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Abstract

Activity biosensors have been used recently to measure and diagnose the physiological status
of dairy cows. However, owing to the variety of commercialized activity biosensors available in
the market, activity data generated by a biosensor need to be standardized to predict the status
of an animal and make relevant decisions. Hence, the objective of this study was to develop a
standardization method for accommodating activity measurements from different sensors.
Twelve Holstein dairy cows were monitored to collect 12 862 activity data from four types
of sensors over five months. After confirming similar cyclic activity patterns from the sensors
through correlation and regression analyses, the gamma distribution was employed to calcu-
late the cumulative probability of the values of each biosensor. Then, the activity values were
assigned to three levels (i.e., idle, normal and active) based on the defined proportion of each
level, and the values at each level from the four sensors were compared. The results showed
that the number of measurements belonging to the same level was similar, with less than a
10% difference at a specific threshold value. In addition, more than 87% of the heat alerts gen-
erated by the internal algorithm of three of the four biosensors could be assigned to the active
level, suggesting that the current standardization method successfully integrated the activity
measurements from different biosensors. The developed probability-based standardization
method is expected to be applicable to other biosensors for livestock, which will lead to the
development of models and solutions for precision livestock farming.

Introduction

To ensure the sustainability of the livestock industry, the importance of precision dairy farm-
ing, which continuously monitors and manages individual animal productivity and health
problems, has increased to replace the traditional large-scale herd management (Bewley,
2010). However, individual observation of a herd by humans or video recording is labour-
intensive, and it is difficult to make consistent judgments about animal conditions, which is
practically impossible on large farms. For this reason, wireless biosensor systems have been
introduced into the livestock industry and have been actively studied over the past decades
(Rutten et al., 2013). The wireless biosensor system can be mounted on a part of the cattle
body to measure and collect biometrics. Biosensor systems are categorized into eight types
depending on the location where they are mounted: ear, halter, neck collar, rumen bolus,
leg tag, tail, tail root and vaginal insertion type (Caja et al., 2016). Most wireless biosensors
are used to diagnose the oestrus cycle (e.g., heat), calving and disease based on activity mea-
sured by an accelerometer (especially a three-axis accelerometer). Accelerometer-based sensors
measure the acceleration value according to the animal movement and convert the measured
values into physiological and behavioural variables, such as feeding time, rumination time and
motion activity level, using a built-in internal algorithm (Lee and Seo, 2021). Then, the physio-
logical and behavioural variables are comprehensively combined using an algorithm to gener-
ate diagnostic information for individual animals.

Although most biosensors measure animal activity based on measurements using an accel-
erometer, the reported activity differs greatly among biosensors. Commercialized wireless bio-
sensor systems have different algorithms for processing raw data to produce physiological and
behavioural variables and subsequent diagnostic information (Lee and Seo, 2021). For
example, even when measuring the same motion activity (e.g., eating, resting, walking and
being highly active), the measurement interval, duration and representation (e.g., interpret-
ation and unit) vary by manufacturer (Lee and Seo, 2021). This can cause problems in the
development of a precision dairy farming system that integrates multiple biosensor systems
(Cabrera and Fadul-Pacheco, 2021). For example, suppose a model is constructed to predict
an animal’s physiological status based on milk production and activity measures using a
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specific activity biosensor. In this case, the model cannot directly
use the activity measures obtained using a biosensor made by a
different manufacturer, owing to the data inconsistency between
the two biosensors. Thus, a model developed for a farm may
not be reliably used for other farms. Therefore, there is a need
for a method that can comprehensively interpret outputs from
different sensor measurements by solving the aforementioned
inconsistency problem of wireless biosensor systems.

In this regard, statistical methodologies can help standardize
and integrate the values obtained from multiple sensor systems.
The statistical method is widely used to analyse various data
derived from the livestock field, demonstrating its ability to
develop a quantitative model for estimating a specific value
from different measurements (Lee et al., 2020). A probability
function is a statistical approach that calculates the relative likeli-
hood of a random variable (Jónsson et al., 2011; Kalkowska et al.,
2018). It converts different types of data into probabilities (i.e., 0
to 1) according to the frequency of appearance and enables inte-
grated data analysis through the probability that a particular value
can be observed, suggesting that it can be used to standardize dif-
ferent data to probability values. Therefore, the objective of this
study was to develop a method to standardize the activity levels
generated by various sensors mounted on an animal using statis-
tical approaches.

