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AN ANALOG OF NAGATA'S THEOREM FOR 
MODULAR LCM DOMAINS 

RAYMOND A. BEAUREGARD 

1. I n t r o d u c t i o n . The theorem referred to in the title asserts tha t for an 
atomic commutat ive integral domain R, if 5 is a submonoid of R* (the monoid 
of nonzero elements of R) generated by primes such tha t the quotient ring 
RS_1 is a UFD (unique factorization domain) then R is also a UFD [8]. 
Recently several definitions of a noncommutat ive UFD have been proposed 
(see the summary in [6]). However the analog of Nagata ' s theorem does not 
hold for all of these, the most notable illustration being tha t of a similarity-
UFD which was introduced in [5] (but the terminology is tha t of [6]). In 
contrast , Naga ta ' s theorem holds for the larger class of projectivity-£AFZ} and 
this result is included in Section 4 below. 

The notion of a p r o j e c t i v i t y - W D arose from an a t t empt to obtain unique­
ness of atomic factorizations of an element as in the commutat ive case, t ha t is, 
for a right LCM domain (an integral domain in which the intersection of any 
two principal right ideals is again principal). Unfortunately there are right 
LCM domains in which not even the number of atomic factors in different 
factorizations of an element is constant (an example first noticed in [4] occurs 
below). Uniqueness (in the projectivity-c^T7!? sense) has been established [1] 
for modular right LCM domains, a class which includes the commutat ive LCM 
domains. In addition, many results of noncommutat ive principal ideal do­
mains can be carried over to modular LCM domains (see [2] and [3]). Our 
main goal here is to obtain an analog of Nagata ' s theorem for modular LCM 
domains thus providing the means for exhibiting additional examples to which 
these results apply. 

2. Pre l iminar ies . All rings considered are not necessarily commutat ive 
integral domains with unity. For a ring R, UR denotes the group of units of R 
and R* is its monoid of nonzero elements. We recall from [1] tha t if ab' — ba' 
in R* and if the least common right multiple [a, b]r of a and b exists then the 
greatest common right divisor (a', b')r of a' and b' exists and satisfies 

(1) aV = ba' = [a, b]r(a
f, b')r; 

in addition, aR Pi bR = [a, b]rR and we also write Ra' V Rbr = R(a', b')r. 
T h u s for x £ R* in a (two sided) LCM domain R the interval [xR, R] = 
{aR\xR Ç aR C R} is a lattice under inclusion. This lattice is modular if and 
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only if R satisfies the following condition which is left-right symmetr ic in an 

LCM domain: 

(M) [a, b]r = [a, bc]r, (a, b) l = (a, bc)l=>c Ç UR. 

In general, a ring R is said to be {right) modular if it satisfies (M) (whenever 
those quanti t ies exist). 

A 2-fir (weak Bezout domain) is an example of a modular LCM domain. 
In addit ion every commuta t ive ring is modular. This can be shown more 
generally. Recall t ha t a € R* is invariant if aR = Ra; in this case every factor 
of a is a left factor, for if a = uyv then a = yvu' where u' is chosen so t ha t 
ua = au' (similarly every factor of a is a right factor). T h u s if a, b, and c are 
invariant then there is no need for the subscripts in (AT) ; if we assume, as we 
may, t ha t (a, b) = (a, be) = 1 and if Ave choose b' £ R such t ha t ab' = ba 
then we have ba = [a, b'] by the left-right analog of (1) ; mult iplying this 
equation on the left by a and then cancelling a on the right we find ab = [a, b] ; 
similarly abc = [a, be], and equat ing these lem's Ave have ab = abe so t ha t 
c G UR. We summarize in the following. 

PROPOSITION 2.1. The modular condition (M) holds for all invariant elements 
in an integral domain. 

By an ra-system in R we mean a submonoid 5 of R*. An element a £ R*\UR 

is said to be right prime to S if whenever s Ç 5 is a r ight factor of ab(b £ R) 
then ^ is a r ight factor of b (we shall abbreviate this as s Ç S, sjTab => sjTb). 
The next three propositions make this concept easier in part icular cases. Re­
call t ha t a right Ore system in R is an m-system 5 for which aS C\ sR ^ 0 for 
each a G i?, s G 5 ; as is well knowrn, the right quot ient ring RS~l is then defined. 

PROPOSITION 2.2. Let S be a right Ore system in R with K = RS~l. Then 
a Ç R*\ UR is right prime to S if and only if aK C\ R = aR. 

