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OPTIMAL SHAPE DESIGN FOR A
NOZZLE PROBLEM
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Abstract

In this paper, a gradient method is developed for the optimal shape design in a
nozzle problem described by variational inequalities. It is known that this method
can be used for the optimal shape design for systems described by partial differential
equations (Pironneau [6]); it is used here for differential inequalities by taking limits
of the expression resulting from an approximations scheme. The computations are
done by the finite element method; the gradient of the criteria as a function of the
coordinates nodes is computed, and the performance criterion is then minimised by
the gradient method.

1. Introduction

The optimal shape problem can be solved for systems described by differential
equations (Pironneau [6]). The purpose of this paper is to develop an optimal
shape design for a nozzle problem described by a variational inequality.

Let Q be a given domain and D be any fixed domain which is contained in
cx>\ dfi is the boundary of the domain ft. The velocity u(x) at a point x in a
nonviscous incompressible potential flow (such as for air or water at moderate
speed) may be approximated by

xeti, (1.1)
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FIGURE 1. Physical set-up of the problem with domain SI, subdomain D (i.e., D C S2),
boundary of the domain d& = Ut=i r- a n d velocity near the exit Ud.

where <p satisfies a second-order partial differential equation on £2,

= / in (1.2)

Then the flow in a nozzle Q (the region occupied by the fluid) with a prescribed
pressure drop <pr, - <Pr, is obtained by solving (1.2) with boundary conditions

d(p/dn
r2UU

= 0, = 0, (1.3)

where dQ = u r , , i = 1, 2, 3,4. The physical set-up is depicted schematically
in Figure 1. Consider the Sobolev space

where Hl{Q.) is the set of square integrable functions with square integrable
first derivatives. Define the inner products (.,.) and a(.,.) on L2(fi) and H^
respectively, by

(f,8)= [ fgdx
J

and

a(<p, 0) = /
Jn

(1.4)

with the associated norms being denoted by | / | 2 = (/, / ) and ||<p||2 = a(cp, ip).
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[3] Optimal shape design for a nozzle problem 73

The problem we want to consider consists of finding the solution <p so that

and
' (1.5)

We note that the bilinear form a(.,.) in (1.5) is elliptic, i.e.,

a(4>,4>)>a\\4>\\2 a > 0 , Vcf> e #„'(«). (1.6)

In our problem, we are interested in designing a nozzle that gives a prescribed
velocity Ud under the exit, say in some given domain D which is a subset of
the domain Q. To obtain an approximate design we shall solve the following
optimisation problem:

minE(n) = [ |Vp(£2) - Ud\
2dx, (1.7)

nee JD

where 9 = {£2 : £2 D D, ; Fi, F2, F3 are fixed, F4 is any curve}.
The optimal shape problem can be solved for the systems described by differ-

ential equations (Angrand [1]). So to solve the problem for the systems described
by a differential inequality we shall introduce the first penalised equation,

A<pe + (l/e)<p; = f, <p£€H>(Q), (1.8)

where V~ = — sup(— V, 0), and A : V = //0' -»• V is a linear continuous
and symmetric operator satisfying the coercivity condition, i.e. (A<f>, (f>) —
a(0. </>) > "ll^ll2, for all </» e V, a > 0, and A = —V.V, whose solution <pe

tends to the solution of (1.5) when e -> 0. For the existence and uniqueness of
a solution of this equation, see Lions [5].

2. Discretisation and optimisation

We briefly review the method of finite elements. To illustrate the method, let
(1.8) be discretised by triangulation elements of degree m. In variational form,
(1.8) becomes: seek (pe e //0' (Q) so that

L + F(<pc)co - fco)dx = 0, V w e #„•(«), (2.1)
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where F(<pe) = (l/e)(p~.
Let xh be a triangulation of £2, and Tk is called the triangle, U7i = Slh C Q.

