ Ug.

Remark 3.10. 1t follows that the ring of formal power series F||x, ¥]] in two
commuting indeterminates over a skew field F is a modular LCM domain.
However the same is not true of the polynomial ring Fx, v]. If R = Qlx, vy]
where Q is the field of real quaternions then it can be shown that (I 4+ )R M
(1 4 j¥)R is not principal (2 = j> = —1); note that it contains both (1 + 7x)
1 4 »?) and (1 + jy) (1 + «x2).

Remark 3.11. The example just given shows that unlike the commutative
case, if 4 is an LCM domain then A4[x] need not be an LCJM domain (even if
A is a PID). In contrast Corollary 3.8 shows that if 4 is a PRI domain then
Allx, ¢]] is an LCM domain as in the commutative case. As an example in [9]
shows, il 4 is an LCA domain then A[[x]] need not be an LCM domain (even
if A is commutative).

4. Nagata’s theorem for projectivity-UFDS. We recall from [1] that
two elements «, @’ in a ring R are said to be transposed and we write a tr o’ if
la, b], = ba’ and (a, b), = 1 for some b € R. The relation tr reduces to simi-
larity in a 2-fir and to that of being associates in a commutative ring. How-
ever, tr is not symmetric: referring to the example in Remark 3.9 we have
x tr yx but yx ¢ x. We therefore define ¢ and «’ to be projective and we write
a pr @’ if there exist ag = a, ay, ..., a, = a’ where either «,_; tr a;or a; tr a,_;
for each 7. It was shown in [1] that in a modular right LC M domain the atomic
factorization of an element is unique up to order of factors and projective
factors. Following the terminology of [6] we say that R is a projectivity-UFD
if R is an atomic integral domain in which atomic factorizations are unique
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in this sense. The corresponding analog of Nagata's theorem depends on two
preliminary results.

ProrosiTiON 4.1. Let S be an m-system invariant in R and assume that each
element x € R*\S can be written x = as where s € S and a 1is prime to S. Let a
be prime to S and s € S.

(i) If sa = a's then o’ tr a.

(ii) If as = sa’ then a tr &/,

and in either case a’ 1s prime to S.

I

Proof. If sa = a’s then Ra M Rs = Rsa by the left-right analog of Proposi-
tion 2.3; thus (s, @’); = 1 (the analog of equation (1)). Also, ¢’ is prime to .S,
for we may write ¢’ = a'’s’ where s’ € S and o’ is prime to S; then [a”, 5], =
a’’s = sc for some ¢ € R (Proposition 2.3). We then have s¢ € scR, say sa =
scx which shows x/,a but the last equation may be written a’’s’s = a’’sx which
shows x € S;the conclusionis thatx € Ugandsos’ € Ug,i.e., @’ is prime to S.
This also shows that [¢/, 5], = sa = «'s so that ¢’ tr a.

The proof of (ii) is shorter: if S’/,(L’ then s’/,s, and so s’ is a unit because
(s, @’), = 1 and this because [a, s], = as = sa’, by Proposition 2.3; therefore
a’ is prime to .S and « tr @’.

The proof of (i) in Proposition 2.4 is quite short if we assume that S is
generated by invariant primes in place of the ‘“x = as”” hypothesis. However,
the present form yields the following.

COROLLARY 4.2. Let S be an m-system invariant in R and assume that each
element x € R*\S can be written x = as where s € .S and a is prime to S. Then
the primes of S are primes of R.

Proof. If p is a prime of S and p/(ais1) (@252) where s; € S and a; are prime
to S then writing siee = a2’s; we have ay’ and therefore aiay’ prime to S
(Proposition 4.1 and Proposition 2.5). Therefore p/sis, and so p/s, or p/s:
as desired.

ProrosiTiON 4.3. Let S be an m-system invariant in R and let K = RS
Assume each element x € R*¥\S can be wrilten x = as where s € S and a is prime
toS. Ifa, a; € Rare prime to S and a prg ay then a prg a,.

Proof. We may assume that @ trg ¢1; thus ¢« K M 0K = ba,K,aK V bK = K
for some b € K. Let b = b1525;7! where s; € .S and b, is prime to S; let a15; =
S1@s, Sa@te = ass2 where the a; are prime to S and «; prg a; by Proposition 4.1.
Applying Propositions 2.2 and 2.3 we have aR N 1R = ¢ K N HL1KNR =
ba; K M R = bia;K M R = biasR, and also aR V b1R = R (any common left
factor would be a unit in K hence in .S). We conclude that a trz as and so
a prg a.

We can now give the following analog of Nagata’s theorem for projectivity-
UPFDs using the proof of a general result of [6].
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THEOREM 4.4. Let R be an atomic integral domain and let S be an m-system
generated by imvariant primes of R. If K = RS~ s a projectivity-UFD, then
sois R.

Proof. Proposition 3.4 shows that Proposition 4.3 applies. Letx = a;...q, =
by . ..b, betwo atomic factorizations of x. If some «; is an invariant prime then
it divides and is therefore associated to some b;; these may be brought to the
right (Proposition 4.1) and cancelled and we then apply induction. Thus we
may assume that no «; or b; is an invariant prime; then these are all prime to .S
and consequently atoms in K. Therefore n = m and a; prx b.(y for some
permutation m of the subscripts, and so a; prg b.(;y by Proposition 4.3.

For an atomic integral domain R with unique factorization monoid .S
(i.e., S generated by invariant primes of .S) the hypothesis that .S be generated
by primes of R is equivalent to the hypothesis that each element x € R¥\S
can be written x = as for s € S and a prime to .S in view of Corollary 4.2 and
Proposition 3.4.
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