We omit the proof since it is straight-forward. A part icular type of Ore 
system is an m-system which is invar iant in R, i.e., every element of S is in­
var ian t in R. Of course in this case there is no need for the subscripts (indi­
cating right division) in the definition of " r ight prime to 5 " which may be 
phrased "pr ime to 5 " . 

PROPOSITION 2.3. Let S be an m-system which is invariant in R. Then 
a G R*\ UR is prime to S if and only if aR C\ sR = asR for each s £ S. 

Proof. We always have asR Ç aR P\ sR; if a is prime to 5 and if x G aR O sR 
then x — ab for some b G R and s/ab, hence s/b which shows x Ç asR. T h e 
converse folloAA ŝ as easily. 

An element p G R*\UR is said to be a right prime if pjrab => pjTa or p/rb. 
Short ly Ave shall be interested only in invariant primes (and the subscripts will 
again be omi t ted) . 
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PROPOSITION 2.4. 

(i) If a Ç R is right prime to an m-system S then a has no right factor in S\ UR. 
(ii) The converse of (i) holds if S is generated by right primes. 

Proof, (i) If .s £ S and sjra and if a is right prime to S then s/Tl so tha t 
s 6 UR. 

(ii) Suppose ab = rs where s = pi . . . pn and the pt are right primes. If a 
has no right factor in S\UR then pnfrb, say b = bnpn\ then abn = rp\ . . . pn^\ 
and we continue now Avith pn-\. We eventually wind up with ab\ = r and so 
b = bis, as desired, showing a is right prime to 5. 

Example. Consider the skew polynomial ring 

R = A[x, 2] = < X) x'dilat £ A,n £ N> 

where A is the commutat ive polynomial ring A = Z2[y] over the field of 
integers modulo 2 and where multiplication in R is defined so tha t ax = xa2. 
Let 5 = {xn\n £ ^V} be the m-system in R generated by x. Clearly xy has no 
right factor in S other than 1, but xy is not right prime to S as the equation 
yx = (xy)y shows. Note tha t x is a left prime but not a right prime. 

PROPOSITION 2.5. Let ai, a2 G R be right prime to an m-system S. Then: 
(i) «ia2 is right prime to S. 

(ii) If aiSi = a2s2 (Si G 5) 2feew aii? = a2R. 
(iii) If [ai, a2]r exists then it has no right factor in S\UR. 

Proof. The proofs of (i) and (ii) are straight-forward. To prove (iii) we 
write [au a2]r = a\a2 = a2a\ and suppose s\r[a,\, a2]r. Then s/rai and s/ra2 

by definition of right prime to S; but ( a / , a2)r = 1 by (1) so tha t 5 Ç UR. 

3. N a g a t a ' s T h e o r e m for m o d u l a r LCM d o m a i n s . Hereafter 5 will be 
an invariant w-system in R and K = RS'1 will be the corresponding quotient 
ring of R. 

PROPOSITION 3.1. Let a, a\, a2 Ç R be either units or prime to S such that 
aK = a,\K C\ a2K, and let s, si, s2 Ç S be such that sR = siR Pi s2R. Then 
asR = aiSiR C^ a2s2R, that is, [aiSi, a2s2]r = [ai, a2]r[^i, s2] in R. 

Proof. According to Proposition 2.3, asR = aR H\ sR iî s £ S and a is prime 
to S; this also holds if a G UR, for asR = aRsR = sR — aR C\ aR. In addition, 
Proposition 2.2 shows tha t aR = a\R C\ a2R. Thus asR = aR C\ sR = 
axR C\ a2R C\ s±R C\ s2R = a^R H a2s2R. 

PROPOSITION 3.2. Assume that each x Ç R*\S can be written x = as where 
s £ S and a is prime to S. If K is (right) modular then so is R. 

Proof. We remark tha t S is necessarily saturated, for if s = ab G S and 
\{ a (t S then a = a\S\ where a\ is prime to S; the equation 5 = aisj) then 
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implies s/sj) so t ha t a,\ G U R contradict ing the definition of a,\. T o establish 
condition (M) let 

(2) [Xi, X2]r = [Xu X2X3]r 

and (xi, x2) i = (xi, x2x3) i which we may assume is uni ty. Let %i = atSi where 
Si G S and at G UR or is prime to S (i = 1, 2, 3) . We first show tha t x3 G 5 . 
If this is not so then s2a3 = a4s4 where s4 f 5 and a4 is prime to S. Then using 
Proposition 3.2, (2) can be wri t ten 

[au a2]T[su s2] = [au a2a±]r[sh s4s3]. 