The parameter /i is the size of the largest side or edge, and we assume that we
have a family of triangulations of zh. Let Pm be the space of polynomials of
degree m on Qh, and denote by

HZ>(nh) = {coh€C\nh):(oh\nePm V7ierA}, (2.2)

the space of continuous piecewise polynomial functions on Qh (Pironneau [6]).
It is well known (see Ciarlet [3]) that #™(£2A) is of finite dimension; then

+ F(<ph,B)coh - fQh)dx = 0 (2.3)

reduces to the solution of a linear symmetric positive definite system plus the
numerical computation of some integrals. More precisely, if [co'}" is a basis for
H^Cnh), (2.3) is equivalent to (Pironneau [6])

A<p = F, (2.4)

where Au = / ^ (Vaf • Vcoj + F(iph,t)a>J)dx; F, = fQh fafdx

iO>1 • (2.5)

The {ft>'} are polynomials of degree < m on Tk, so Atj can be computed exactly.
In the case m = 1, if {qJ}? denote the vertices of xh, then {&>'} are uniquely
determined by

(Oi(qi)=8ij Vi,j = l N.

In the case m = 2, if {q'k} denote the middles of the sides of vertices {qj, qk),
then [aj] is uniquely determined by

a > V ) = SU v ' . J = {1. • • •. N') U ({1 N'}x{l,..., AT}).

It is possible to consider our optimisation problem in this new setting. The
optimal shape will be found by successive approximation starting with an initial
guess Q®, and the algorithm is then developed by means of a gradient method.
We note that the problem has been discretised, so that the shape £2/, is defined
by the coordinates of the nodes. The expression for the cost function E is now

-L ., - UdMYdx, (2.6)
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where <Ph,e is the solution of the differential equation (2.3) on Qh and Udih and
Dh are the approximations of Ud and D respectively. The following theorem has
been adapted from Pironneau [6] to compute the gradient of the cost function E
at Qh. For the proof of this theorem see Butt [2].

THEOREM l.IfE is given by (2.6) and <phtE by (2.3), then

8E/dqk = f [ ^ 2 }

• Vcok)dPh,e/dx, -

} dx

ff ^
nh

I = 1,2andk = l,...,n, qk e Dh,
(2.7)

where

is the solution of

(2.8)
/(V/

= 2 /
JD,

e) - Udth)Vcohdx, (oh € Hi

with F'((phc) = (1/e) d/dcp {(ph E), and (2.8) is equivalent to the second penal-
ised equation,

APh,e + F'{jph,e)Ph,t = - 2V(V^ , , - Ud,h) = / , . (2.9)

We note that the function <p/,£ —> <p^e is not differentiable at <phe = 0; we have
defined F'(0) = 0. This choice turns out to be unimportant because fhtS > 0,
on Qh, with exception of a (zero-measure) subset of 9£V For more details see
Butt [2], where an approximation scheme is introduced for proving this.

3. Optimal shape design for a variations! inequality

Now we come to the implementation of the main idea of our treatment, that
is, to take the limit as e tends to zero of these quantities. First we shall find the
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value of the limit of the cost function E, as e tends to zero. Since we know
(Lions [5]) that

<Ph,e-*(Ph in H£(Qh) weakly as s -» 0, (3.1)

and also,

<Ph,e -> <Ph in L2(Slh) strongly as e -> 0,

by taking the limit (as £ —*• 0), on both sides of (2.6), we obtain:

lim E(Qh) = lim f ( V ^ , , - Ud,h)
2 dx.

S i n c e ^ e -» ^ in L2(£2A) strongly, so (Glowinskietal. [4])

lim I ( V ^ , £ - f/rf, ,)2^ - • / (V^A - f / d , A ) 2 ^ ;
^0JDh JDH

since the functional <ph —*• I (V<ph — Udh)
2dx is continuous in L2(Q.h); so the

JDH

above equation becomes:

= f
JDh

- Ud,h)
2dx, (3.2)

which is the required value of the cost function £ as £ tends to zero. Now we
shall find the value of the gradient of the cost function (2.7) as £ tends to zero:

lim dE/dqf = lim / dldx,\o)k{V(ph E - Udhf\dx

+ f \<y<Pk,t • Vcok)dPhjdx, - {v<pKe • vph.

\d/dx,(fPh,£cok) - (fa>kdPh,8/3x,)\dx

(3.3)
Now we need to find the limit of the vector Phe as e tends to zero; in the
Appendix we prove the following theorem which shows that this limit, Ph, is
itself the solution of a variational inequality.

https://doi.org/10.1017/S033427000000727X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000727X


[7] Optimal shape design for a nozzle problem 77

THEOREM 2. As s -> 0, PKe -> Ph in HQ(Q,,), Ph being the solution of the
variational inequality

a(Ph, a>h - Ph) > ( / , ,«* - Ph), Vcoh e H*(Qh) (3.4)

where f\ is defined by (2.9).