Materials and methods

Experimental animals

Data were collected from October 2020 to February 2021 from a
research farm at Chungnam National University in
Chungcheongnam-do, Republic of Korea. All animal use and
experimental procedures were approved by the Committee on
the Ethics of Animal Experiments of Chungnam National
University (Approval Number:202009A-CNU-121) in 2020.

A total of 12 Holstein dairy cows (one drying and 11 lactating;
average parity: 2.5 ± 1.24) were used in this study. All cows were
milked twice daily at 0800 and 1600 using a tandem milking par-
lour system equipped with an electronic milk meter and an indi-
vidual identification system. They were housed in a
compost-bedded pack barn (sawdust) and fed timothy hay and
a commercial concentrate mix.

Data acquisition and processing

All the cows were equipped with four wireless biosensors for data
collection. A biosensor was mounted on the ear (CowManager,
Agis Automatisering BV, Netherlands), two on the neck (cSense
Flex tag, SCR Engineers Ltd., Israel; Activity Meter System,
DeLaval International AB, Sweden), and one on the
reticulo-rumen (smaXtec Classic Bolus, smaXtec Animal Care
GmbH, Austria). All biosensors use an accelerometer to measure
motion; however, each has different settings to obtain and inter-
pret the activity data, including the measurement duration, fre-
quency and unit by the manufacturers (Table 1). The data
collected from the biosensors were 30 012, 28 668, 13 696 and
177 672 from CowManager, Activity Meter System (DeLaval),
cSense Flex tag (SCR) and smaXtec Classic Bolus (smaXtec),
respectively. Of these, only the data at the time point when all
four sensors reported an activity datum (2-h interval) were
extracted. Consequently, 12 862 data points from each sensor
were used for the further analysis.

Statistical analysis of sensor data

Basic statistics such as average, standard deviation and range were
initially investigated. For each sensor, average values corresponding
to the time of day (a 24-h cycle) in a 2-h interval were calculated to
assess the daily variation patterns of the measurements from the
four sensors. The diurnal patterns were also tested using the timely
averages of standardized values – the z-normalized value based on
the average and standard deviation of the reported activity values –
for each sensor. A similar diurnal pattern in the activity measured
by the biosensors was visually confirmed, and the correlation
between the sensor values was investigated.

Distribution analysis of sensor data by using a probability
function

The frequency of the measured values from each sensor was
counted to investigate the distribution of sensor values and to
derive a standard method for evaluating cow activity with differ-
ent biosensors. The biosensors showed a similar distribution pat-
tern, with a skewed centre to the left and a long tail to the right,
from an exponential-like distribution (CowManager) to a normal-
like distribution (smaXtec). Therefore, the gamma distribution
was selected that can accommodate these distribution shapes by
adjusting the shape (k) and scale (r) parameters for fitting all
the sensor distributions, modifying it to not define at zero sensor
value (Equation 1; Stacy, 1962):

f (x; k; r) = (x+ 1)k−1

G(k)rk
exp − x+ 1

r

( )
(1)

where f is the probability value from the gamma distribution, x
the sensor value, k the shape parameter, r the scale parameter
and Γ the gamma function.

Maximum likelihood estimation was used to estimate the
gamma distribution parameters for each sensor’s activity values
by determining the values that showed the best fitting result.
Cross-validation was employed to evaluate the robustness of the
parameter estimates of the gamma distribution for each sensor’s
activity data.

As the gamma distribution is a probability density function, it
is possible to convert an activity value into a standardized value
between 0 and 1 by calculating the cumulative probability of
the activity value for each biosensor. Additionally, for each sensor,
the standardized activity values (i.e., the calculated cumulative
probabilities) were classified into three activity levels (i.e., idle,
normal and active). In this study, the terms ‘idle’ and ‘active’
represent low and high activity levels respectively, while ‘normal’
means a moderate activity level that is not categorized as low or
high by the threshold.