The left factors of the last equation are prime to 5 in view of Proposition 2.5 
(iii) and the hypothesis on R. T h u s [au a2]r = [au a2aA]r by Proposition 2.5 
(ii), and in particular, a\K C\ a2K = axK C\ a2a±K. Also, a\K V a2K = 
a,\K V a2cuK = K, for if aiK, a2K Ç c£i£ where d G i? is a uni t or prime to 5 
then chR, a2R Ç ^ (Proposition 2.2) which means d ^ UR because (ai, a2) z = 
1 in i£; similarly a\K V a2s±K = X. Applying (AI) which holds in i£, we 
conclude tha t a4 G £7̂ - so t ha t «4 G 5 because 5 is sa turated, and this contra­
dicts the choice of ciu We have shown x3 G S, so t ha t with Proposition 3.2, 
(2) can be writ ten 

[au a2]T[su s2] = [au a2]r[su s2x3]. 

T h u s we have [si, s2] = [si, s2x3]. Clearly (su s2) = (si, s2x3) = 1 because 
stj ixt. Proposition 2.1 then applies to show x3 G UR and the proof is concluded. 

An ra-system 5 of R is said to be Icm-closed if S\, s2 £ S => sR = S\R P\ s2R 
for some s G S. W7e summarize wha t has been established as follows (cf. [7, 
Theorem 3.1] for the commuta t ive case). 

T H E O R E M 3.3. Let S be an invariant m-system which is Icm-closed in R. 
Assume each x G R*\S can be written x = as where s £ S and a is prime to S. 
If RS"1 is a modular right LCM domain then so is R. 

The next result indicates how the hypotheses of Theorem 3.3 can be satis­
fied in a ring R. Recall t ha t an atom or irreducible is an element of R*\UR 

t ha t has no proper factors; R is atomic if each member of R*\UR is a product 
of a toms. 

PROPOSITION 3.4. Let S be an m-system containing UR and generated by 
invariant primes of R. Then 

(i) S is Icm-closed. 
(ii) If R has the ace for principal right ideals or if R is atomic then each 

member x of R*\S can be written x = as where s G S and a is prime to S. 

Proof. We remark again t ha t 5 is necessarily sa tura ted . T o prove (i) let 
s, t G 5 and let pi, . . . , pk be their common prime factors (not necessarily 
distinct) ; thus s = pi . . . pkSi and t — pi . . . pktx where (si, ti) = 1. If t G UR 
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we are finished. Otherwise t\ is prime to {sin\n G N} (cf. Proposition 2.4) so 
t ha t hR C\ SiR = tiSiR by Proposition 2.3; this shows tR C\ sR = tsiR. 

T o prove (ii) let us first assume tha t R has the ace for principal right ideals. 
If some x G R*\S cannot be writ ten in the desired form we may choose such 
an x with respect to which xR is maximal. Thus x cannot be prime to S so 
tha t x = XiSi for some Si G S\UR (Proposition 2.4). Since xR £ XiR we 
may write X\ = as Avhere s £ S and a is prime to 5 ; then x = a(ssi) contra­
dicting the choice of x. Let us now assume tha t R is a tomic; each atom in 5 is 
prime while each atom in R\S is prime to S (Proposition 2.4). Thus each 
x G R* may be writ ten x = a,\ . . . akak+i . . . an where at G S for i > k and 
ai . . . ak is prime to S by Proposition 2.5. 

Using Proposition 3.4 we may state Theorem 3.3 in the following form. 

T H E O R E M 3.5. Let S be an m-system generated by invariant primes in R. 
Assume that either R has the ace for principal right ideals or that R is atomic. 
If RS~l is a modular right LCM domain then so is R. 

COROLLARY 3.6. Let A be a commutative UFD. The free associative algebra 
R = A [X] on a set X is a modular LCM domain. 

Proof, (cf. [4, Satz 8]) Using an argument as in the proof of Gauss' lemma 
it can be shown tha t the primes in A are primes in R. Thus 5 = A* is an 
m-system generated by central primes of R. Also, RS"1 ~ A (^4*)_1[X], the 
free associative algebra over a field which is known to be a 2-fir [5] and hence 
a modular LCM domain. Since R is atomic, Theorem 3.5 (and its left-right 
analog) apply to show tha t R is a modular LCM domain. 