The proof of Theorem 2 has been explained in detail in the appendix. Now
we shall compute the gradient of the cost function when e tends to zero, by using
(3.3).

Since we know (Glowinski et al. [4]) that

lim I (VPA,e • V<ph,e)dx = f (VP* • V<ph)dx,

and
d/dxi((ph,e) -*• d/dxx(sph) in L2(fiA) weakly, as s -*• 0,

then <phe —>• (ph in L2(Q,h) strongly as e -*• 0; so (3.3) gives rise to

dE/dqf =

-(yph

I = 1,2, and k—\,...,n
(3.5)

where <ph is the solution of (1.5) and Ph is the solution of (3.4).
We define then an algorithm to solve the optimal shape problem for the

systems described by a differential inequality, i.e. when e tends to zero, and in
this algorithm it has been found necessary to use a second-order approximation,
that is, m — 2, which made us able to compute (3.5).

ALGORITHM

1. Choose £2J, i.e., {qk0}.
2. Compute cp™' (with m = 2).
3. Compute P™' .
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4. Compute Gk = -dE/dqf, I = 1, 2, and k = 1 , . . . , n, qk <£ Dh.
5. Let qk"'(p) = qkm' + pGk . Compute pm', an approximation of arg

min E({qkm\p)}), where E is given by (3.2).

6. Setqk-m'+l =qkm\p).
7. Perform a terminal check, if necessary go on with the same procedure in

<7*>m'+1,i.e. go back to 1.

4. Description of the program and algorithms used

The implementation of an algorithm (m = 2) will be described here. The
optimum design program is composed of the following modules.

MODULE 1. A module for solving the direct problem (or state problem). Find
<ph € Hl(Slh) such that

Jn,
• Vcoh - fcoh)dx > 0 Vo)4 e H£(Qh) (4.1)

or, find ^ 6 Hl(Slh) such that

I(<ph)<I(coh) Vcoh€HZ(Qh), (4.2)

where I((Ph) is defined as follows:

I(<ph) = 1/2 f \V<ph\2dx - [ f<phdx, (4.3)

minimised over the convex set K\ = {r/rh e H2(Slh), \(rh > 0 a.e. in Qh],
where <ph is the solution of (4.1). The method used for the minimisation of
this functional will be explained briefly. The function I(<Ph) may be written
I(cpi,..., <pN(h)) to emphasise the dependence of (ph on the coefficients in (2.5).
The problem (4.2) is solved by the relaxation method, with

<p°h = (tf,..., (p°Nh) g i v e n in H*(Qh),

with (fl known, then cpl+l is determined coordinate by coordinate, further itera-
tions in the algorithm being given by

(pn+l =(p" + a)((pn+l/2 - (pn).
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FIGURE 2. Indicates the initial shape with performance criterion E(Cl°) = 0.16452 after
iteration zero.The total number of nodes is 90 and the total number of triangles is 140 for the
domain Si. For the subdomain D the total number of nodes is 36 and the total number of triangles
is 50.

Here co is the relaxation parameter, 0 < a» < 2. The process is stopped when

Nh Nh

(In our computational experiments we took er = 10 5.)
MODULE 2. A module for solving the adjoint-state problem, whose solution

is needed to compute the descent direction (the vector G). The adjoint state
Ph 6 Hl(Slh) given by the solution of the following variational inequality,

L (VPA • Va>h)dx
Joh

(4.4)

In the Appendix, we show that this variational inequality has a solution which
minimises the following functional:

o,,
- f fxPhdx, Ph e (4.5)

over the convex set Kx and Ph is the solution of (4.4), and ft is defined by (2.9).
For this problem, we use the same optimisation method used in the case of the
state problem.

MODULE 3. A module for the computation of the descent direction, i.e. the
gradient of the cost function E when we know the solution <ph of the state
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FIGURE 3. Indicates the new shape after 15 iterations with new performance criterion E($l}?) =
0.010921. The total number of nodes is 90 and the total number of triangles is 140 for the domain
£2. For the subdomain D the total number of nodes is 36 and the total number of triangles is 50.

problem and the solution Ph of the adjoint state problem. In the formula we
must account for the variability of the criterion domain.