A two-sided threshold was used to define the levels. For
example, with a 0.05 threshold, the standardized activity values
that were smaller than 0.05, greater than 0.95 (1–0.05) and
between 0.05 and 0.95 were defined as idle, active and normal,
respectively. Various thresholds were tested to assess consistency
in defining the activity level of a cow at a specific time point
among the four wireless biosensors.

Probability calculation for sensor values alerting heat

To test the potential utility of the developed probability-based
sensor measurements, the sensor values with heat alerts were
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gathered for each biosensor. The sensor values were converted
to the corresponding cumulative probability based on the
probability density function of each biosensor. The number of
heat alerts for each sensor was counted, and the average
cumulative probability of heat alerts was calculated. In addition,
the threshold value of probability for assigning a sensor value
to the active level above the threshold was varied to examine
the number of detected heat alerts through probability conver-
sion. For example, 32 heat alerts were recorded by the
smaXtec with an average probability of 0.89, and 26 out of 32
could be classified into the active level with a threshold value
of 0.8.

Statistical software

All statistical analyses were performed using R (version 4.1.0) (R
core Team, 2021) and GraphPad (version 9.2.0; GraphPad
Software, CA, USA). Specifically, correlation analysis and
descriptive statistics were performed by using GraphPad. ‘fit-
dist’ package in R was used to fit sensor datasets, and to esti-
mate parameter values of the gamma distribution. A
continuous probability distribution graph was then created
based on the acquired parameters and equations. To cross-
validate the developed algorithms with estimated parameters,
we partitioned the entire dataset into ten folds using the ‘subset’
function in R; then, the algorithms developed with nine folds
were repeatedly validated with a fold that was not used for esti-
mating parameters.

Results

Statistical analysis of sensor data

Because of the difference in the internal algorithm coded for each
sensor (which was unknown owing to company policy), the mea-
sured activity values showed differences in the mean, standard
deviation, maximum and minimum values for each sensor, and
the range of values also differed (Table 2). However, the diurnal
pattern of the reported activity data showed high similarity
among the sensors (Fig. 1). For example, the lowest activity
value appeared at 6 am, whereas the highest activity occurred at
10 am and 6 pm, 2 h after milking, and this was consistently
observed throughout the data collection days. This result suggests
a correlation of measurement data among sensors, and a standard
way to interpret different sensor values could be developed. This
inference was confirmed by correlation analysis, showing Pearson
correlation coefficients of 0.41–0.67 for the averages of the
reported activity values and 0.44–0.71 for the averages of the stan-
dardized activity values among the sensor datasets (P < 0.05;
Figure 2). In general, the SCR data showed higher correlations
with the other sensors, with the highest value of 0.71 with
smaXtec for the averages of the standardized activity values,
whereas CowManager showed relatively lower correlations.

Development of standard analysis for activity sensors by using
probability density function

The frequency of the measured values from each sensor was mod-
elled by a gamma distribution, resulting in the best fit for each
sensor with different parameter values (Fig. 3). The cross-
validation verified the robustness of the estimated parameter
values, which showed little variation in each parameter estimation
trial (data not shown). Consequently, it was shown that the devel-
oped model could convert the activity measurement into the
probability of frequency, and different sensor values could be
assigned as comparable values (e.g., one of the three activity
levels) through the probability.

As the threshold for defining the activity level increased, the
consistency among the four wireless biosensors in the amount
of activity data belonging to each activity level increased
(Table 3). With the threshold of 0.05 (idle < 0.05, 0.05 ⩽ normal
< 0.95 and 0.95 ⩽ active), only smaXtec had values assigned to
the idle level; however, all sensors showed the same number of
data corresponding to 6.7% of the total data at the active level,
suggesting the potential for probability-based conversion of sen-
sor values for extremely high activity levels. As the threshold
value increased, the number of sensor values assigned to each

Table 1. Information of the wireless activity biosensors used in this study

Items
Mounting
location Management software

Data reporting
frequency

Data unit
(min-max) Data type

smaXtec Classic Bolus
(smaXtec)