The next application deals with the ring of skew formal power series over 
a PRI (principal right ideal) domain. First we need the following result for 
the corresponding ring of formal Laurent series. As usual o r d ( / ) denotes the 
degree of the first nonzero term of a Laurent ser ies / . 

PROPOSITION 3.7. Let A be a PRI domain with automorphism a and let K = 
A<£x, <jy> = {^fi=n aix^ai G A, n G Z] (where multiplication in K is defined 
by xa = a(a)x, x~la = a~1(a)x~1). Then K is a PRI domain. 

Proof. Let 0 ^ / be a right ideal of K and let 

/ = {a G A\a + h G I, ord (h) > 0}. 

Clearly / is a nonzero right ideal of A and so has the form / = aA. Let / = 
a + h G I so t h a t / i £ C I. To show the reverse inclusion let g\ G / with first 
term bnix

ni; then bni G J(giX~ni G / ) so we write bni = ari(rx G A). If g2 = 
gi — frixni, then g2 G / and ord (g2) > ord (gi). Proceeding by induction, 
suppose gi(i ^ k) have been found in I with increasing order. If gk has first 
term bnjcx

nk then bUk G / s o we write bnjc = arh and define gk+ï = gk — frkx
nk G I 

with ord (gk+1) > ord (gk). Then gx = f £ ? = i rkx
nk G fK as desired. 
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COROLLARY 3.8. Let A be a PRI domain with automorphism a. Then R = 

A[[x, a]} = {2?=o diX^cii £ A} (where multiplication in R is defined by xa = 

a(a)x) is a modular LCM domain. 

Proof. Let 5 be the saturated ra-system generated by the invariant prime x. 
Each power series in R may be writ ten as fxk = xkf where k £ N and / and / ' 
have order zero and so are either units or prime to 5 (cf. Proposition 2.4). Also, 
RS~l ~ A<£x, oO>>, the corresponding ring of formal Lauren t series, which is 
a PRI domain (Proposition 3.7) hence a 2-fir, hence a modular LCM domain. 
Theorem 3.3 (and its left-right analog) apply to show tha t R is a modular 
LCM domain. 

Remark 3.9. If a is a monomorphism on the PRI domain A bu t not an 
automorphism then the power series ring of Corollary 3.8 need not be modular, 
al though it is still a right LCM domain according to [4, Satz 9]. For example, 
if A is the commuta t ive polynomial ring Z2[y] over the field of integers modulo 
2 and R = A[[x, 2]] where multiplication is defined by xa = a2x then the 
equation xy = y2x shows t ha t R is not modular, i.e., (x, y) t = (x, y2) t = 1 
and [x, y]r = [x, y2]r = xy bu t y (? UR. 

Remark 3.10. I t follows tha t the ring of formal power series F[\x, y]] in two 
commuting indeterminates over a skew field F is a modular LCM domain. 
However the same is not t rue of the polynomial ring F[x, y], lî R = Q[x, y] 
where Q is the field of real quaternions then it can be shown tha t (1 + ix)R C\ 
(1 + jy)R is not principal (i2 = j 2 = — 1) ; note t ha t it contains both (1 + ix) 
(1 +y2) and (1 +jy)(l + x2). 

Remark 3.11. The example just given shows t ha t unlike the commuta t ive 
case, if A is an LCM domain then A[x] need not be an LCM domain (even if 
A is a PID). In contrast Corollary 3.8 shows t ha t if A is a PRI domain then 
A[[x, a]] is an LCM domain as in the commuta t ive case. As an example in [9] 
shows, if A is an LCM domain then T[[x]] need not be an LCM domain (even 
if A is commuta t ive ) . 

4. N a g a t a ' s t h e o r e m for p r o j e c t i v i t y - U F D S . We recall from [1] t ha t 
two elements a, a' in a ring R are said to be transposed and we write a tr a' if 
[a, b]r = ba' and (a, b) t — 1 for some b £ R. T h e relation tr reduces to simi­
larity in a 2-fir and to t ha t of being associates in a commuta t ive ring. How­
ever, tr is not symmetr ic : referring to the example in Remark 3.9 we have 
x tr yx bu t yx -tr- x. We therefore define a and. a' to be projective and we write 
a pr a' if there exist a-o — a, au . . . , an = a' where either ai_1 tr at or at tr at_i 
for each i. I t was shown in [1] t ha t in a modular r ight LCM domain the atomic 
factorization of an element is unique up to order of factors and projective 
factors. Following the terminology of [6] we say tha t R is a projective y-UFD 
if R is an atomic integral domain in which atomic factorizations are unique 
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in this sense. The corresponding analog of Nagata ' s theorem depends on two 
preliminary results. 