MODULE 4. A module minimising the criterion functional when we know
a descent direction. We used the gradient method with optimal choice of step
length p and eventually projection.

MODULE 5. A drawing module for the plotting of the results related to a given
geometry. This is convenient for quickly analysing computational results.

The finite element method was used to solve (1.5), (3.4), and (3.5) with / = 0
and Ud,h = 0 . 1 . The triangulation is composed of 90 nodes and 140 triangles
for the domain S2h and 36 nodes and 50 triangles for the subdomain Dh. The
initial shape of the problem is shown in Figure 2 and we can also see in Figure 2
the subdomain Dh where the criterion E

JDh

- Ud,h)
2dx

is evaluated. The starting value of the criterion is E{Q.°h) = 0.16452 with
Ud,h = 0.1 given, at iteration zero. The new shape of the problem is shown
in Figure 3 after 15 iterations with criterion E(£ll5) = 0.010921, and Figure 4
shows the final shape of the problem with criterion £(£2j;7) = 0.000415 after
24 iterations. Figure 5 shows the relation between the performance criterion E
and the number of iterations.
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FIGURE 4. Indicates the final shape of the problem after 27 iterations with performance criterion
E(Qf) = 0.000415. The total number of nodes is 90 and the total number of triangles is 140
for the domain Q. For the subdomain D the total number of nodes is 36 and the total number of
triangles is 50.

0.25

LU

8 12 16 20 24
NUMBER OF ITERATIONS

28

FIGURE 5: Indicates the relation between performance criterion and number of iterations.
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5. Conclusions

We have developed a method for the optimal shape design for the nozzle
problem. The work has been helped by the fact that our system is governed by a
variational inequality, with all its strong properties, which make the approxim-
ation and computation of solutions and optimal shapes that much simpler. The
main theoretical result - Theorem 2 in Section 3 - shows that the vector which
eventually defines the search direction for a minimum, is itself the solution of
an associated variational inequality. The practical results consist of the develop-
ment of a computationally-complex method for the determination of the optimal
shapes, which can be adapted to other problems of current interest.

6. Appendix

The main purpose of this appendix is to sketch the proof of Theorem 2.
We can prove that the functions Phc are non-negative on Q.h. Before proving
Theorem 2, we prove the following lemma.

LEMMA 1. Leta(Phe, <ph,e) beabilinear, continuous form on H%(£lh) x H%(Qh)
such that

a(Ph,e,Ph,e)>0 VfM € H2
h(&h). (1)

Then the function <t>he —>• a(0/,,e, <f>h,e) is lower-semicontinuous with respect to
the weak topology.

PROOF. From the bilinearity, we have for all Ph,E € H^(€ih), </>Ae €

a(<t>h.e, <t>h,e) = a(Ph,C, Ph,e) + \a(Ph,e, <t>h,e ~ Ph,e)
1 1 (2)

+ a(<t>h,e - PKe, PKe) + a(Ph<e - <f>Ke, PKe - < / » / ) J
Now we use the condition of ellipticity, i.e.

a(Ph,e, Ph.t) > 0,

which implies that

a((ph,s, <t>h,e) > a(Ph,e, Ph,e) + [a(Ph.e, 4>h,s - PH..) + a(fa.e ~ Ph,e, Ph,e)\
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Now, let (ph,e -*• Ph in H£(Qh) weakly; from the continuity of "a", and the fact
that

a(Ph, 4>h,e - Ph) -* 0 and a(.<f>KE - Ph, Ph) - • 0 ,

we have
liminfa(0A£,<f>h,e) > a(Ph, Ph). (3)
&.«->• ft

Hence the map(j>he —»• a(<f>h,e, 4>h,c) is weakly lower-semicontinuous.

In connection with the behaviour of the subsequence PAe as e —> 0, we have

THEOREM 2. As e -*• 0, PhE ->• PA in Hj;(£2h), Ph being the solution of the
variational inequality

a{Ph,coh-Ph)>{fx,coh~Ph) V ^ e i f ^ ) , (4)

where fx is defined by (2.9).