Reticulo-rumen Messenger® Every 10 min Unitless (0–100) Finite
decimal

Activity Meter System
(DeLaval)

Neck AlPro Farm Management
system

Every hour Unitless (0–255) Natural
number

CowManager Ear Agis CowManager Every hour Unitless (0–60) Natural
number

cSense Flex tag (SCR) Neck Heatime® Pro + Every 2 h Unitless (0–253) Natural
number

Table 2. Descriptive statistics of the activity data (unitless/2 h) obtained from
the tested wireless activity biosensors

Item1

Biosensors2

smaXtec DeLaval CowManager SCR

N 12 862 12 862 12 862 12 862

Mean 11 33 6 34

SD 4.3 42.3 6.2 9.4

Min 0.2 0.0 0.0 22.0

Max 62.1 226.0 56.0 119.0

Range 61.9 226.0 56.0 97.0

1SD, standard deviation.
2smaXtec, smaXtec Classic Bolus (smaXtec animal care GmbH, Austria); DeLaval, Activity
Meter System (DeLaval International AB, Sweden); CowManager, CowManager (Agis
Automatisering BV, Netherlands); and SCR, cSense Flex tag (SCR Engineers Ltd., Israel).
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level became similar, reaching approximately 36%, 40% and 24%
for idle, normal and active levels, respectively, at the threshold
of 0.3 (idle < 0.3, 0.3 ⩽ normal < 0.7 and 0.7 ⩽ active). At the
active level, the rate of change of the amount of data allocated
according to the change in the threshold value ( + 0.05) was
almost constant at less than 4%, but the proportion of the idle
level changed rapidly owing to the shape of the distribution
model, which skewed to the left. CowManager exhibited the lar-
gest variation in the thresholds. This suggests that the
probability-based model is robustly interconvertible, at least
for detecting the high activity of cows, whereas the optimal
threshold at which the idle and normal levels that can be com-
monly detected by sensors need to be determined. To determine
the optimal threshold, the ratio of commonly assigned data
numbers for SCR to each sensor was tested by classifying the
probability into three levels. A similar amount of data for each

sensor was generally assigned to each level through probability
conversion of sensor measurements, while the largest discrep-
ancy was observed at the threshold value of 0.1–0.9 due to a
drastic change in the amount of data in CowManager. For the
active level, regardless of thresholds, more than 90% of sensor
values were matched except smaXtec at the 0.3–0.7 threshold,
suggesting that active level detection would be possible through
probability conversion. For the idle level, threshold values lower
than 0.15 and larger than 0.85 showed a consistently reliable
matching accuracy of approximately 75% at least.
Comprehensively, high activity could be detected with less
than 0.1% error regardless of sensor type at the upper threshold
value higher than 0.9, while idle activity could be inter-
convertibly detected with moderate accuracy greater than 75%
when applying the optimal lower threshold between 0.2 and
0.3. Therefore, sensor interconversion to detect physiological

Figure 1. Diurnal pattern (2-h interval) of the activity data by the wireless biosensors over five months (a) average of the reported activity values and (b) average of
the z-normalized activity values for each sensor. Symbols are as follows: filled circle (smaXtec Classic Bolus, smaXtec animal care GmbH, Austria), filled square
(CowManager, Agis Automatisering BV, Netherlands), filled triangle (Activity Meter System, DeLaval International AB, Sweden) and filled reverse triangle (cSense
Flex tag, SCR Engineers Ltd., Israel).

Figure 2. Pearson correlation coefficients of the activity data between the wireless biosensors (a) average of the reported activity values and (b) average of the
z-normalized activity values for each sensor. smaXtec: smaXtec Classic Bolus (smaXtec animal care GmbH, Austria), DeLaval: Activity Meter System (DeLaval
International AB, Sweden), CowManager: CowManager (Agis Automatisering BV, Netherlands) and SCR: cSense Flex tag (SCR Engineers Ltd., Israel).
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status might be possible by calculating the probability of sensor
values with an optimal threshold.