PROPOSITION 4.1 . Let S be an m-system invariant in R and assume that each 
element x G R*\S can be written x = as where s G S and a is prime to S. Let a 
be prime to S and s G S. 

(i) If sa — a's then a' t r a. 
(ii) If as = saf then a tr a', 

and in either case a' is prime to S. 

Proof. If sa = a's then Ra C\ Rs = Rsa by the left-right analog of Proposi­
tion 2.3; thus (s, af)i = 1 (the analog of equation (1)) . Also, a' is prime to S, 
for we may write a' = a"sf where s' G S and a" is prime to S; then \a", s]r = 
a"s = se for some c G R (Proposition 2.3). We then have sa G scR, say sa = 
sex which shows x/ra bu t the last equation may be writ ten a,fs's = a"sx which 
shows x G S; the conclusion is t ha t x G UR and so s' G UR, i.e., a' is prime to 5 . 
Th i s also shows tha t [af, s]r = sa = a's so t ha t a' t r a. 

The proof of (ii) is shorter: if s'jra' then s'/rs, and so s' is a unit because 
(s, a')r = 1 and this because [a, s]r = as = sa', by Proposition 2.3; therefore 
a' is prime to 5 and a t r a'. 

The proof of (i) in Proposition 2.4 is quite short if we assume tha t S is 
generated by invariant primes in place of the "x = as" hypothesis. However, 
the present form yields the following. 

COROLLARY 4.2. Let S be an m-system invariant in R and assume that each 
element x G R*\S can be written x = as where s Ci S and a is prime to S. Then 
the primes of S are primes of R. 

Proof. If p is a prime of 5 and p/ {a\S\) (a2^2) where st G S and at are prime 
to 5 then writing Sia2 = a2'si we have a2 ' and therefore a ia2

/ prime to 5 
(Proposition 4.1 and Proposition 2.5). Therefore p/sis2 and so p/s\ or p/s2 

as desired. 

PROPOSITION 4.3. Let S be an m-system invariant in R and let K = RS'1. 
A ssume each element x G R*\S can be written x = as where s £ S and a is prime 
to S. If a, a,\ G R are prime to S and a pr^ a\ then a pr# ax. 

Proof. We may assume tha t a t r^ a,\\ thus aK C\ bK = baiK, aK V bK = K 
for some b G K. Let b = b\S2Si~l where st G 5 and b\ is prime to 5 ; let a ^ i = 
S\a2, s2a2 = a%s2 where the at are prime to 5 and at pr# ai by Proposition 4 .1 . 
Applying Propositions 2.2 and 2.3 we have aR H bxR = aK H bxK H R = 
ba,\K C\ R = bia^K r\ R = bia^R, and also aR V biR = R (any common left 
factor would be a unit in K hence in S). We conclude tha t a t r^ a3 and so 
a pr f i ai . 

We can now give the following analog of Nagata ' s theorem for projectivity-
UFDs using the proof of a general result of [6]. 
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THEOREM 4.4. Let R be an atomic integral domain and let S be an m-system 
generated by invariant primes of R. If K = RS~* is a projectivity-UFD, then 
so is R. 

Proof. Proposition 3.4 shows that Proposition 4.3 applies. Let x = cii . . . an = 
b\ . . . bm be two atomic factorizations of x. If some at is an invariant prime then 
it divides and is therefore associated to some b3-; these may be brought to the 
right (Proposition 4.1) and cancelled and we then apply induction. Thus we 
may assume that no at or bj is an invariant prime; then these are all prime to 5 
and consequently atoms in K. Therefore n = m and at pr^ b^^) for some 
permutation w of the subscripts, and so at pr^ 6T(i) by Proposition 4.3. 

For an atomic integral domain R with unique factorization monoid S 
(i.e., 5 generated by invariant primes of 5) the hypothesis that S be generated 
by primes of R is equivalent to the hypothesis that each element x Ç R*\S 
can be written x = as for s £ S and a prime to S in view of Corollary 4.2 and 
Proposition 3.4. 
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