PROOF. Consider the second penalised equation

APh,e + (l/e)(d/d<p(fp^))Ph,t = / , , (5)

or, in variational form,

f ((yPh,e • V<wA) + (l/eX(d/dq,{^e))Ph,e,coh))dx = f (fi,a>h)dx. (6)

With Ph,e = (Oh, we have

) + (F '(^ i e ) /»M, ffci8))dJC = / ( / , , P*.,)dJC, (7)

where F'(^,£) = (l/e)(d/d(p((PhJ) > 0, and

Then, by (1.6) and (7), we have

0 < a\\PhJ\2 < f ( ( W V , • VP,,£) + F'{<ph,e)Ph
2\dx = / " ( / , , f * . , ) ^ ,
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or,

<x\\Ph,e\\2 < J ( / , , Ph,e)dx < ||/,|| \\Ph,£\\,

CC\\Ph,e\\2 < c\ph,e\\ (C'^H/,11), ( 8 )

l < Cu, (C\\ = c'/« = constant, independent of e).

A subsequence, also denoted by Ph,e, can then be extracted from the sequence
Ph,e, such that

Ph,e -+ Ph weakly in H2
h .

Since we have assumed that Pht£ > 0 on Qh, Ph > 0 on Qh. By writing (7) in
the following form:

a(Ph,e, o)h - Ph<E)

-(fl,COh-Ph,E) = -(F'(<Ph,e)P>,,e,a>h- P

( ) (

= l/e[(HPh.e, Ph,e) - (HPh.e, <»H)\

where H = d/dcp (<p,~e). Consider now (9) only for those coh — Wh e B C
H£(&h), with B the subset of the convex set K\ composed of the basis elements
for H^(Qh). Now we shall prove that the right-hand side of (9) is positive, that
is,

(HPhyS, Ph,s) > (HPhe, Wh), providedh is sufficiently small. (10)

Since H is positive operator, (HPhe, PhE) > 0; we can assume that (HPhe, Wh)
> 0; otherwise (9) is automatically true. We can make the right-hand side of the
inequality (10) as small as possible; note that Phi£ does not depend much on h
(from (4)), but that the support of Wh can be made as small as possible by taking
h small enough, the maximum value of Wh is of course 1. Therefore from (10)
we can see that, under these conditions,

a{Ph,E, Wh - P M ) - ( / , , Wh - Ph,£)

= l/e[(HPh,e, Ph,E) - (HPKE, W A ) ] > 0, (11)
for WheBc ^

Hence (11) can be written as

a(Ph,E, Wh - Ph,£) - (/,, Wh - PKE) > 0, Wh e B c
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or
a(Ph.s, Wh) - (/,, Wh - PKe) > a(PKe, Ph,e). (12)

Letting £ ->• 0 in (12), we obtain

a(Ph, Wk) - (/,, Wh - Ph) > liminf a (P M , Ph,e).
e->0

By applying the lemma, we obtain now

liminf a ( P M , PhyE) > a(Ph, Ph) > 0,
£->0

which implies that

a(Ph,Wh-Ph)>(fuWh-Ph), WheBcHZ(Qh). (13)

Now we shall show that (13) holds for all coh e H/;(Qh). Indeed,

coh = Y^atOOi, a, > 0, co, € B,
i

so that

a(Ph, coh - Ph) =a(ph, ( J2ai0)i) ~ Ph) = D a ' a ( / > / " Wi ~ Ph)

i i

>

i

since the a,'s are positive, and (13) is valid for all <w,-'s. Thus

a(Ph, <Dh - Ph) > {fx,coh - Ph); (oh e H2
h(Slh), (14)

which shows that Ph is a solution of the inequality (4).
Since Ph > 0, that is Ph e H%(Qh), (14) is a variational inequality; the unique

solution (in K\) of (14) minimises

/(/>„) = 1/2 f \VPh\
2dx - f (/,, Ph)dx, (15)

Jnh JDh

on the convex set Kx.
Thus, we can estimate Ph by actually performing the minimisation (15). In

the case of Theorem 2, we can see that the functional I is the limit as s tends to
zero of

h,e) = 1/2 f ( Z£) [
J ^ ' ' JDh
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(for more detail see Butt [2]); this fact in effect can be proved by Theorem 2.
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