Probability calculation for sensor values alerting heat

During the entire data collection period, 159 heating alerts were
reported by all four sensors. DeLaval produced the largest number
of heat alerts (79), while the number of heat alerts was similar
among the other three sensors (Table 4). The time when the
heat was detected, however, was inconsistent among the sensors,
suggesting high variation among sensors in the values and meth-
ods of detecting heat in a cow. The average standardized sensor
values (probability) when the heat alerts were alerted were 0.90,
0.87, 0.68 and 0.89 smaXtec, and respectively (Table 4). The
upper threshold value (0.75) for defining the active level could
capture more than 87% of the heat alerts from smaXtec,
CowManager and SCR, whereas only 62% of the heat alerts gen-
erated by DeLaval belonged to the active level even with an upper
threshold of 0.7. This suggests a high variation in the DeLaval
sensor values for heat detection, but the other three sensors
were relatively similar and robust.

Discussion

Among the physiological and behavioural variables generated by
wireless sensors, the activity level quantifies the degree of move-
ment of an animal, and it is a variable commonly generated by
most wireless sensors. The activity level reported by a sensor
has been used by farm managers as a major indicator for judging
physiological changes in cows caused by oestrus, calving and dis-
ease. The quantified activity levels have also been used as import-
ant input data for models detecting oestrus, calving (Løvendahl
and Chagunda, 2010; Borchers et al., 2017) and disease
(Thorup et al., 2015; Stangaferro et al., 2016a, 2016b). Various
wireless activity sensors are available in the market, and an indi-
vidual cow usually wears only one activity sensor. Because the
values provided by each sensor are different, it is necessary to
develop a model capable of the one-to-one conversion of wireless
activity sensors. This study attempts to develop a method that can
comprehensively interpret the output of different cattle activity
sensors using a statistical approach.

Similar daily cycle patterns among the sensor measurements
suggested the consistency and robustness of the sensors tested
in this study in measuring a cow’s activity, even though the

Figure 3. Frequency distribution of the activity data of the wireless biosensors. The best-fit gamma distribution function for each data is presented with an equa-
tion and a line. smaXtec: smaXtec Classic Bolus (smaXtec animal care GmbH, Austria), DeLaval: Activity Meter System (DeLaval International AB, Sweden),
CowManager: CowManager (Agis Automatisering BV, Netherlands) and SCR: cSense Flex tag (SCR Engineers Ltd., Israel). Estimated parameter values and their
error (SE) for each parameter in the form of value ± SE were provided.
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Table 3. Number of activity data generated by the wireless biosensors classified into idle, normal and active levels by threshold probability1,2

Threshold Idle Normal Active

Lower Upper S D C SC S D C SC S D C SC

0.05 0.95 282 (2.2%) 0 (0%) 0 (0%) 0 (0%) 11 723 (91.1%) 12 005 (93.3%) 12 005 (93.3%) 12 005 (93.3%) 857 (6.7%) 857 (6.7%) 857 (6.7%) 857 (6.7%)

0.09 0.91 655 (5.1%) 261 (2.0%) 0 (0%) 243 (1.9%) 10 895 (84.7%) 11 289 (87.8%) 11 550 (89.8%) 11 308 (87.9%) 1312 (10.2%) 1312 (10.2%) 1312 (10.2%) 1311 (10.2%)

0.1 0.9 775 (6.0%) 821 (6.4%) 2767 (21.5%) 243 (1.9%) 10 664 (82.9%) 10 620 (82.6%) 8709 (67.7%) 11 199 (87.1%) 1423 (11.1%) 1421 (11.0%) 1386 (10.8%) 1420 (11.0%)

0.15 0.85 1504 (11.7%) 1549 (12.0%) 2767 (21.5%) 1578 (12.3%) 9439 (73.4%) 9410 (73.2%) 8230 (64.0%) 9383 (73.0%) 1919 (14.9%) 1903 (14.8%) 1865 (14.5%) 1901 (14.8%)

0.2 0.8 2340 (18.2%) 3096 (24.1%) 2767 (21.5%) 2489 (19.3%) 8175 (63.6%) 7486 (58.2%) 7823 (60.8%) 8077 (62.8%) 2347 (18.2%) 2280 (17.7%) 2272 (17.7%) 2296 (17.9%)

0.25 0.75 3210 (25.0%) 4311 (33.5%) 4274 (33.2%) 4156 (32.3%) 6863 (53.3%) 5930 (46.1%) 5994 (46.6%) 6086 (47.3%) 2789 (21.7%) 2621 (20.4%) 2594 (20.2%) 2620 (20.4%)

0.3 0.7 4127 (32.1%) 5200 (40.4%) 4274 (33.2%) 4902 (38.1%) 5445 (42.3%) 4704 (36.6%) 5546 (43.1%) 5008 (38.9%) 3290 (25.6%) 2958 (23.0%) 3042 (23.7%) 2952 (23.0%)

1S, smaXtec Classic Bolus (smaXtec animal care GmbH, Austria); D, Activity Meter System (DeLaval International AB, Sweden); C, CowManager (Agis Automatisering BV, Netherlands); and SC, cSense Flex tag (SCR Engineers Ltd., Israel).
2Percentage is calculated by the ratio of the classified sensor values at each level to the total number of sensor data (12 862 for each sensor).

Table 4. Detection probability of the model for heat alerts generated by wireless biosensors

Sensors1 smaXtec DeLaval CowManager SCR

Average probability 0.898 0.685 0.869 0.891

Standard deviation 0.123 0.266 0.210 0.233

No. heat alerts 32 79 22 29

Threshold No. alerts Detection ratio No. alerts Detection ratio No. alerts Detection ratio No. alerts Detection ratio

0.95 17 0.531 13 0.165 10 0.455 19 0.655

0.91 20 0.625 19 0.241 15 0.682 20 0.690

0.90 21 0.656 22 0.278 15 0.682 21 0.724

0.85 24 0.750 28 0.354 17 0.773 21 0.724

0.80 26 0.813 32 0.405 17 0.773 24 0.828

0.75 28 0.875 38 0.481 20 0.909 26 0.897

0.70 28 0.875 49 0.620 20 0.909 26 0.897

1smaXtec, smaXtec Classic Bolus (smaXtec animal care GmbH, Austria); DeLaval, Activity Meter System (DeLaval International AB, Sweden); CowManager, CowManager (Agis Automatisering BV, Netherlands); and SCR, cSense Flex tag (SCR Engineers
Ltd., Israel).
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internal algorithms were different. In addition, significant correla-
tions among sensor outputs, which ranged from 0.4 to 0.7 with a
P-value <0.05, indicated that the activity values of each sensor
could be interconvertible. This observation suggests the possibility
of developing a model that allows mutual changes between sen-
sors. We actually attempted to develop a linear model that con-
verts the activity values of the other sensors to those in SCR;
however, variations among sensor values were too large for indi-
vidual cows, limiting the application of a quantitative model to
interconvert sensor measurements. In particular, the large sum
of squares of the discrepancy between measurement and predic-
tion for high sensor values compared to low sensor values sug-
gests that the regression model becomes a low-value-oriented
model because the sensor outputs are predominantly dense with
small values. Thus, in the case of livestock and dairy applications,
where accurate detection of idling (e.g., disease) and high activity
(e.g., heat) is critical, the use of this type of model will be limited
(Mottram, 2016). For this reason, we concluded that the
regression-based quantitative approach that generally targets the
population rather than individuals might not provide a reliable
output that is practically required to manage individual cows
(Lee et al., 2011). Consequently, a methodology to establish a
gold standard for different sensors would be more practical.

To develop the qualitative model, a probability function was
employed to calculate the probability of a specific value for each
sensor. A gamma distribution was used because of its flexibility
to fit the frequency distributions whose shapes differed by sen-
sors. The gamma distribution function has been previously used
to examine biosensor signals (Carreiro et al., 2016) and to char-
acterize large-volume records of dairy cows (Buenger et al.,
2001). The estimated parameter values for each sensor were
almost constant without large variations in cross-validation,
which indicates the robustness of the developed probability
model using the gamma function. As shown in the daily cycle,
the duration of a cow’s high activity is relatively short compared
to normal and idle activity; thus, the frequency of occurrence of
high sensor values may be low (Shahriar et al., 2016; Wang
et al., 2022). In other words, since high activity is observed in a
special case, the variation of sensor measurement might be less
with active activity compared to normal or low activity, which
includes various movements of the part where the sensor is
attached (neck, ear, rumen, etc.). Therefore, for high activity, it
may be feasible to derive a standard sensor metric represented
by frequency probability with a high upper threshold. This was
shown by the constant number of sensor values classified as active
level, regardless of the threshold value or sensor type. In contrast,
the number of sensor values classified as either idle or normal
varied significantly by the threshold value. This suggests that it
is more difficult to derive a common metric for different sensors
for idle and normal activities, and the optimal threshold must be
determined. This can be explained by the data distribution shape
and characteristics of the gamma function. Owing to the small
appearance of large sensor values fitted with a relatively long
tail of the gamma function, the same classification for high activ-
ity among the sensor values was possible when a high threshold
value was applied. However, because of the distribution of sensor
values skewed to the left, the classification of low sensor values
was greatly affected by the threshold value, but the number of sen-
sor values classified as idle level became similar when a lower
threshold above a certain level was applied. From this perspective,
by converting the output to probability, it is expected that any
type of sensor can be used to measure high cow activity, such

as heat, which is most needed by livestock farmers (Shahriar
et al., 2016; Wang et al., 2022).

The developed model was applied to convert the sensor values
that alert heat into probabilities. As expected, the high-probability
areas were assigned to the sensor values recording heat alerts, sug-
gesting that alerts might be classified as active through probability
function-based standardization. In particular, smaXtec,
CowManager and SCR exhibited similar average probabilities
for heat alerts, indicating that they are interconvertible.
However, despite relatively low frequency of high sensor values
and their less variation compared to low values, significant dispar-
ities in heat alerts existed among the sensors. For instance, due to
differences in the internal detection algorithms of the sensors,
there were no instances of three or more sensors recorded a
heat alert simultaneously at the same time point. Moreover,
even within a single sensor, there was substantial variations in
the values associated with heat alerts. As a result, in order to
derive the optimal detection performance for the four sensors,
it was necessary to examine the detection ratio based on changes
in the threshold value. Even though applying this method to new
sensors may involve the limitation that requires a testing process
to ensure its applicability, this process was essential to determine
the optimal threshold value through which the best performance
could be achieved. With varying upper threshold values, approxi-
mately 90% of heat alerts could be assigned to the active level,
except for DeLaval, which showed that only 62% were detected
with the largest variation. When a few abnormally low probabil-
ities were removed, the average probability of the sensor values
with the heat alerts increased to 77%. Nevertheless, the larger
number of heat alerts, lower probability and higher variation com-
pared with other sensors indicate a different detection algorithm
for DeLaval. In addition, there is an apparent difference in the
heat-detection alerts time between the sensors because of the
time difference in generating a sensor value (Dolecheck et al.,
2015; Borchers et al., 2016). Another factor that causes detection
discrepancy in time and probability may be the location of the
mounted sensor, which subsequently influences the sensitivity
of the sensor measurement (Lee and Seo, 2021). Nevertheless,
the approach using the probability function is effective because
this method simply adjusts the discrepancy by calculating the
probability that a specific sensor value appears.

In conclusion, we successfully developed a methodology that can
standardize and comprehensively interpret different cow-activity
sensor data by converting sensor measurements into the cumulative
probability of their appearance. To the best of our knowledge, this
study is the first to develop a methodology for the integration of
activity data generated from various wireless sensors in cows. This
methodology uses the appearance probability of sensor values for
conversion and can standardize the activity values generated from
different sensors more simply and effectively than other methods,
such as regression or machine learning techniques. Moreover, this
methodology is expected to be applicable not only to activity sen-
sors but also to other sensors that measure the physiological char-
acteristics (e.g., rumination time and eating time) of cattle. However,
to derive the significance of the probability values, it is necessary to
compare the probability values of a new sensor with the actual
levels. In addition, since the reliability of parameter estimation for
the gamma distribution used in the conversion to probability values
can be compromised when data volume is insufficient, it is essential
to gather a large amount of data to ensure robustness in the results.
Therefore, further studies using new sensors and data are required
to evaluate the applicability of the methodology.
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